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Abstract

Given a directed graph, two vertices v and w are 2-vertex-connected if there are two internally
vertex-disjoint paths from v to w and two internally vertex-disjoint paths from w to v. In this
paper, we show how to compute this relation in O(m + n) time, where n is the number of
vertices and m is the number of edges of the graph. As a side result, we show how to build in
linear time an O(n)-space data structure, which can answer in constant time queries on whether
any two vertices are 2-vertex-connected. Additionally, when two query vertices v and w are
not 2-vertex-connected, our data structure can produce in constant time a “witness” of this
property, by exhibiting a vertex or an edge that is contained in all paths from v to w or in all
paths from w to v. We are also able to compute in linear time a sparse certificate for 2-vertex
connectivity, i.e., a subgraph of the input graph that has O(n) edges and maintains the same
2-vertex connectivity properties as the input graph.

1 Introduction

Let G = (V,E) be a directed graph (digraph), with m edges and n vertices. G is strongly connected
if there is a directed path from each vertex to every other vertex. The strongly connected components
of G are its maximal strongly connected subgraphs. Two vertices u, v ∈ V are strongly connected
if they belong to the same strongly connected component of G. A vertex (resp., an edge) of G is
a strong articulation point (resp., a strong bridge) if its removal increases the number of strongly
connected components. A digraph G is 2-vertex-connected if it has at least three vertices and no
strong articulation points; G is 2-edge-connected if it has no strong bridges. The 2-vertex- (resp.,
2-edge-) connected components of G are its maximal 2-vertex- (resp., 2-edge-) connected subgraphs.

Differently from undirected graphs, in digraphs 2-vertex and 2-edge connectivity have a much
richer and more complicated structure. To see an example of this, let v and w be two distinct vertices
and consider the following natural 2-vertex and 2-edge connectivity relations, defined in [6, 11, 17].
Vertices v and w are said to be 2-vertex-connected (resp., 2-edge-connected), and we denote this
relation by v ↔2v w (resp., v ↔2e w), if there are two internally vertex-disjoint (resp., two edge-
disjoint) directed paths from v to w and two internally vertex-disjoint (resp., two edge-disjoint)
directed paths from w to v (note that a path from v to w and a path from w to v need not be
edge- or vertex-disjoint). A 2-vertex-connected block (resp., 2-edge-connected block) of a digraph
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Figure 1: (a) A strongly connected digraph G, with strong articulation points and strong bridges
shown in red (better viewed in color). (b) The 2-vertex-connected components of G. (c) The
2-vertex-connected blocks of G. (d) The 2-edge-connected components of G. (e) The 2-edge-
connected blocks of G.

G = (V,E) is defined as a maximal subset B ⊆ V such that u↔2v v (resp., u↔2e v) for all u, v ∈ B.
In undirected graphs, the 2-vertex- (resp., 2-edge-) connected blocks are identical to the 2-vertex-
(resp., 2-edge-) connected components. As shown in Figure 1, this is not the case for digraphs. Put
in other words, differently from the undirected case, in digraphs 2-vertex- (resp., 2-edge-) connected
components do not encompass the notion of pairwise 2-vertex (resp., 2-edge) connectivity among
its vertices. We note that pairwise 2-connectivity is relevant in several applications, where one is
often interested in local properties, e.g., checking whether two vertices are 2-connected, rather than
in global properties.

It is thus not surprising that 2-connectivity problems on directed graphs appear to be more
difficult than on undirected graphs. For undirected graphs it has been known for over 40 years how
to compute all bridges, articulation points, 2-edge- and 2-vertex-connected components in linear
time, by simply using depth first search [18]. In the case of digraphs, however, the very same
problems have been much more challenging. Indeed, it has been shown only few years ago that
all strong bridges and strong articulation points of a digraph can be computed in linear time [10].
Furthermore, the best current bound for computing the 2-edge- and the 2-vertex-connected com-
ponents in digraphs is not even linear, but it is O(n2), and it was achieved only very recently by
Henzinger et al. [9], improving previous O(mn) time bounds [12, 16]. Finally, it was shown also
very recently how to compute the 2-edge-connected blocks of digraphs in linear time [6].

In this paper, we complete the picture on 2-connectivity for digraphs by presenting the first
algorithm for computing the 2-vertex-connected blocks in O(m+n) time. Our bound is asymptot-
ically optimal and it improves sharply over a previous O(mn) time bound by Jaberi [11]. As a side
result, our algorithm constructs an O(n)-space data structure that reports in constant time if two
vertices are 2-vertex-connected. Additionally, when two query vertices v and w are not 2-vertex-
connected, our data structure can produce, in constant time, a “witness” by exhibiting a vertex
(i.e., a strong articulation point) or an edge (i.e., a strong bridge) that separates them. We are
also able to compute in linear time a sparse certificate for 2-vertex connectivity, i.e., a subgraph
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of the input graph that has O(n) edges and maintains the same 2-vertex connectivity properties.
Our algorithm follows the high-level approach of [6] for computing the 2-edge-connected blocks.
However, the algorithm for computing the 2-vertex-connected blocks is much more involved and
requires several novel ideas and non-trivial techniques to achieve the claimed bounds. In particular,
the main technical difficulties that need to be tackled when following the approach of [6] are the
following:

• First, the algorithm in [6] maintains a partition of the vertices into approximate blocks, and
refines this partition as the algorithm progresses. Unlike 2-edge-connected blocks, however,
2-vertex-connected blocks do not partition the vertices of a digraph, and therefore it is harder
to maintain approximate blocks throughout the algorithm’s execution. To cope with this
problem, we show that these blocks can be maintained using a more complicated forest
representation, and we define a set of suitable operations on this representation in order to
refine and split blocks. We believe that our forest representation of the 2-vertex-connected
blocks of a digraph can be of independent interest.

• Second, in [6] we used a properly defined canonical decomposition of the input digraph G,
in order to obtain smaller auxiliary digraphs (not necessarily subgraphs of G) that maintain
the original 2-edge-connected blocks of G. A key property of this decomposition was the
fact that any vertex in an auxiliary graph Gr is reachable from a vertex outside Gr only
through a single strong bridge. In the computation of the 2-vertex-connected blocks, we have
to decompose the graph according to strong articulation points, and so the above crucial
property is completely lost. To overcome this problematic issue, we need to design and to
implement efficiently a different and more sophisticated decomposition.

• Third, differently from 2-edge connectivity, 2-vertex connectivity in digraphs is plagued with
several degenerate special cases, which are not only more tedious but also more cumbersome
to deal with. For instance, the algorithm in [6] exploits implicitly the property that two
vertices v and w are 2-edge-connected if and only if the removal of any edge leaves v and
w in the same strongly connected component. Unfortunately, this property no longer holds
for 2-vertex connectivity, as for instance two mutually adjacent vertices are always left in the
same strongly connected component by the removal of any other vertex, but they are not
necessarily 2-vertex-connected. To handle this more complicated situation, we introduce the
notion of vertex-resilient blocks and prove some useful properties about the vertex-resilient
and 2-vertex-connected blocks of a digraph.

Another difference with [6] is that now we are able to provide a witness for two vertices not
being 2-vertex-connected. This approach can be applied to provide a witness for two vertices not
being 2-edge-connected, thus extending the result in [6]. As in [6], some basic components of our
algorithms are flow graphs and dominator trees, that we review in Section 2. In Section 3 we
prove some useful properties of the vertex-resilient and 2-vertex-connected blocks that allow us to
represent them by a forest. Our linear-time algorithms for computing the vertex-resilient blocks
and the 2-vertex-connected blocks are described in Sections 4 and 5. We describe the computation
of the sparse certificate in Section 6.

2 Flow graphs, dominators, and bridges

A flow graph is a digraph such that every vertex is reachable from a distinguished start vertex.
Let G = (V,E) be the input digraph, which we assume to be strongly connected. (If not, we
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simply treat each strongly connected component separately.) For any vertex s ∈ V , we denote by
G(s) = (V,E, s) the corresponding flow graph with start vertex s; all vertices in V are reachable
from s since G is strongly connected. The dominator relation in G(s) is defined as follows: A vertex
u is a dominator of a vertex w (u dominates w) if every path from s to w contains u; u is a proper
dominator of w if u dominates w and u 6= w. The dominator relation is reflexive and transitive.
Its transitive reduction is a rooted tree, the dominator tree D(s): u dominates w if and only if u
is an ancestor of w in D(s). If w 6= s, d(w), the parent of w in D(s), is the immediate dominator
of w: it is the unique proper dominator of w that is dominated by all proper dominators of w. An
edge (u,w) is a bridge in G(s) if all paths from s to w include (u,w).

Lengauer and Tarjan [13] presented an algorithm for computing dominators in O(mα(n,m/n))
time for a flow graph with n vertices and m edges, where α is a functional inverse of Ackermann’s
function [20]. Subsequently, several linear-time algorithms were discovered [1, 2, 3, 4, 5, 7]. Italiano
et al. [10] showed that the strong articulation points of G can be computed from the dominator
trees of G(s) and GR(s), where s is an arbitrary start vertex and GR is the digraph that results
from G after reversing edge directions; similarly, the strong bridges of G correspond to the bridges
of G(s) and GR(s).

Let T be a rooted tree whose vertex set is V . Tree T has the parent property if for all (v, w) ∈ E,
v is a descendant of the parent of w in T . Tree T has the sibling property if v does not dominate
w for all siblings v and w. The parent and sibling properties are necessary and sufficient for a tree
to be the dominator tree [8].

3 Vertex-resilient blocks and 2-vertex-connected blocks

Let v and w be two distinct vertices in a digraph. By Menger’s Theorem [15], v ↔2e w if and
only if the removal of any edge leaves v and w in the same strongly connected component, i.e.,
two vertices are 2-edge-connected if and only if they are resilient to the deletion of a single edge.
The situation for 2-vertex connectivity is more complicated. Indeed, Menger’s Theorem implies
that v ↔2v w only if the removal of any vertex different from v and w leaves them in the same
strongly connected component, while the converse holds only when v and w are not adjacent. For
instance, two mutually adjacent vertices are left in the same strongly connected component by the
removal of any other vertex, although they are not necessarily 2-vertex-connected. To handle this
situation, we use the following notation, which was also considered in [11]. Vertices v and w are
said to be vertex-resilient, denoted by v ↔vr w if the removal of any vertex different from v and
w leaves v and w in the same strongly connected component. We define a vertex-resilient block of
a digraph G = (V,E) as a maximal subset B ⊆ V such that u ↔vr v for all u, v ∈ B. See Figure
2. Note that, as a (degenerate) special case, a vertex-resilient block might consist of a singleton
vertex only: we denote this as a trivial vertex-resilient block. In the following, we will consider
only non-trivial vertex-resilient blocks. Since there is no danger of ambiguity, we will call them
simply vertex-resilient blocks. We remark that two vertices v and w that are vertex-resilient are
not necessarily 2-vertex-connected: this is indeed the case for vertices H and F in the digraph of
Figure 1(a). If, however, v and w are not adjacent then v ↔2v w if and only if v ↔vr w.

We next provide some basic properties of the vertex-resilient blocks and the 2-vertex-connected
blocks. In particular, we show that any digraph has at most n− 1 vertex-resilient (resp., 2-vertex-
connected) blocks and, moreover, that there is a forest representation of these blocks that enables
us to test vertex-resilience (resp., 2-vertex-connectivity) between any two vertices in constant time.
This structure is reminiscent of the representation used in [21] for the biconnected components of
an undirected graph.
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Figure 2: The vertex-resilient blocks of the digraph of Figure 1.

Lemma 3.1. Let u, v, x, and y be distinct vertices such that u↔vrx , v↔vrx, u↔vry and v↔vry.
Then also x↔vry and u↔vrv.

Proof. Assume, for contradiction, that x and y are not vertex-resilient. Then there is a strong
articulation point w such that every path from y to x contains w, or every path from x to y
contains w (or both). Without loss of generality, suppose that w is contained in every path from
y to x. Since u and v are distinct, we can assume that w 6= u. (If w = u then we swap the role
of u and v.) Then, y↔vru implies that there is a path P from y to u that avoids w, and similarly,
u↔vrx implies that there is a path Q from u to x that avoids w. So, P followed by Q gives a path
from y to x that does not contain w, a contradiction. Hence x↔vry. The fact that u↔vrv follows
by repeating the same argument for u and v.

Corollary 3.2. Let B and B′ be two distinct vertex-resilient blocks of a digraph G = (V,E). Then
|B ∩B′| ≤ 1.

Proof. Follows immediately from Lemma 3.1.

We denote by VRB(u) the vertex-resilient blocks that contain u. Define the block graph F =
(VF , EF ) of G as follows. The vertex set VF consists of the vertices in V and also contains one
block node for each vertex-resilient block of G. The edge set EF consists of the edges {u,B} where
B ∈ VRB(u). Thus, F is an undirected bipartite graph. Next we show that it is also acyclic.

Lemma 3.3. Let u and v be any vertices that are connected by a path P in F . Then, for any
vertex w ∈ V not on P , u and v are strongly connected in digraph G \ w.

Proof. It suffices to show that G contains a path Q from u to v that avoids w. The same argument
shows that G contains a path from v to u that avoids w. Let P = (u1 = u,B1, u2, B2, . . . , uk+1 = v).
Then ui ↔vr ui+1, for 1 ≤ i ≤ k, so there is a path Pi in G from vi to vi+1 that avoids w. Then
the catenation of paths P1, . . . , Pk gives a path in G from u to v that avoids w.
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Lemma 3.4. Graph F is acyclic.

Proof. Suppose, for contradiction, that F contains a cycle C. We show that all vertices w ∈ C ∩ V
belong to the same vertex-resilient block B. Let u, v ∈ V be two vertices on a minimal cycle C of
F that are adjacent to a block node B. (Such u, v, and B exist since F is bipartite.) Then, u and v
cannot be the only vertices in V that are on C, since otherwise they would be adjacent to another
block B′ on C, violating Corollary 3.2. Therefore, C contains a vertex w ∈ V \ {u, v}. Clearly,
w /∈ B, otherwise the edge {w,B} would exist contradicting the minimality of C. Hence, there is
a vertex z ∈ B such that all paths from z to w contain a common strong articulation point or all
paths from w to z contain a common strong articulation point. Suppose, without loss of generality,
that a vertex x is contained in every path from z to w. Let P be the path that results from C
by removing B. Let Pu and Pv be the subpaths of P from u to w and from v to w, respectively.
Then x 6∈ Pu or x 6∈ Pv (or both). Suppose x 6∈ Pu; if not then swap the role of u and v. Then, by
Lemma 3.3 there is a path Q in G from u to w that avoids x. Also, since u↔vr z, there is a path
Q′ in G from z to u that avoids x. Then the catenation of Q′ and Q gives a path in G from z to
w that avoids x, a contradiction.

Lemma 3.5. The number of vertex-resilient blocks in a digraph G is at most n− 1 .

Proof. We prove the lemma by showing that forest F contains at most n − 1 block nodes. Since
F is a forest we can root each tree T of F at some arbitrary vertex r. Every level of T contains
either only vertices of V or only block nodes, because F is bipartite. Moreover, every block node is
adjacent to at least two vertices of V , due to the fact that each (non-trivial) vertex-resilient block
in G contains at least 2 vertices. Hence, every leaf of T is a vertex in V . Now consider a partition
of T into vertex disjoint paths P1, P2, . . . , Pk, such that each Pi leads from some vertex or block
node to a leaf descendant. The number of block nodes in each Pi is at most equal to |Pi∩V |. Also,
in the path Pi starting at r the number of block nodes in Pi is less than |Pi ∩V |. We conclude that
there at most n− 1 block nodes in F .

Lemma 3.6. The total number of vertices in all vertex-resilient blocks is at most 2n− 2.

Proof. By Lemmas 3.4 and 3.5, the block graph F is a forest with at most 2n − 1 vertices. Each
occurrence of a vertex v in a block B corresponds to an edge {v,B} of F . Therefore, the total
number of vertices in all vertex-resilient blocks equals the number of edges in F , and the lemma
follows.

Lemma 3.7. Let u and v be any vertices that are not vertex-resilient but are connected by a path
P in F . Then, for any vertex w ∈ V \ {u, v} on P , u and v are not strongly connected in digraph
G \ w.

Proof. We prove the lemma by contradiction. Let P be a path that connects u and v in F . By
Lemma 3.4, this path is unique for u and v. First suppose that P contains only one other vertex
w ∈ V \ {u, v}, so P = (u,B,w,B′, v). Then u↔vr w and w ↔vr v. Now suppose that u and v are
strongly connected in G \w. This fact, together with Lemma 3.3, imply that u and v are strongly
connected in G \ x for all x ∈ V \ {u, v}. But this contradicts the assumption that u and v are not
vertex-resilient.

Now suppose that path P contains more than one vertex in V \ {u, v}. Let P = (u =
w0, B1, w1, . . . , Bk, wk, Bk+1, v = wk+1), where k > 1. By the argument above, wi−1 and wi+1

are not strongly connected in G \ wi for all i ∈ {1, . . . , k}. Suppose that u and v are strongly
connected in G \ wi for a fixed i ∈ {1, . . . , k}. By Lemma 3.3, u and wi−1, and wi+1 and v, are
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Figure 3: A digraph G and its vertex-resilient block forest F . The strong articulation points and
the strong bridges of G are shown in red. (Better viewed in color.)

strongly connected in G \ wi. But then, wi−1 and wi+1 are also strongly connected in G \ wi, a
contradiction.

We consider F as a forest of rooted trees by choosing an arbitrary vertex as the root of each
tree. Then u ↔vr w if and only if u and w are siblings or one the grandparent of the other. See
Figure 3. We can perform both tests in constant time simply by storing the parent of each vertex
in F . Thus, we can test in constant time if two vertices are vertex-resilient. Note that we cannot
always apply Lemma 3.7 to find a strong articulation point that separates two vertices u and w that
are not vertex-resilient. Indeed, two vertices that are strongly connected but not vertex-resilient
may not even be connected by a path in the forest F (see, e.g., vertices f and h in Figure 3). So
if we wish to return a witness that u and w are not vertex-resilient, we cannot rely on F . We deal
with this problem in Section 4.4.

Now we turn to 2-vertex-connected blocks and provide some properties that enable us to com-
pute them via the vertex-resilient blocks.

Lemma 3.8. Let v and w be two distinct vertices of G such that v ↔vr w. Then, v and w are not
2-vertex connected if and only if at least one of the edges (v, w) and (w, v) is a strong bridge in G.

Proof. Menger’s Theorem [15] implies that if v and w are not adjacent then v ↔2v w if and only
if v ↔vr w. If, on the other hand, v ↔vr w but v and w are not 2-vertex-connected, then at least
one of the edges (v, w) and (w, v) exists in G and is a strong bridge.

The following corollary, which relates 2-vertex-connected, 2-edge-connected and vertex-resilient
blocks, is an immediate consequence of Lemma 3.8.

Corollary 3.9. For any two distinct vertices v and w, v ↔2v w if and only if v ↔vr w and
v ↔2e w.

By Corollary 3.9 we have that the 2-vertex-connected blocks are refinements of the vertex-
resilient blocks, formed by the intersections of the vertex-resilient blocks and the 2-edge-connected
blocks of the digraph G. Since the 2-edge-connected blocks are a partition of the vertices of G, these
intersections partition each vertex-resilient block. From this property we conclude that Lemmas
3.1, 3.4, and 3.5 and Corollary 3.2 also hold for the 2-vertex-connected blocks.
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4 Computing the vertex-resilient blocks

In this section we present new algorithms for computing the vertex-resilient blocks of a digraph
G. We can assume that G is strongly connected, so m ≥ n. If not, then we process each strongly
connected component separately; if u ↔vr v then u and v are in the same strongly connected
component S of G, and moreover, any vertex on a path from u to v or from v to u also belongs
in S. We begin with a simple algorithm that removes a single strong articulation point at a time.
In order to get a more efficient solution, we need to consider simultaneously how different strong
articulation points divide the vertices into blocks, which we do with the help of dominator trees.
We achieve linear running time by combining the simple algorithm with the dominator-tree-based
division, and by applying suitable operations on the block forest structure.

4.1 A simple algorithm

Algorithm SimpleVRB, illustrated in Figure 4, is an immediate application of the characterization
of the vertex-resilient blocks in terms of strong articulation points. Let u and v be two distinct
vertices. We say that a strong articulation point x separates u from v if all paths from u to v
contain x. In this case u and v belong to different strongly connected components of G \ x. This
observation implies that we can compute the vertex-resilient blocks by computing the strongly
connected components of G \ x for every strong articulation point x. To do this efficiently we
define an operation that refines the currently computed blocks. Let B be a set of blocks, let S be
a partition of a set U ⊆ V , and let x be a vertex not in U .

refine(B,S, x): For each block B ∈ B, substitute B by the sets B ∩ (S ∪ {x}) of size at least two,
for all S ∈ S.

In Section 5, where we will compute the 2-vertex-connected blocks from the vertex-resilient blocks
and the 2-edge-connected blocks, we will use the notation refine(B,S) as a shorthand for refine(B,S, x)
with x = null .

Lemma 4.1. Let N be the total number of elements in all sets of B (N =
∑

B∈B |B|), and let K
be the number of elements in U . Then, the operation refine(B,S, x) can be executed in O(N +K)
time.

Proof. A simple way to achieve the claimed bound is to number the sets of the partition S, each
with a distinct integer id in the interval [1,K]. Consider a block B. Each element v ∈ B is assigned
a label that is equal to the id of the set S ∈ S that contains v if v ∈ U , and zero otherwise. Then,
the computation of the sets B ∩ (S ∪ {x}) for all S ∈ S can be done in O(|B|) time with bucket
sorting.

Lemma 4.2. Algorithm SimpleVRB runs in O(mp∗) time, where p∗ is the number of strong artic-
ulation points of G. This is O(mn) in the worst case.

Proof. The strong articulation points of G can be computed in linear time by [10]. In each iteration
of Step 3, we can compute the strongly connected components of G \ x in linear time [18]. As we
discover the i-th strongly connected component, we assign label i (i ∈ {1, . . . , n}) to the vertices in
Si. By Lemma 3.5, the number of vertex-resilient blocks of G is at most n−1. Therefore, since the
total number of blocks (trivial and non-trivial) cannot decrease during any iteration, B contains
at most n − 1 blocks in each execution of Step 3. By induction on the number of iterations, it
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Algorithm SimpleVRB: Computation of the vertex-resilient blocks of a strongly
connected digraph G = (V,E)

Step 1: Compute the strong articulation points of G.

Step 2: Initialize the current set of blocks as B = {V }. (Start from the trivial set containing only
one block.)

Step 3: For each strong articulation point x do:

Step 3.1: Compute the strongly connected components S1, . . . , Sk of G \ x. Let S be the
partition of V \ x defined by the strongly connected components Si.

Step 3.2: Execute refine(B,S, x).

Figure 4: Algorithm SimpleVRB

follows that the algorithm maintains the invariant that any two distinct blocks in B have at most
one element in common, and that the corresponding block graph is a forest. Therefore, by Lemma
3.5, the total number of elements in all blocks is at most 2n− 2. So, by Lemma 4.1, each iteration
of Step 3 takes O(n) time. This yields the desired O(mp∗) running time, where p∗ is the number of
strong articulation points of G. Since a digraph may have up to n strong articulation points, this
is O(mn) in the worst case.

4.2 Linear-time algorithm

We will show how to obtain a faster algorithm by applying the framework developed in [6] for
the computation of the 2-edge-connected blocks, namely by using dominator trees and auxiliary
graphs. As already mentioned, auxiliary graphs need to be defined in a substantially different way,
which complicates several technical details.

As a warm up, first consider the computation of VRB(v), i.e., the vertex-resilient blocks that
contain a specific vertex v. Consider the flow graph G(v) with start vertex v and its reverse digraph
GR(v), obtained after reversing edge directions. Let w be a vertex other than v. Clearly, v and
w are vertex-resilient if and only if v is the only proper dominator of w in both G(v) and GR(v),
i.e., d(w) = v and dR(w) = v. Now let u be a sibling of w in both D(v) and DR(v). The fact that
dR(w) = v and d(u) = v implies that for any vertex x ∈ V \ {v, w, u} there is path from w to u
through v that avoids x. So w and u are in a common vertex-resilient block that contains v if and
only if they lie in the same strongly connected component of G \ v. This observation implies the
following linear-time algorithm to compute the vertex-resilient blocks that contain v. Compute the
dominator trees D(v) and DR(v) of G(v) and GR(v) respectively. Let C(v) (resp., CR(v)) be the
set of children of v in G(v) (resp., GR(v)). Set U = C(v) ∩ CR(v) and initialize the set of blocks
B = {U}. Compute the strongly connected blocks S1, S2, . . . , Sk of G \ v. Let S be the set that
contains the nonempty restrictions of the Si sets to U , i.e., S contains the nonempty sets Si ∩ U .
Finally, execute refine(B,S, v).

Note that all the vertex-resilient blocks can be computed in O(mn) time by applying the above
algorithm to all vertices v. To avoid the repeated applications of this algorithm we develop a new
concept of auxiliary graphs for 2-vertex connectivity. Before doing that, we state two properties
regarding information that a dominator tree can provide about vertex-resilient blocks and paths.

9



Lemma 4.3. Let G = (V,E) be a strongly connected graph, and let s ∈ V be an arbitrary start
vertex. Any two vertices x and y are vertex-resilient only if they are siblings in D(s) or one is the
immediate dominator of the other in G(s).

Proof. Immediate.

Lemma 4.4. Let r be a vertex, and let v be any vertex that is not a descendant of r in D(s). Then
there is a path from v to r that does not contain any proper descendants of r in D(s). Moreover,
all simple paths from v to any descendant of r in D(s) contain r.

Proof. Let P be any path from v to r. (Such a path exists since graph G is strongly connected.)
Let u be the first vertex on P such that u is a descendant of r. Then either u = r or u is a proper
descendant of r. In the first case the lemma holds. Suppose u is a proper descendant of r. Since v
is not a descendant of r in D(s), there is a path Q from s to v in G that does not contain r. Then
Q followed by the part of P from v to u is a path from s to u that avoids r, a contradiction.

4.2.1 Auxiliary graphs

As in [6], auxiliary graphs are a key concept in our algorithm that provides a decomposition of
the input digraph G into smaller digraphs (not necessarily subgraphs of G) that maintain the
original vertex-resilient blocks. In [6] we used a canonical decomposition of the input digraph, in
order to obtain auxiliary graphs that maintain the 2-edge-connected blocks. A key property of this
decomposition was the fact that any vertex in an auxiliary graph Gr is reachable from a vertex
outside Gr only though a single strong bridge. In the computation of the vertex-resilient blocks,
however, we have to decompose the input digraph according to strong articulation points, and thus
the above property is completely lost. To overcome this critical issue, we apply a different and
more involved decomposition.

Let s be an arbitrarily chosen start vertex in G. Recall that we denote by G(s) the flow graph
with start vertex s, by GR(s) the flow graph obtained from G(s) after reversing edge directions, by
D(s) and DR(s) the dominator trees of G(s) and GR(s) respectively, and by C(v) and CR(v) the
set of children of v in D(s) and DR(s) respectively.

For each vertex r, let Ck(r) denote the level k descendants of r, i.e., C0(r) = {r}, C1(r) = C(r),
etc. For each vertex r 6= s that is not a leaf in D(s) we build the auxiliary graph Gr = (Vr, Er) of
r as follows. The vertex set of Gr is Vr = ∪3k=0C

k(r) and it is partitioned into a set of ordinary
vertices V o

r = C1(r) ∪ C2(r) and a set of auxiliary vertices V a
r = C0(r) ∪ C3(r). The auxiliary

graph Gr results from G by contracting the vertices in V \ Vr as follows. All vertices that are
not descendants of r in D(s) are contracted into r. For each vertex w ∈ C3(r), we contract all
descendants of w in D(s) into w. See Figure 5. We use the same definition for the auxiliary graph
Gs of s, with the only difference that we let s be an ordinary vertex. Also note that when we form
Gs from G, no vertex is contracted into s. In order to bound the size of all auxiliary graphs, we
eliminate parallel edges during those contractions.

Lemma 4.5. The auxiliary graphs Gr have at most 4n vertices and 4m+ n edges in total.

Proof. A vertex of G may appear in at most four auxiliary graphs. Therefore, the total number of
edges in all auxiliary graphs excluding type-(b) shortcut edges (u, v) with u 6∈ Vr is at most 4m. A
type-(b) shortcut edge (u, v) with u 6∈ Vr of Gr corresponds to a unique vertex in C3(r), so there
are at most n such edges.
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Figure 5: A strongly connected graph G, the dominator tree D(s) of flow graph G(s), the auxiliary
graph H = Gr and the dominator tree DR

H(r) of the flow graph HR(r). (The edges of the dominator
tree DR

H(r) are shown directed from child to parent.) The auxiliary vertices of H are shown gray.

Lemma 4.6. Let v and w be two vertices in Vr. Any path P from v to w in G has a corresponding
path Pr from v to w in Gr, and vice versa. Moreover, if v and w are both ordinary vertices in Gr,
then Pr contains a strong articulation point if and only if P does.

Proof. The correspondence between paths in G and paths in Gr follows from the definition of the
auxiliary graph. Next we prove the second part of the lemma. Let Pr be the path in Gr that
corresponds to a path P from v to w in G, where both v and w are ordinary vertices in Gr. By the
construction of the auxiliary graph, we have that if Pr contains a strong articulation point then so
does P . For the contraposition, suppose P contains a strong articulation point x. Consider the
following cases:
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• x ∈ Vr. Then, by the construction of the auxiliary graph, we have x ∈ Pr.

• x is a descendant of a vertex z ∈ C3(r). Vertex z is a strong articulation point since it is
either x or a proper descendant of x. Then, by Lemma 4.4, the part of P from v to x contains
z. So, Pr also contains z by the construction of the auxiliary graph.

• x is not a descendant of r. In this case, we have r 6= s. Since v and w are ordinary vertices
of Gr, C

1(r) is not empty and therefore r is a strong articulation point. By Lemma 4.4, the
part of P from x to w contains r. So, Pr also contains r by the construction of the auxiliary
graph.

Hence, in every case Pr contains a strong articulation point and the lemma follows.

Corollary 4.7. Each auxiliary graph Gr is strongly connected.

Proof. Follows from the construction of Gr, Lemma 4.6, and the fact that G is strongly connected.

The next lemma shows that auxiliary graphs maintain the vertex-resilient relation of the original
digraph.

Lemma 4.8. Let v and w be any two distinct vertices of G. Then v and w are vertex-resilient in G
if and only if they are both ordinary vertices in an auxiliary graph Gr and they are vertex-resilient
in Gr.

Proof. Suppose first that v or w is s. Without loss of generality assume v = s. Then by Lemma
4.3 we have that w ∈ C1(r), so v and w are both ordinary vertices of Gs. Now consider that
v, w ∈ V \ s. From Lemma 4.3 we have that v and w belong in a set C1(r) ∪ C2(r) so they are
both ordinary vertices of Gr. Clearly if all paths from v to w in Gr contain a common vertex
(strong articulation point), then so do all paths from v to w in G by Lemma 4.6. Now we prove
the converse. Suppose all paths from v to w in G contain a common vertex u. If u ∈ Vr then also
all paths from v to w in Gr contain u by the proof of Lemma 4.6. So suppose u 6∈ Vr. Then v is
not an ancestor of w in D(s), since otherwise there would be a path from v to w that avoids u.

First consider that u is a (proper) descendant of r in D(s). Since v is not an ancestor of w in
D(s), there is a vertex x ∈ C3(r) that is an ancestor of u. By Lemma 4.4, all paths from v to u in
G, and thus all paths from v to w, contain x. By Lemma 4.6 this is also true for all paths from v
to w in Gr.

Finally, if u is not a descendant of r, Lemma 4.4 implies that all paths from u to w in G contain
vertex r. Hence, all paths from v to w in G contain r, and so do all paths from v to w in Gr by
Lemma 4.6.

Now we specify how to compute all the auxiliary graphs Gr = (Vr, Er) in O(m + n) time.
Observe that the edge set Er contains all edges in G = (V,E) induced by the vertices in Vr (i.e.,
edges (u, v) ∈ E such that u ∈ Vr and v ∈ Vr). We also add in Er the following types of shortcut
edges that correspond to paths in G. (a) If G contains an edge (u, v) such that u 6∈ Vr is a
descendant of r in D(s) and v ∈ Vr then we add the shortcut edge (z, v) where z the is an ancestor
of u in D(s) such that z ∈ C3(r). (b) If G contains an edge (u, v) such that u but not v is a
descendant of r in D(s) then we add the shortcut edge (z, r) where z the nearest ancestor of u in
D(s) such that z ∈ Vr (z = u if u ∈ Vr). We note that we do not keep multiple (parallel) shortcut
edges. See Figure 5. We use the same definition for the auxiliary graph Gs of s, with the only
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difference that we let s be an ordinary vertex. We also note that Gs does not contain type-(b)
shortcut edges.

To construct the auxiliary graphs Gr = (Vr, Er) we need to specify how to compute the shortcut
edges of type (a) and (b). To do this efficiently we need to test ancestor-descendant relations in
D(s). There are several simple O(1)-time tests of this relation [19]. The most convenient one for us
is to number the vertices of D(s) from 1 to n in preorder, and to compute the number of descendants
of each vertex. Then, vertex v is a descendant of r if and only if pre(r) ≤ pre(v) < pre(r) + size(r),
where, for any vertex x, pre(x) and size(x) are, respectively, the preorder number and the number
of descendants of x in D(s).

Suppose (u, v) is an edge of type (a). We need to find the ancestor z of u in D(s) such that
z ∈ C3(r). We process all such arcs of Gr as follows. We create a list Br that contains the edges
(u, v) of type (a), and sort Br in increasing preorder of u. We create a second list B′r that contains
the vertices in C3(r), and sort B′r in increasing preorder. Then, the shortcut edge of (u, v) is (z, v),
where z is the last vertex in the sorted list B′r such that pre(z) ≤ pre(u). Thus the shortcut edges
of type (a) can be computed in linear time by bucket sorting and merging. Now we consider the
edges of type (b). For each vertex w ∈ C3(r) we need to test if there is an edge (u, v) in G such that
u is a proper descendant of w and v is not a descendant of r in D(s). In this case, we add in Gr the
edge (w, r). To do this test efficiently, we assign to each edge (u, v) a tag t(u, v) which we set equal
to the preorder number of the nearest common ancestor of u and v in D(s). We can do this easily
by using the parent property and the O(1)-time test of the ancestor-descendant relation as follows:
t(u, v) = pre(u) if u is an ancestor of v in D(s), t(u, v) = pre(v) if v is an ancestor of u in D(s),
and t(u, v) = pre(d(v)) otherwise. At each vertex w 6= s in D(s) we store a label `(w) which is the
minimum tag of among the edges (w, v). Using these labels we compute for each w 6= s in D(s)
the values low(w) = min{`(v) | v is a descendant of w in D(s)}. These computations can be done
in O(m) time by processing the tree D(s) in a bottom-up order. Now consider the auxiliary graph
Gr. We process the vertices in C3(r). For each such vertex w we add the shortcut edge (w, r) if
low(w) < pre(r).

Lemma 4.9. We can compute all auxiliary graphs Gr in O(m) time.

4.3 Algorithm

Our linear-time algorithm FastVRB is illustrated in Figure 6. It uses two levels of auxiliary graphs
and applies one iteration of Algorithm SimpleVRB for each auxiliary graph of the second level. The
algorithm uses different dominator trees, and applies Lemma 4.3 in order to identify the vertex-
resilient blocks. Since different dominator trees may define different blocks (which by Lemma 4.3
are supersets of the vertex-resilient blocks), we will use an operation that we call split to combine
the different blocks.

We begin by computing the dominator tree D(s) for an arbitrary start vertex s. For any vertex
v, we let Ĉ(v) denote the set containing v and the children of v in D(s), i.e., Ĉ(v) = C(v) ∪ {v}.
Lemma 4.3 gives an initial division of the vertices into blocks that are supersets of the vertex-resilient
blocks. Specifically, the vertex-resilient blocks that contain v are subsets of Ĉ(v) or Ĉ(d(v)) (for
v 6= s).

During the course of the algorithm, each vertex v becomes associated with a set of blocks B(v)
that contain v, which are subsets of Ĉ(v) and Ĉ(d(v)) if v 6= s. The blocks are refined by applying
the refine operation of Section 4.1 and operation split that we define next, and at the end of the
algorithm each set of blocks B(v) will be equal to VRB(v).

Let B be a block and T be a tree with vertex set V (T ) ⊇ B. For any vertex v ∈ V (T ), let
ĈT (v) be the set containing v and the children of v in T .
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Algorithm FastVRB: Linear-time computation of the vertex-resilient blocks of a
strongly connected digraph G = (V,E)

Step 1: Choose an arbitrary vertex s ∈ V as a start vertex. Compute the dominator tree D(s).
For any vertex v, let Ĉ(v) be the set containing v and the children of v in D(s). For every
vertex v that is not a leaf in D(s), associate block Ĉ(v) with every vertex w ∈ Ĉ(v).

Step 2: Compute the auxiliary graphs Gr for all vertices r that are not leaves in D(s).

Step 3: Process the vertices of D(s) in bottom-up order. For each auxiliary graph H = Gr with
r not a leaf in D(s) do:

Step 3.1: Compute the dominator tree T = DR
H(r).

Step 3.2: Compute the set B of blocks that contain vertices in C(r).

Step 3.3: For each block B ∈ B execute split(B, T ).

Step 3.4: Compute the auxiliary graphs HR
q for all vertices q that are not leaves in T .

Step 3.5: For each auxiliary graph HR
q with q not a leaf do:

Step 3.5.1: Compute the set Bq of blocks that contain at least two ordinary vertices in
HR

q .

Step 3.5.2: Compute the set S of the strongly connected components of HR
q \ q.

Step 3.5.3: Refine the blocks in Bq by executing refine(Bq,S, q).

Figure 6: Algorithm FastVRB

split(B, T ): Return the set that consists of the blocks B∩ĈT (v) of size at least two, for all v ∈ V (T ).

Lemma 4.10. Let N be the number of vertices in V (T ). Then, the operation split(B, T ) can be
executed in O(N) time.

Proof. We number the vertices of T in preorder. Let pre(v) be the preorder number of v ∈ V (T ).
Let t(v) be the parent of v 6= r in T , where r is the root of T . We associate each vertex v 6= r
in B with two labels `1(v) = pre(t(v)) and `2(v) = pre(v), and create two corresponding pairs
〈`1(v), v〉 and 〈`2(v), v〉. Also, if r ∈ B, we associate r with one label `2(r) = pre(r), and create a
corresponding pair 〈`2(r), r〉. Each block created by the split operation consists of a set of at least
two vertices v ∈ B that are associated with a specific label. We can find these blocks by sorting
the pairs 〈`j(v), v〉 by label, which can be done in O(N) time with bucket sort.

At a high level, the algorithm begins with a “coarse” block tree, induced by the Ĉ(v) sets of
D(s), which is then refined by the blocks defined from the dominator trees of the auxiliary graphs.
The final vertex-resilient block forest is then computed by considering the strongly connected
components of the second level auxiliary graphs, after removing their designated start vertex. The
algorithms needs to keep track of the blocks that contain a specific vertex, and, conversely, of
the vertices that are contained in a specific block. To facilitate this search we explicitly store the
adjacency lists of the current block forest F . Recall that F is bipartite, so the adjacency list of
a vertex v stores the blocks that contain v, and the adjacency list of a block node B stores the
vertices in B. Initially F contains one block for each set Ĉ(v), for all vertices v that are not leaves
in D(s). These blocks are later refined by executing the split and refine operations, which maintain
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the invariant that F is a forest, and that any two distinct blocks have at most two vertices in
common. When we execute a split or a refine operation we can update the adjacency lists of F ,
while maintaining the bounds given in Lemmas 4.1 and 4.10. Also, since during the execution of
the algorithm the number of blocks can only increase, F contains at most n−1 blocks at any given
time. This fact implies that Lemma 3.5 holds, so the total number of vertices and edges in F is
O(n).

Lemma 4.11. Algorithm FastVRB is correct.

Proof. Let u and v be any vertices. If u and v are vertex-resilient in G, then by Lemma 4.8 they
are vertex-resilient in both auxiliary graphs of G and Gr that contain them as ordinary vertices.
This implies that the algorithm will correctly include them in the same block in Step 1 and will not
separate them in Steps 3.3 and 3.5. So suppose that u and v are not vertex-resilient. Then, without
loss of generality, we can assume that all paths from u to v contain a common strong articulation
point. Thus, d(v) 6= u. We argue that all the blocks that contain u and all the blocks that contain
v will be separated in some step of the algorithm.

First we observe that u and v can appear together in at most one of the blocks constructed
in Step 1. Also, u and v can remain in at most one block after each split operation (u and v can
have at most one identical label `i(u) = `j(v)). So suppose that u and v are still contained in one
common block just before the execution of Step 3.5. We will show that u and v will be separated
after the refine operation executed in Step 3.5.3. Since u and v were not separated by a split
operation, they are either siblings or one is the parent of the other in DR

H(r). Also, since d(v) 6= u
we have the following cases.

(a) d(u) = v. Then u and v are both ordinary vertices of the auxiliary graph H = Gr with
r = d(v). Lemma 4.8 implies that Gr contains a strong articulation point x that separates u from
v. We argue that x is a proper ancestor of u in DR

H(r). If not, then HR contains a path PR from
u to r that avoids x. Since d(v) = r, H contains a path Q from r to v that avoids x. Thus P ·Q
is a path in H from u to v that avoids x, a contradiction. Now we claim that q = dRH(u) is also a
strong articulation point that separates u from v. Suppose the claim is false. Then x 6= q, so x is
a proper ancestor of q in DR

H(r). Let P be a path from u to v that avoids q. Then x is on P since
x separates u from v. Let Px be the part of P from u to x. Also, since x is a proper ancestor of
q in DR

H(r), HR has a path QR from r to x that avoids q. Then P · Q is a path in H from u to
r that avoids q, a contradiction. The claim implies that u and v are located in different strongly
connected components of HR

q \ q, so they are contained in different blocks computed in Step 3.5.3.
(b) d(v) = d(u) = r. Then u and v are both ordinary vertices of the auxiliary graph H = Gr.

Lemma 4.8 implies that Gr contains a strong articulation point x that separates u from v. By
the same arguments as in case (a), it follows that q = dRH(u) is a strong articulation point that
separates u from v. So again u and v will be located in different blocks after Step 3.5.3.

Lemma 4.12. Algorithm FastVRB runs in O(m) time.

Proof. We account for the total time spent on each step that Algorithm FastVRB executes. Step 1
takes O(m) time by [2], and Step 2 takes O(m) time by Lemma 4.9. From Lemma 4.5 we have that
the total number of vertices and the total number of edges in all auxiliary graphs H of G are O(n)
and O(m) respectively. Then, again by Lemma 4.5, the total size (number of vertices and edges) of
all auxiliary graphs HR

q for all H, computed in Step 3.4, is still O(m) and they are also computed
in O(m) total time by Lemma 4.9. Now consider the split operations. All these operations that
occur during Step 3.3 for a specific auxiliary graph Gr operate on the same tree T , which can be
preprocessed once, as in Lemma 4.10, for all split operations. Therefore, the total preprocessing
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time for all split operations is O(n). Excluding the preprocessing time for T , a split(B, T ) operation
takes time proportional to the number of vertices in B. Therefore all split operations take O(n)
time in total by Lemmas 3.6 and 4.10. In Step 3.5.1 we examine the adjacency lists of the ordinary
vertices v ∈ HR

q and find the corresponding blocks that contain at least such two ordinary vertices.
Then we examine the adjacency lists of each such block. So, the adjacency lists of each vertex v
and each block that contains v can be examined at most three times. Hence, Step 3.5.1 takes O(n)
time in total. Finally, Steps 3.5.2 and 3.5.3 take O(m) time in total by [18] and Lemmas 3.6 and
4.1.

4.4 Queries

Algorithm FastVRB computes the vertex-resilient blocks of the input digraph G and stores them in
the block forest F of Section 3, which makes it straightforward to test in constant time if two query
vertices v and w are vertex-resilient. Here we show that if v and w are not vertex-resilient, then we
can report a witness of this fact, that is, a strong articulation point x such that v and w are not in
the same strongly connected component of G \ x. Using this witness, it is straightforward to verify
in O(m) time that v and w are not vertex-resilient; it suffices to check that v is not reachable from
w in G \ x or vice versa.

To obtain this witness, we would like to apply Lemma 3.7, but this requires v and w to be in
the same tree of the block forest. Fortunately, we can find the witness fast by applying Lemmas 4.3
and 4.4, which use information computed during the execution of FastVRB. We do that as follows.
First consider the simpler case where v = s. If Lemma 4.3 does not hold for s and w in D(s) then
d(w) 6= s is a strong articulation point that separates s from w. Otherwise, s = d(w), and s and w
are both ordinary vertices in the auxiliary graph H = Gs. Then s and w cannot satisfy Lemma 4.3
in DR

H(s), so dRH(w) is a strong articulation point that separates w from s. Now consider the case
where v, w ∈ V \ s. Suppose first that v and w do not satisfy Lemma 4.3 in D(s). Then d(w) is
not an ancestor of v or d(v) is not an ancestor of w (or both). Assume, without loss of generality,
that d(w) is not an ancestor of v. By Lemma 4.4, all paths from v to w pass through d(w), so d(w)
is a strong articulation point that separates v from w. On the other hand, if Lemma 4.3 holds for
v and w in D(s), then v and w are both ordinary vertices in an auxiliary graph H = Gr, where
r = d(v) if v = d(w), r = d(w) if w = d(v), and r = d(v) = d(w) otherwise. By Lemma 4.8, v and
w are not vertex-resilient in H. If they violate Lemma 4.3 for DR

H(r) then we can find a strong
articulation point that separates them as above. Finally, assume that Lemma 4.3 holds for v and
w in DR

H(r). Now v and w are both ordinary vertices in an auxiliary graph HR
q . From the proof of

Lemma 4.11 we have that q = dRH(v) or q = dRH(w) and that q is a strong articulation point that
separates v and w.

All the above tests can be performed in constant time. It suffices to store the dominator tree
D(s) of G(s), and the dominator trees DR

H(r) of all auxiliary graphs HR = GR
r . The space required

for these data structures is O(n) by Lemma 4.5.

Theorem 4.13. Let G be a digraph with n vertices and m edges. We can compute the vertex-
resilient blocks of G in O(m + n) time and store them in a data structure of O(n) space. Given
this data structure, we can test in O(1) time if any two vertices are vertex-resilient. Moreover, if
the two vertices are not vertex-resilient, then we can report in O(1) time a strong articulation point
that separates them.
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5 Computing the 2-vertex-connected blocks

We can compute the 2-vertex-connected blocks of the input digraph G = (V,E) by applying
Corollary 3.9 as follows. Given the vertex-resilient blocks B and the 2-edge-connected blocks S
of G, we simply execute refine(B,S). This takes O(n) time by Lemma 4.1. Also, since the 2-
vertex-connected blocks have a block forest representation, we can test if two given vertices are
2-vertex-connected in O(1) time as described in Section 3.

If we only wish to answer queries of whether two vertices v and w are 2-vertex-connected,
without computing explicitly the 2-vertex and the 2-edge-connected blocks, then we can use a
simpler alternative, as suggested by Lemma 3.8. First, we test if v and w are vertex-resilient in
O(1)-time as in Section 4.4, and if they are not, then we can report a strong articulation point
that separates them. If, on the other hand, v and w are vertex-resilient then we need to check if
G contains (v, w) or (w, v) as a strong bridge. We can do this easily using the same information
as in Section 4.4, namely the dominator tree D(s) of G(s), and the dominator trees DR

H(r) of all
auxiliary graphs HR = GR

r . For instance, if (v, w) is a strong bridge in G, then it will appear as
an edge in one of the dominator trees. Therefore, it suffices to mark the edges of dominator trees
that are strong bridges, and then check if v is the parent of w or w is the parent of v in D(s) or
in DR

H(r), where H = Gr is the auxiliary graph of G such that r = d(v) if v = d(w), r = d(w) if
w = d(v), and r = d(v) = d(w) otherwise.

Theorem 5.1. Let G be a digraph with n vertices and m edges. We can compute the 2-vertex-
connected blocks of G in O(m + n) time and store them in a data structure of O(n) space. Given
this data structure, we can test in O(1) time if any two vertices are 2-vertex-connected. Moreover,
if the two vertices are not 2-vertex-connected, then we can report in O(1) time a strong articulation
point or a strong bridge that separates them.

6 Sparse certificate for the vertex-resilient blocks and the 2-vertex-
connected blocks

Here we show how to extend Algorithm FastVRB so that it also computes in linear time a sparse
certificate for the vertex-resilient and the 2-vertex-connected relations. That is, we compute a
subgraph C(G) of the input graph G that has O(n) edges and maintains the same vertex-resilient
and 2-vertex-connected blocks as the input graph. We can achieve this by applying the same
approach we used in [6] for computing a sparse certificate for the 2-edge-connected blocks.

As in Section 4 we can assume without loss of generality that G is strongly connected, in which
case subgraph C(G) will also be strongly connected. The certificate uses the concept of independent
spanning trees [8]. A spanning tree T of a flow graph G(s) is a tree with root s that contains a
path from s to v for all vertices v. Two spanning trees B and R rooted at s are independent if for
all v, the paths from s to v in B and R share only the dominators of v. Every flow graph G(s) has
two such spanning trees, computable in linear time [8]. Moreover, the computed spanning trees
are maximally edge-disjoint, meaning that the only edges they have in common are the bridges of
G(s).

During the execution of Algorithm FastVRB, we maintain a list (multiset) L of the edges to
be added in C(G). The same edge may be inserted into L multiple times, but the total number
of insertions will be O(n). Then we can use radix sort to remove duplicate edges in O(n) time.
We initialize L to be empty. During Step 1 of Algorithm FastVRB we compute two independent
spanning trees, B(G(s)) and R(G(s)) of G(s) and insert their edges into L. Next, in Step 3.1 we
compute two independent spanning trees B(HR(r)) and R(HR(r)) for each auxiliary graph HR(r).
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For each edge (u, v) of these spanning trees, we insert a corresponding edge into L as follows. If
both u and v are ordinary vertices in HR(r), we insert (u, v) into L since it is an original edge of
G. Otherwise, u or v is an auxiliary vertex and we insert into L a corresponding original edge of G.
Such an original edge can be easily found during the construction of the auxiliary graphs. Finally,
in Step 3.5, we compute two spanning trees for every connected component Si of each auxiliary
graph HR

q \ q as follows. Let HSi be the subgraph of Hq that is induced by the vertices in Si. We
choose an arbitrary vertex v ∈ Si and compute a spanning tree of HSi(v) and a spanning tree of
HR

Si
(v). We insert in L the original edges that correspond to the edges of these spanning trees.

Lemma 6.1. The sparse certificate C(G) has the same vertex-resilient blocks and 2-vertex-connected
blocks as the input digraph G.

Proof. We first argue that the execution of Algorithm FastVRB on C(G) and produces the same
vertex-resilient blocks as the execution of Algorithm FastVRB on G. The correctness of Algorithm
FastVRB implies that it produces the same result regardless of the choice of start vertex s. So
we assume that both executions choose the same start vertex s. We will refer to the execution of
Algorithm FastVRB with input G (resp. C(G)) as FastVRB(G) (resp. FastVRB(C(G))).

First we note that C(G) is strongly connected since it contains a spanning tree of G(s) and a
spanning tree for the reverse of each auxiliary graph Gr. Moreover, the fact that C(G) contains
two independent spanning trees of G implies that G and C(G) have the same dominator tree with
respect to the start vertex s that are computed in Step 1. Hence, the auxiliary graphs computed
in Step 2 of Algorithm FastVRB have the same sets of ordinary and auxiliary vertices in both
executions FastVRB(G) and FastVRB(C(G)). Hence, Step 3.1 computes the same dominator trees
DH(r) and DR

H(r) in both executions, and therefore Steps 3.2 and 3.3 compute the same blocks. The
same argument as in Steps 1 and 2 implies that both executions FastVRB(G) and FastVRB(C(G))
compute in Step 3.4 auxiliary graphs HR

q with the same sets of ordinary and auxiliary vertices.

Finally, by construction, the strongly connected components of each auxiliary graph HR
q \ q are the

same in both executions of FastVRB(G) and FastVRB(C(G)).
We conclude that FastVRB(G) and FastVRB(C(G)) compute the same vertex-resilient blocks

as claimed. Next, observe that since the independent spanning trees computed in Steps 1 and 3.1
of the extended version of FastVRB are maximally edge-disjoint, C(G) maintains the same strong
bridges as G. Then, by Corollary 3.9, C(G) also has the same 2-vertex-connected blocks as G.

7 Concluding remarks

We presented the first linear-time algorithms for computing the vertex-resilient and the 2-vertex-
connected relations among the vertices of a digraph. We showed how to represent these relations
with a data structure of O(n) size, so that it is straightforward to check in constant time if any
two vertices are vertex-resilient or 2-vertex-connected. Moreover, if the answer to such a query
is negative, then we can provide a witness of this fact in constant time, i.e., a vertex (strong
articulation point) or an edge (strong bridge) of G that separates the two query vertices. An
experimental study of the algorithms described in this paper is presented in [14], where it is shown
that they perform very well in practice on very large graphs (with millions of vertices and edges).
We leave as an open question if the 2-edge-connected or the 2-vertex-connected components of a
digraph can be computed faster than O(n2).
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