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Abstract

We study the classic setting of envy-free pricing, in which a single seller chooses prices for
its many items, with the goal of maximizing revenue once the items are allocated. Despite the
large body of work addressing such settings, most versions of this problem have resisted good
approximation factors for maximizing revenue; this is true even for the classic unit-demand
case. In this paper we study envy-free pricing with unit-demand buyers, but unlike previous
work we focus on large markets: ones in which the demand of each buyer is infinitesimally small
compared to the size of the overall market. We assume that the buyer valuations for the items
they desire have a nice (although reasonable) structure, i.e., that the aggregate buyer demand
has a monotone hazard rate and that the values of every buyer type come from the same support.

For such large markets, our main contribution is a 1.88 approximation algorithm for maxi-
mizing revenue, showing that good pricing schemes can be computed when the number of buyers
is large. We also give a (e, 2)-bicriteria algorithm that simultaneously approximates both max-
imum revenue and welfare, thus showing that it is possible to obtain both good revenue and
welfare at the same time. We further generalize our results by relaxing some of our assumptions,
and quantify the necessary tradeoffs between revenue and welfare in our setting. Our results
are the first known approximations for large markets, and crucially rely on new lower bounds
which we prove for the revenue-maximizing prices.

1 Introduction

How should a seller controlling multiple goods choose prices for these goods, so that these prices
yield good revenue and yet are efficiently computable? This question is among the most fundamental
of algorithmic challenges motivated by Economic paradigms. At a high level, this setting can be
modeled as a two-stage game: the seller chooses prices, and the buyers respond by purchasing
goods at these prices. A common constraint in this context is one of envy-freeness, i.e., every buyer
receives items that maximize her utility, and thus would not want to “switch places” with any other
buyer.

Despite the surge of papers studying envy-free pricing in recent years [3,11,15], even the simplest
versions of this problem have resisted good approximation factors for maximizing revenue. This is
true even for the common setting of unit-demand buyers, where every buyer desires one unit of good
from a demand set Si (possibly different for each buyer i); she values all items in Si equally and
has no value for items outside Si. The problem of revenue-maximization with unit-demand buyers
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is among the most popular versions of the pricing problem. While the best known approximation
algorithm for the item-pricing version of this problem has only a logarithmic factor [3, 15], more
sophisticated pricing mechanisms have yielded some beautiful, near-optimal mechanisms, but only
by giving up envy-freeness [6, 13].

In this paper, we study envy-free pricing with unit-demand buyers, and form good approxi-
mation algorithms for maximizing both revenue and welfare. Unlike most previous work on this
subject, we focus on large markets: ones in which the demand of each buyer is infinitesimally small
compared to the market size. For envy-free settings, studying large markets is much more reason-
able than markets with only a few buyers. Indeed, in such a market, a seller may not be able to
price discriminate (i.e., sell the same good to at different prices), and would instead simply post a
price for each good, which would apply to all of the buyers. The fact that all buyers who receive
a copy of the same good pay the same price, along with buyers always purchasing a unit of the
cheapest good in their set Si, would guarantee that the allocation is envy-free.

Our Model

We consider a single monopolist producing a set S of goods, which are near-substitutes (see examples
below). The seller can produce any desired quantity xt of a good t ∈ S, for which he incurs a cost
of Ct(xt). The seller’s main objective is to set prices on the goods to maximize revenue; in addition
to revenue, the seller may also be interested in welfare guarantees. The market consists of a set B
of buyer types: for a given type i ∈ B, all the buyers having this type desire the same set Si ⊆ S
of items. Every individual buyer’s demand is infinitesimal compared to the market size. Therefore,
we can represent every type i ∈ B by a (inverse) demand function λi(x) such that for any given v,
we know how many buyers x have a valuation of v or more for items in Si.

Although different buyer types may have different demand functions, it is natural to assume
that the valuations of all buyers are often sampled (albeit differently) from some global distribution.
Because of this, we will make the assumption that the buyer valuations for every type have the
same support [λmin, λmax] (although we will relax this assumption later). We show that as long as
this is true and that the distribution of buyer valuations has reasonable structure (i.e., monotone
hazard rate [2]), then we can compute prices which extract more than half of the optimal revenue.
Our model captures several scenarios of interest; we illustrate two of them below.

1. PEV Charging: As Plug-in Electric Vehicles become commonplace, it is expected that
charging stations will be set up at many locations. Due to the variable cost of electricity
generation, these stations may have different prices for charging during different time intervals.
We can model each time slot as an item t; every buyer has a set of time slots during which
she can charge, and the seller may be able to predict the demand using prior data [18].

2. Display Advertising: A publisher may have a set of items (e.g., advertising slots) being
sold via simultaneous posted price auctions. The ad-items are differentiated (in their position
or location on the website) and a large number of buyers are interested in buying these items,
each interested in some specific subset depending on their target audience.

Our model retains the combinatorial flavor of the general envy-free pricing problem: different
buyer types have access to different subsets of items, and these subsets are not correlated in any way.
It is this combinatorial aspect which contributes to the hardness of the problem. In fact, recent
complexity results [3, 4] indicate that the general unit-demand problem with uniform valuations
may not admit approximation algorithms with factors better than O(log |B|). The starting point
of our work is the fact that in large markets with many buyer types, O(log |B|) algorithms are not
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acceptable. A large body of work has circumvented this hardness by studying interesting instances
in which the combinatorial aspect of the model is limited or rendered moot [5,7,12]. In contrast, we
impose no such restriction on the model, instead making the assumption that the buyer valuations
follow a nice (monotone hazard rate) structure, while the sets Si can be arbitrary. For the large
market settings we are interested in, our assumptions seem more reasonable than restricting demand
sets.

Two aspects of large markets that we will feature in this paper warrant further discussion.
First, while the majority of literature has focused on envy-free pricing to maximize revenue (see
Related Work for exceptions), we focus on maximizing both revenue and social welfare, and the
trade-offs therein. This is motivated by the fact that in large markets with repeated engagement,
compromising on welfare may often lead to poor revenue in the long-run. Second, in our model
sellers face convex production costs Ct(x) for each item t. This strictly generalizes models with
limited or unlimited supply which are usually the norm. In large markets, assuming limited supply is
too rigid as sellers may often be able to increase production, albeit at a higher cost. Costs, however,
are a non-trivial addition to the envy-free model. Many of the standard techniques that previously
yielded good algorithms, especially single-pricing for all items, fail to do so in our framework. The
seller now faces the onerous task of balancing demand with production costs, which may be different
for different items.

1.1 Our Results

Recall that every buyer type i ∈ B is represented by an inverse demand function λi(x) such that
for any v, λi(x) = v indicates that x population of buyers hold a value of v or more for the items
in the demand set. Throughout this work, we will assume that ∀i, λi(x) has a Monotone Hazard
Rate (MHR, see Section 2 for definition). This coincides with the inverse demand being log-concave
(log(λi(x)) is concave) and encompasses several popular inverse demand functions previously con-
sidered in literature, including concave, power-law, and exponential demand [2].

Our main contribution in this work is a 1.88 approximation algorithm for maximizing revenue
and a (e, 2)-bicriteria algorithm that simultaneously approximates both maximum revenue and wel-
fare respectively. These results hold as long as the ‘peak of the support’ of the buyer demand
function is the same for all buyer types, i.e., ∀i λi(0) = λmax. Notice that the setting where all
buyer types have the same support [λmin, λmax] is a special case of our uniform peak assumption.
Although both of our results use a continuous ascending-price algorithm, we describe an efficient
implementation for this algorithm as well. Note that revenue-maximization is still NP-Hard in this
setting, due to its combinatorial nature.

We next generalize the uniform peak (or support) assumption and consider markets where
every buyer type i has a (potentially different) support [λmini , λmaxi ]. For this setting, our results
are parameterized by a factor ∆ that equals the ratio of the maximum λmaxi to the minimum λmaxi

across buyer types. We show a O(log ∆) approximation to the optimal revenue in this setting, and
thus imply that as long as the valuations for different buyer types are not too different, we can still
extract high revenue. Moreover, we show that this O(log ∆) solution also guarantees one fourth
of the optimum social welfare. Although the actual buyer demand may be quite asymmetric, our
result depends only on the difference in the peak of the supports; it is reasonable to expect that
this difference is not too large if the goods are similar.

We now summarize the two high-level contributions that enable our results.

1. We provide a general framework to derive good algorithms for large markets with production
costs, extensively using techniques from the theory of min-cost flows.
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2. Our constant-approximation factors depend crucially on the insight that we gain on the prices
in the revenue-maximizing solution. In contrast to previous work, where the approximation
factor of the revenue of the computed solution is usually obtained by comparing it to the
optimum social welfare [11, 15] (which is an upper bound on optimum revenue), we are able
to directly compare the revenue of our solution to the profit-maximizing solution.

1.2 Related Work

Our work is a part of a rather extensive body of literature studying envy-free or item-pricing;
the field is too vast to survey here and we will only sample the most relevant results. The Unit-
Demand Pricing (UDP) problem where buyers have different valuations for different items was first
considered in [15], which gave a O(log |B|) approximation algorithm for maximizing revenue. The
version that we study (each buyer has equal valuation for all items in Si, and 0 otherwise) has been
referred to as UDP-MIN or UDP with Uniform Valuations. Surprisingly, the addition of uniform
values has not lead to any improved algorithms for the general UDP problem. Moreover, recent
complexity results [3, 4] indicate that a sub-logarithmic approximation factor may be unlikely for
both problems.

Assuming more structure on the combinatorial aspect of UDP (i.e., sets Si stating which buyers
have access to which items) has yielded more tractable instances. For example, good approximation
algorithms exist when each item is desired by at most k buyer types [7, 16]. For settings with
budgeted buyers who have access to all items but have a limit on the amount of money then can
spend, [12] give a 0.5-approximation algorithm; we remark that budgeted buyers can be captured
with an inverse demand λ(x) = c/x. In contrast, ours is among the few papers that makes no
assumptions on the demand sets Si but still obtains a constant approximation factor. Finally,
another active line of work has looked at envy-free pricing when each buyer demands a single
bundle of items (Single-Minded Pricing). For more details, the reader is asked to refer to [3], [11],
and some of the references therein.

More broadly, our work bears certain similarities to algorithmic pricing mechanisms [5] in a
Bayesian setting, especially posted price mechanisms. In fact, the aggregate demand that we
consider can be interpreted as buyers deriving values from a known distribution. Although posted
pricing provides excellent guarantees, even in multi-parameter settings [6, 13], the mechanisms
seldom result in envy-free allocations because it is assumed that buyers choose items in some order.
At a high level, our work is a part of the literature exploring the space of multi-parameter settings
with some structure. In addition to a valuation, buyers have a demand set (Si) in our model,
whereas researchers have looked at other models where the additional parameter is the quantity
demanded [8] or a position in a metric space [9].

Finally, envy-free pricing to maximize welfare coincides with the notion of Walrasian Equilib-
rium minus the market clearing constraint. In large markets such as ours, Walrasian Equilibria
are guaranteed to exist [1], although their revenue may be poor. In discrete markets, Walrasian
prices are not guaranteed to exist and so, the focus has been on solutions that are approximately
envy-free but still guarantee good welfare [10, 14]. There has also been some work on approxi-
mating both revenue and welfare over a restricted space of solutions; for instance, the space of all
equilibria in GSP [17], or all competitive equilibria for sharp multi-unit demand [8]. In contrast,
bi-criteria approximations like ours, which compare both objectives for the same solution to the
unrestricted global optima, have not been previously considered in envy-free literature to the best
of our knowledge.
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2 Model and Preliminaries

We study the pricing problem faced by a central seller controlling a set S of goods with a large
number of buyers, each belonging to one of the buyer types in B. All the buyers having a given
type Bi have the same set of desired items Si ⊆ S. We model the market structure as a bipartite
graph G = (B∪S,E) where there is an edge between each buyer type Bi and every good in Si. For
every individual buyer j ∈ Bi, her valuation is vj for items in her demand set Si and 0 otherwise.
Note that different buyers belonging to the same type Bi can have different valuations for the items
in Si.
Aggregate Demand and Production Cost: Every individual buyer’s demand is infinitesimal
compared to the market size. Therefore, we can model the aggregate demand of all buyers having
type Bi using an inverse demand function λi(x); v = λi(xi) means that xi of these buyers have
a value of v or more for the items in Si. As an example, consider λi(x) = 1 − x for x ∈ [0, 1].
This means that the total population of buyers with type Bi is one; λi(0.25) = 0.75 implies that
one-fourth of these buyers have a valuation of 0.75 or more. Finally, the seller incurs a production
cost of Ct(x) for producing x amount of good t ∈ S.
Best-Reponse and Envy-Freeness: A complete solution consists of prices and an allocation,
and is specified by three vectors (~p, ~x, ~y). The seller’s strategy is to select a price vector ~p where pt
is the price on item t ∈ S. We define ~x to be the buyer demand vector such that xi is the amount of
good allocated to buyers from type Bi. Finally, ~y is the allocation such that yt is the total amount
of good t allocated to buyers and yt(i), the amount to buyer type i. We only consider allocations
~y that are feasible with ~x and G: for all i,

∑
t yt(i) should equal xi, and buyers in Bi must only

receive allocations of items belonging to Si. Then,

• Given ~p, we let pi denote the minimum price available to buyers from type Bi, i.e., pi =
mint∈Si pt.

• The buyer demand ~x is said to be a best-response to the prices ~p iff ∀Bi, pi = λi(xi). That
is, a population of xi buyers from Bi have a value of pi or larger, and thus are maximizing
their utility by deciding to purchase items at a price of pi.

• Given ~p and ~x, the allocation ~y is said to be envy-free if buyer demand is a best-response
to the prices, and if for every buyer the items they are allocated are the lowest priced items
available to them, i.e., yt(i) > 0⇒ pt = pi.

Our main objective is an envy-free solution that maximizes revenue. Given (~p, ~x, ~y), the revenue
of the seller is the total payment minus costs incurred, i.e.,

Revenue =
∑
t∈S

(ptyt − Ct(yt))

=
∑
i∈B

p̄ixi − C(~y) (if solution is envy-free)

Note that as long as the instance is clear, we will use C(~y) to denote the total cost of all items when
the allocation is ~y. We also consider solutions with good social welfare, i.e., the total utility of all
the buyers plus that of the seller. As long as the solution is envy-free, buyers are utility-maximizing,
and so the aggregate utility of buyers belonging to type i is the sum of their values minus payments,
which is

∫ xi
0 λi(x)dx− pixi. Since the payments cancel out, the total social welfare of a solution is

equal to

Social Welfare =
∑
Bi∈B

∫ xi

x=0
λi(x)dx− C(~y).
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We make the following assumptions on the inverse demand and cost functions.

1. λi(x) cannot increase with x. This is by definition: if x1 buyers hold a value of v1 or more
and x2 < x1, then the value of these x2 buyers is at least v1.

2. We also assume that λi(x) is continuously differentiable on (0, Ti) (here Ti is the population
of buyers in Bi), and has a monotone hazard rate (see definition below). Notice that λ′i(x)
cannot be positive since λi is non-increasing.

3. For all t ∈ S, we take the production costs Ct(y) to be convex, which is the norm in the
literature. In addition, we assume that Ct(y) is continuously differentiable and define ct(y) to
be its derivative. All our results also hold if an item t has a limited supply of Yt, and Ct(y)
is only differentiable until y = Yt, at which point it becomes infinite.

Definition (MHR) An inverse demand function λ(x) is said to be log-concave or equivalently,

have a monotone hazard rate if λ′(x)
λ(x) is non-increasing with x. Since λ′(x) is not positive, this is

equivalent to saying |λ
′(x)|
λ(x) is non-decreasing.

Many commonly used buyer demand functions belong to this class including uniform (λ(x) = a),
linear (λ(x) = a−x) and exponential inverse demand (λ(x) = e−x). Although the monotone hazard
rate requirement gives the appearance of being somewhat restrictive, this assumption is actually
rather weak. We show (proof in the Appendix) that even with only MHR demand, our framework
encompasses the well-studied unit-demand pricing problem in finite markets.

Proposition 2.1. Any UDP instance with uniform valuations in markets with a finite number of
buyers can be reduced to an instance of our problem where all buyer types have monotone hazard
rate inverse demand.

Therefore, our setting strictly generalizes previously studied UDP problems, which are unlikely
to admit sub-logarithmic approximation factors [3, 4]. Our main contribution, however, is proving
that the addition of a little bit of structure (via uniform peak or support) to our general framework
provides much greater insight into the nature of the revenue-maximizing solution, and leads to good
algorithms.

Optimal Solutions. We use the notation ( ~popt, ~xopt, ~yopt) to denote an envy-free solution
maximizing revenue, and ( ~x∗, ~y∗) to denote an allocation that maximizes welfare (since welfare
depends only on the allocation, not the prices). Given a graph G, functions λi and Ct, it is easy to
see that the solution maximizing social welfare can be computed using a convex program. We also
remark here that once the welfare maximizing solution is computed, there exist prices ~p∗ so that
( ~x∗, ~y∗) is an envy-free allocation to these prices. The more challenging task is to compute prices
that (approximately) maximize revenue and perhaps, simultaneously welfare.

Proposition 2.2. Consider the optimum solution ~x∗, ~y∗ for a given instance. Define the price
vector ~p∗ as p∗t = ct(y

∗
t ) for item t. Then (~p∗, ~x∗, ~y∗) is an envy-free solution to the prices.

We prove this in the Appendix and also show that in the revenue maximizing solution, every
item’s price is at least its price in ~p∗, i.e, for all t, poptt ≥ p∗t . For the rest of this paper, we will only
consider solutions where the prices dominate ~p∗. In fact, in Lemma 3.5 we show much stronger
lower bounds on ~popt which enable us to prove our results.

Connection to Flows: We can view a feasible allocation ~y as a flow from the items S to the
buyers with a demand of ~x, assuming that G is fixed. Notice that there are several feasible flows
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for a given demand ~x. We will be most interested in min-cost flows: the feasible allocation ~y that
also minimizes the total production cost

∑
tCt(yt). The min-cost flow is independent of the prices

and, given ~x, can be computed efficiently using a convex program.
It is easy to see that ~y∗ is a min-cost flow, but general envy-free solutions, including ( ~popt, ~xopt, ~yopt),

may not use min-cost flows, since envy-freeness constrains the buyers to use only the items with
cheapest price, while min-cost flows form allocations to optimize production costs. We reiterate
that given a price vector ~p, the best-response buyer demand ~x can be computed using pi = λi(xi),
and given (~p, ~x), we can always determine an envy-free allocation ~y. Interestingly, the solutions
returned by our algorithms are not only envy-free, but also will use min-cost flows for the corre-
sponding buyer demand ~x. Finally, the proof of our 1.88-Approximation Algorithm crucially uses
the following property that relates best-response allocations and min-cost flows.

Lemma 2.3. Consider two price vectors ~p1 and ~p2 such that ~p1 ≥ ~p2. Let ~x1, ~x2 be the corresponding
best-response buyer demands to these prices and ~y1, ~y2 be the minimum-cost flows for the buyer
demands ~x1 and ~x2 respectively. Then,

1. ~x2 ≥ ~x1, i.e, every buyer type’s demand is higher under ~p2 than under ~p1.

2. For all t ∈ S, ct(y
1
t ) ≤ ct(y2

t ).

(Proof Sketch) The lemma merely formalizes a very intuitive idea, namely that increasing prices
from ~p2 to ~p1 can only lead to lowered buyer demand. Since the buyer demand in ~x1 is smaller,
it means that the allocation of any item cannot strictly increase for a min-cost flow. Finally, a
smaller allocation implies a smaller marginal cost. Rigorously proving Statement 2 is actually not
that easy and we defer the full proof to the appendix. �

3 Large Markets with Uniform Peak Valuations

As argued in the Introduction, for markets with a large number of buyers it often makes sense to
assume that the inverse demand functions λi have the same support [λmin, λmax] for all i, which is
what we do in this section. In fact, all our results hold as long as the peak values for every λi are the
same, i.e., that λmax = λi(0) is the same for all i. This would occur, for example, when a very large
population of buyers is assigned to different buyer types in a random way. Not too surprisingly, the
problem of revenue maximization remains NP-Hard even when the demand functions have uniform
peak valuations.

Proposition 3.1. The Unit Demand Pricing problem in large markets with MHR Inverse Demand
and Uniform Peaks (λi(0) = λmax for all i) is NP-Hard even with unlimited supply.

In this section we establish our main result: a 1.877 approximation algorithm for maximizing
revenue, which works as long as the inverse demand functions are MHR and have uniform peak
values. We begin with a general, parameter-dependent procedure for generating prices, which will
be a building block of both this algorithm, and the algorithms in later sections. Although the
algorithm is described here as a more intuitive continuous-time procedure, it can be efficiently
implemented using O(|B| log λmax) min-cost flow computations, as we argue in Section 4. To
simplify discussion, henceforth we will use “buyer” interchangeably with “buyer type” as long as
the context is clear.

Algorithm 1 begins by pricing all the items at the price vector ~p∗, which as we mentioned
makes (~p∗, ~x∗, ~y∗) an envy-free allocation. We gradually increase prices on the items belonging to
an ‘active set’, initialized to the set of cheapest items in ~p∗ and the buyers receiving these items.
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Algorithm 1 Ascending-Price Procedure with Stop Parameter k

1: Set initial prices on the items, pt = p∗t .
2: ACTIVE ← All minimally priced items and all buyers using these items.
3: INACTIVE ← B ∪ S \ ACTIVE; FINISH ← ∅
4: while FINISH 6= B ∪ S do
5: Increase the price of all ACTIVE items by an infinitesimal amount

{All ACTIVE items have the same price, the active price.}
6: Compute the min-cost flow for the sub-graph induced by ACTIVE {We prove later: At

every stage active buyers only receive allocations of active items}
7: if t ∈ INACTIVE s.t p∗t equals the active price then
8: Remove t, buyers using t from INACTIVE and add to ACTIVE
9: end if

10: if t ∈ ACTIVE meets the stopping criterion in the current solution then
11: Remove t, buyers using t from ACTIVE and add to FINISH.
12: end if
13: end while

Stopping Criterion(pt, yt, k) : pt − ct(yt) ≥
1

k
(λmax − ct(yt)) (1)

At each stage, every item in the active set has the same price (active price) allowing us to compute
the min-cost flow for only the active buyers and items. As we increase the active price, if it equals
p∗t for some inactive t, we add t and buyers using t to the active set. An item t remains active until
a stopping condition dependent on a parameter k ≥ 1 is reached (Equation 1); once this happens
the price of item t becomes fixed, and item t is removed from the active set along with buyers using
t. The simple ascending-price algorithm stops once all the items have met the stopping criterion.

We now sketch some properties of this algorithm that hold for all k; the full proofs and formal

lemmas are in the Appendix. For a given parameter k ≥ 1, we will use ( ~pk, ~xk, ~yk) to denote
the solution returned by our algorithm. We begin with an important observation regarding the
stopping criterion: at any stage of the algorithm, for any two active items, if the item with the
higher marginal cost (ct(yt)) meets the stopping criterion, then the item with the smaller marginal
cost must also satisfy the condition (Lemma B.1 in the Appendix).

Notation Every ‘stage’ of our algorithm corresponds to a unique value of the active price (i.e.,
price of all the active items), so we can refer to the allocation formed by the algorithm at some point
as the allocation at active price p. Formally, we define ~x(p) to be the buyer demand vector when
the active price is p, and ~y(p) is the allocation of items at that price. At any price p, for the inactive
buyers xi(p) coincides with x∗i and for inactive items yt(p) = y∗t . For finished items (or buyers), the
allocation (demand) is the same as it was when that item (buyer) met the stopping criterion and
became finished. Finally, we use BA(p) to denote the buyers and SA(p) for the items in the active
set when the active price is p; we define the analogous sets (BI(p), SI(p)), (BF (p), SF (p)) for the
inactive and finished blocks respectively.

Properties Satisfied by Algorithm 1 and price hierarchy

Figure 1 describes the natural hierarchy between the Active, Inactive, and Finished sets at every
value of the active price p. It is not difficult to show that the statement in Figure 1 always holds,
starting with the initial envy-free solution (~p∗, ~x∗, ~y∗). We prove this formally in the Appendix.
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Buyer Types Items

Inactive Inactive

Active Active

Finished Finished

P
ri
ce

Figure 1: At any stage of Algorithm 1,
the order of prices for the different items
is: Inactive > Active > Finished. Thick
edges indicate that buyers in a certain set
(Active, Inactive or Finished) receive al-
locations only from the items in the same
set. Dotted edges between a buyer set
and an item set indicate although the
buyers have access to the items in that
set, they are not currently receiving any
allocation of that item.

Our next claim shows that as we increase the active price, the marginal cost of items in the active
set cannot increase.

Lemma 3.2. Suppose that some item t belongs to the active set at two different active prices p1

and p2 with p1 < p2, then ct(yt(p1)) ≥ ct(yt(p2)).

(Proof Sketch) The result relies heavily on Lemma 2.3 and Corollary A.3. When we increase
the active price, the buyer demand decreases and thereby the allocation of items and the marginal
cost decreases. �

The next proposition gives us additional insight regarding the stopping condition. It tells us
that every item t actually meets the stopping criterion at equality and therefore, the greater than
or equal to sign in Equation 1 is redundant.

Proposition 3.3. For any given item t and fixed k, the stopping condition must be obeyed at
equality. Formally, suppose that t meets the stopping criterion at an active price of p, then

p− ct(yt(p)) =
1

k
(λmax − ct(yt(p)).

(Proof Sketch) For any item t, its initial price p∗t = ct(y
∗
t ) and so initially, the LHS of Equation 1

is zero and the RHS is non-zero, so the LHS is strictly smaller. The initial price for any item cannot
be larger than λmax. So, if the active price is λmax, the LHS must be greater than or equal to
the RHS. It stands to reason therefore, that every item meets the stopping criterion at some
intermediate price. Moreover, if we increase the price by a small amount, then the marginal cost
can also decrease only by a small amount due to the reduced demand. Since, both the LHS and
the RHS in the above equation change continuously, they must be equal at some point. �

We also remark here that at every stage of the algorithm, for any buyer i, all the items she uses
at that stage must have the same marginal cost. Given an allocation ~y, we will use ri(~y) to denote
the (unique) marginal cost of the items being used by buyer i in that allocation as long as all the
items she uses have the same marginal. We are now ready to prove our first main result regarding
our algorithm. We show that for any value of k, the stopping parameter, the solution returned by

our algorithm is an envy-free allocation. In addition, the allocation ~yk is also the minimum cost

flow for the demand ~xk.

Theorem 3.4. For any given value of k, Algorithm 1 returns prices ~pk and an envy-free allocation
~xk, ~yk. Moreover ~yk is also the minimum cost flow corresponding to the demand ~xk.
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Proof. Recall that an allocation is envy-free if all buyers only purchase from the minimally priced

items available to them, i.e., ∀(i, t) ∈ E, p̄ki ≤ pkt . An allocation ~yk is a min-cost flow for the

demand ~xk if and only if ∀(i, t) ∈ E, ri(~y) ≤ ct(y
k
t ). That is, in addition to using the minimally

priced items buyers are also using the items with the smallest marginal costs.
Assume by contradiction that the allocation is not envy-free. Then, for some (i, t) ∈ E, p̄ki > pkt .

This means that when t reached the stopping criterion at price pkt , i was either active or inactive.
Now consider some price p ∈ (pkt , p̄

k
i ). At this price t ∈ SF (p) and i ∈ BA(p) ∪BI(p). However, by

Figure 1, there can be no edge between i and t which is a contradiction. Therefore, the allocation
returned by our algorithm is indeed envy-free.

Next, suppose that the allocation is not a minimum cost flow. Then ∃(i, t) ∈ E such that

ct(y
k
t ) < ri(

~yk). We claim that this implies pkt < p̄ki . Rearranging the equation in the statement of

Proposition 3.3, we get that (remember p̄ki = pkt′ for some item t′ that i receives and ri(
~yk) = ct′(y

k
t′))

p̄ki =
1

k
(λmax + (k − 1)ri(

~yk)) >
1

k
(λmax + (k − 1)ct(y

k
t )) = pkt .

This means that ∃(i, t) ∈ E with pkt < p̄ki , which violates the envy-free condition. Therefore,
the allocation is also the minimum cost flow satisfying the given demand. �

The most crucial lemma that allows us to prove our approximation factor is the following
lower bound which we prove on the prices in the revenue maximizing solution ~popt. Unlike most
existing work, this lower bound allows us to compare our solution directly to the revenue-maximizing
solution, instead of using the welfare-maximizing solution as a proxy.

Lemma 3.5. For MHR inverse demand functions, the price of every item t in the profit-maximizing
solution ~popt is at least its price in ~pe, i.e., poptt ≥ pet .

Proof. The proof proceeds as follows. We first show that in any solution where some items are
priced below their price in ~pe, a few of these items do not meet the stopping criterion at k = e.
Then, we show that for any monotone hazard rate demand function that does not satisfy the
stopping criterion at k = e, we can always increase the price on the items and improve the profits
thereby contradicting the optimality of ~popt.

Assume by contradiction that in the optimal solution some items have a price smaller than their
price in ~pe. Let Smin be the subset of such items with the smallest price (call it pmin). Since the
optimum solution is envy-free and our solution is a min-cost flow, we can apply Lemma D.2. As
per the lemma, there must exist some t ∈ Smin such that ct(y

e
t ) ≤ ct(y

opt
t ). Call this item tmin.

Construct a directed graph G’ whose vertices are the same as in G but with the following edges
E′

1. (t, i) ∈ E′ if i is receiving non-zero amounts of item t in ~yopt.

2. (i, t) ∈ E′ if (i, t) ∈ E and poptt = p̄opti , i.e., t’s price coincides with the price of the cheapest
item available to i.

Let S+
min be the set of items that reachable from tmin and B+

min be the set of buyers reachable
from tmin in this graph G’. We make three simple observations here: first, for every item t ∈ S+

min,
its price must equal pmin. Second, every buyer in B+

min is only receiving allocations of the items in
S+
min and has no edge in E to any item outside of S+

min also priced at pmin. Finally, for every item
t ∈ S+

min, its marginal cost in OPT is at least ctmin(yopttmin
).

These three observations imply that in a revenue maximizing solution, for the reduced instance
with only the buyers and sellers in B+

min and S+
min, for the corresponding demand in OPT , the

10



sub-allocation on these items must be a min-cost flow. Since petmin > pmin, tmin cannot satisfy the
stopping criterion (k = e) based on its price and allocation at OPT , i.e.,

pmin − ctmin(yopttmin
) <

1

e
(λmax − ctmin(yopttmin

)).

Moreover, for every other t ∈ S+
min, its price in OPT is pmin and marginal cost is at least as

much as that of tmin. Therefore,

pmin − ct(yoptt ) <
1

e
(λmax − ct(yoptt )) (2)

Now, our idea is the following: we will uniformly increase the price on only the items in S+
min by

a sufficiently small amount so that the buyers from B+
min still use only these items in an envy-free

solution. Then we will use the stopping criterion to show that at the new price, the seller’s profit
strictly increases thereby violating the fact that OPT is a revenue-maximizing solution.

We let p̂ denote the smallest price in ~pe ∪ ~popt that is strictly larger than pmin. It is clear that
as long as we increase the price of all t ∈ S+

min to some p ∈ [pmin, p̂), the cheapest items for buyers
in B+

min will only come from S+
min. Moreover, for any other buyer i /∈ B+

min, the set of cheapest
items will not change.

Now, gradually increase the price of only the items from S+
min, compute the min-cost allocation

for the buyers in B+
min using only these items. Retain the same price and allocation for every other

buyer and item. At any p ∈ [pmin, p̂), denote by c̃(p), the smallest marginal cost of any item in
S+
min at the new allocation at price p. Define a price p+ based on one of two cases,

1. At some minimal p′ in the domain (pmin, p̂), the following condition is met,

p′ − c̃(p′) =
1

e
(λmax − c̃(p′)).

Recall that the above condition is not met at p = pmin. Then, set p+ = p′.

2. At no p ∈ [pmin, p̂) is the above condition met. Set p+ = 1
2(p̂+ pmin).

We remark that if some item meets the stopping condition above at price p+ at all, then it must
be the item(s) whose marginal cost equals c̃(p+) (See Propostion B.1).

Define ~p+ as the price vector where items in S+
min are priced at p+ and the rest retain their price

in OPT . Let ~x+ and ~y+ be the corresponding buyer demand and envy-free solution. Our main
claim is the following: the profit π+ at ( ~p+, ~x+, ~y+) is larger than the optimal profit π∗, which is
a contradiction. Consider the difference between the two profits (note that the payments and cost
remains the same for buyers and items not in B+

min and S+
min respectively).

π+ − π∗ =
∑

i∈B+
min

(p̄+
i x

+
i − p̄

opt
i xopti )− (C( ~y+)− C( ~yopt))

≥
∑

i∈B+
min

(p̄+
i x

+
i − p̄

opt
i xopti )−

∑
t∈S+

min

(ct(y
+
t )(y+

t − y
opt
t ))

≥
∑

i∈B+
min

(p̄+
i x

+
i − p̄

opt
i xopti )−

∑
t∈S+

min

(c̃(p+)(y+
t − y

opt
t ))

=
∑

i∈B+
min

(λi(x
+
i )− c̃(p+))x+

i −
∑

i∈B+
min

(λi(x
opt
i )− c̃(p+))xopti

11



The first inequality comes from observing that ~p+ dominates ~popt and then applying Corol-
lary A.2. The final equality is from rearranging the allocation from the items to the buyers and
using the fact p̄+

i and p̄opti are simply equal to the respective λi values.
Now we make a strong claim: that for all i ∈ B+

min, (λi(x
+
i )− c̃(p+))x+

i −(λi(x
opt
i )− c̃(p+))xopti >

0. Clearly this would imply that π+ > π∗, thereby completing the contradiction. So for the rest of
the proof, we will focus on showing this claim.

Essentially the claim follows from the following two nice properties that hold for any non-
increasing MHR function fi(x).

1. (Lemma E.3) If fi(0) ≥ efi(x) for some x, then
|f ′i(x)|
fi(x) ≥

1
x .

2. (Lemma E.5) If
|f ′i(x1)|
fi(x1) ≥

1
x1

and x2 > x1, then f(x1)x1 > f(x2)x2.

We show how the above two properties give us the desired claim. Define for all i, fi(x) =
λi(x) − c̃(p+). Clearly, this function still has a monotone hazard rate since λi is MHR. Now, by
definition of p+, we know that fi(0) ≥ fi(x+

i ), i.e,

1

e
(λmax − c̃(p+)) ≥ (p+ − c̃(p+)).

Therefore, from Lemma E.3, we can conclude that

|f ′i(x
+
i )|

fi(x
+
i )
≥ 1

x+
i

.

Now, we use this in the second lemma with x1 = x+
i and x2 = xopti . We know xopti > x+

i .
Therefore, we get, fi(x

+
i )x+

i > fi(x
opt
i )xopti . Replacing fi with the actual definition, we get the

desired result

(λi(x
+
i )− c̃(p+))x+

i > (λi(x
opt
i )− c̃(p+))xopti .

We now describe our actual algorithm to approximately maximize profit that uses the general
procedure described in Algorithm 1. The algorithm is reasonably straightforward. We make two
calls to Procedure 1 for k = e and k =

√
e.

Algorithm 2 0.53-Approximate Algorithm to Maximize Profit

1: Let π1 be the profit of the solution returned by Algorithm 1 for k = e.
2: Let π2 be the profit of the solution returned by Algorithm 1 for k =

√
e.

3: Return max(π1, π2) and its corresponding prices and allocation.

Theorem 3.6. Algorithm 2 returns an envy-free allocation which is a (4
√
e − 2 − e) ≈ 1.877

approximation to the optimal profit.

(Proof Sketch) Since we already argued that Algorithm 1 returns envy-free solutions, we only

need to establish the approximation bound. We also claim that ~p
√
e ≥ ~pe; this is proved in the

Appendix.

Define BH to be the buyers whose payment in ~popt is larger than in ~p
√
e, and BL the buyers

whose payments are between ~pe and ~p
√
e. We show in the Appendix that ~pe extracts a large fraction

12



of optimum profit from the buyers in BL and ~p
√
e from BH . A key lemma that completes the bound

is that for MHR functions, for an increase in price from ~pe to ~p
√
e, the profit loss is at most a factor

two. Therefore, ~p
√
e extracts at least half the profit from the buyers in BL. The precise factor of

1.88 comes from carefully balancing these bounds; this leads to the choice of ~p
√
e and ~pe. �

It is important to note that ~p
√
e is not simply a scaled version of the prices in ~pe; its construction

crucially depends on the stopping condition, which in turn depends on both the price and the
production cost. The presence of production costs means that previous approaches (e.g., scale
prices uniformly, choose a single price for all items) do not work well, as they can end up with
solutions with high production cost and thus low overall profit.

3.1 Approximating Revenue and Social Welfare Simultaneously

For sellers who care about both revenue and welfare, as is common in repeated mechanisms where
you want the buyers to “leave happy”, we also provide the following guarantees.

Theorem 3.7. Algorithm 1 for k = e provides an envy-free solution which is a e-approximation to
the optimal profit with at least half the optimal welfare.

Proof. The first part, bounding the profit, is rather easy. We simply refer to the Proof of Theo-
rem 3.6 where we used π1 to denote the profit from the k = e solution. We have already shown
that

π1 ≥
1

e
(πopt(BH)) +

1√
e

(πopt(BL)).

This means that π1 ≥ 1
e (πopt(BH) + πopt(BL)) ≥ 1

e (π∗), and so the profit returned by the
algorithm is at most a factor e smaller than the optimal profit. We now move on to the social
welfare. The social welfare of our solution and the optimum are as given below,

SW ( ~xe, ~ye) =
∑
i∈B

∫ xei

x=0
λi(x)dx−

∑
t∈S

Ct(y
e
t ).

SW ( ~x∗, ~y∗) =
∑
i∈B

∫ x∗i

x=0
λi(x)dx−

∑
t∈S

Ct(y
∗
t )

=SW ( ~xe, ~ye) +
∑
i∈B

∫ x∗i

x=xei

λi(x)dx−
∑
t∈S

(Ct(y
∗
t )− Ct(yet ))

=SW ( ~xe, ~ye) + Welfare Loss.

For the rest of the proof, we will attempt to bound the lost welfare in terms of the social welfare
of our solution. In particular, we will show that the lost welfare for MHR functions cannot be any
larger than the welfare of our solution, which will give us the half approximation. We know that
for every i the following is true for k = e due to Proposition 3.3 (recall that λi(x

e
i ) = p̄ei ):

λi(x
e
i )− ri(~ye) =

1

e
(λmax − ri(~ye)).

Look at the function λi(x) − ri(~ye): since the latter term is a constant, we know that this
function has a monotone hazard rate. Applying the contrapositive of Lemma E.3, we get that for
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all i,
λi(x

e
i )− ri(~ye)
|λ′i(xei )|

≤ xei .

Next, we claim that the total difference in production costs at the optimum and our solution is
at least

∑
i ri(~y

e)(x∗i − xei ). This is formally shown in Lemma D.1 in the Appendix. Therefore, the
following is an upper bound for the Lost Welfare:

Welfare Loss ≤
∑
i∈B

∫ x∗i

x=xei

λi(x)dx−
∑
i

ri(~ye)(x
∗
i − xei )

=
∑
i∈B

∫ x∗i

x=xei

[λi(x)− ri(~ye)]dx.

For every i, the second term inside the integral is a constant and so the function inside the
integral also has a monotone hazard rate in the desired interval. This means that ∀x ∈ [xei , x

∗
i ],

λi(x)− ri(~ye)
|λ′i(x)|

≤ λi(x
e
i )− ri(~ye)
|λ′i(xei )|

≤ xei .

So we can bound every integral as follows,∫ x∗i

xei

[λi(x)− ri(~ye)]dx ≤
∫ x∗i

xei

xei |λ′i(x)|dx

=xei

∫ x∗i

xei

(−λ′i(x))dx

=xei (λi(x
e
i )− λi(x∗i )).

Now consider λi(x
∗
i ). Since our solution ~pe dominates ~p∗, it is not hard to see that λi(x

∗
i ) ≥ ri( ~y∗) ≥

ri(~ye) (Lemma 2.3). So, we finally bound the lost welfare as follows:

Lost Welfare ≤
∑
i∈B

∫ x∗i

x=xei

[λi(x)− ri(~ye)]dx

≤
∑
i∈B

xei (λi(x
e
i )− λi(x∗i ))

≤
∑
i∈B

λi(x
e
i )x

e
i − xei ri(~ye)

≤
∑
i∈B

p̄eix
e
i −

∑
t

Ct(y
e
t )

=π1

≤SW ( ~xe, ~ye).

The last step is true because for any given solution, the profit cannot be larger than the social
welfare of the same solution. So the optimum social welfare is SW ( ~xe, ~ye) + Lost Welfare which is
no larger than 2 · SW ( ~xe, ~ye). This completes the proof.
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This result provides an additional, stronger revenue-welfare trade-off. Suppose we run the
algorithm in Theorem 3.7, and obtain welfare which is exactly 1

α of optimum (we know that α ≤
2). Then, our analysis guarantees that the profit of the resulting solution is actually at least
max(1

e ,
α−1
α ) of optimum; for instance if α = 2, then we actually get half the optimal revenue.

Corollary 3.8. ∃α ∈ [1, 2] such that the solution returned by Theorem 3.7 has a fraction 1
α of the

optimum welfare and max(1
e ,

α−1
α )) of the optimum revenue.

4 Efficient Implementation of the Ascending-Price Procedure

We now describe how to implement Algorithm 1 efficiently. The following algorithm uses
O(|B| log(λmax)) min-cost computations, where |B| is the number of buyer types and λmax is
the peak of the buyer valuation functions. The efficient implementation depends crucially on the
following fact: Fix any active set (B1, S1) and an active price range [p1, p2]. Look at only min-cost
allocations. Suppose that at p1 (all active items have this price), none of the items in the active
set meet the stopping criterion (for some k) and at some p ∈ (p1, p2], an item t meets the stopping
criterion. Then, if we compute the minimum cost allocation/flow when all the active items are
priced at p2, t must still meet the stopping criterion. This property hints at a ‘binary search’-like
approach to identify the exact price at which an item meets the stopping criterion. We first prove
the property and then provide the algorithm.

Lemma 4.1. Consider some set of (active) buyers and items (B1, S1) and suppose that when all
items are priced at p, some item t meets the stopping criterion in Equation 1 for the corresponding

min-cost allocation ( ~xa, ~ya). For any p2 ≥ p, let ~xb, ~yb be the min-cost best-response solution when
all of the items in S1 are priced at p2. Then t must meet the stopping criterion at this new allocation,
i.e.,

p2 − ct(ybt ) ≥
1

k
(λmax − ct(ybt )).

Proof. The proof is straightforward and follows from an application of Lemma 2.3. Since ~xa dom-

inates ~xb, by the lemma, we know that ct(y
b
t ) ≤ ct(y

a
t ). We also know from the stopping criterion

at p that

p ≥ 1

k
(λmax + (k − 1)ct(y

a
t )) ≥ 1

k
(λmax + (k − 1)ct(y

b
t )).

p is smaller than p2 and therefore, t also meets the stopping criterion for the flow ~yb. �

We need some additional notation before we define the algorithm. Consider the set of prices ~p∗

given by marginal cost pricing at the optimum solution. This is the starting point for Algorithm 1.
Define the boundary price vector P = {p0, p1, · · · , pm}, such that p0 is the unique smallest price in
~p∗, p1 is the unique second smallest price in ~p∗ and so on. Finally set pm = λmax. For all j < m,
when the active price is P (j) = pj−1, some new items and buyers enter the active set because their
initial price was also P (j). We first describe the algorithm semi-formally and then show correctness.

1. Initialize the active set to be the same as the initial active set in Algorithm 1.

2. Iterate for j = 0 to m.

3. Set the price of active items to be P (j) and compute a min-cost best-response allocation for
the active buyers, (~x(j), ~y(j)).
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4. Let SF (j) be the set of items that meet the stopping condition at this allocation.

5. Run a binary search for the items in SF (j) in the interval [P (j − 1), P (j)] and remove them
at the exact price at which they become finished along with the buyers using them.

6. Add items to the active set whose price in ~p∗ is P (j) and the buyers using them in ~y∗.

7. Let BA(j) be the new set of active buyers and SA(j), the active items.

8. Repeat the process.

Before showing correctness of the above algorithm and elucidating upon the ‘binary search’ in
Step 6, we show some simple invariants of the above algorithm that prove that the above algorithm
‘simulates’ Algorithm 1. The proof is in the Appendix.

Lemma 4.2. The following invariants hold during the course of the above Algorithm.

1. For any j, BA(j) ∪ SA(j) = BA(P (j)) ∪ SA(P (j)).

2. For any j, all the items in SF (j) meet the stopping criterion in the interval [P (j − 1), P (j)]
during the course of Algorithm 1.

Recall that BA(P (j))∪SA(P (j)) denote the contents of the active set in Algorithm 1 when the
active price was P (j). We already know any item that meets the stopping criterion in the interval
should show up in SF (j). The above lemma complements this result by saying all items that show
up in SF (j) must meet the stopping criterion. Conditional upon Invariant 1 holding up to some
iteration j−1 and invariant 2 holding up to iteration j, we now explain the binary search procedure
before proving the invariants.

Binary Search: Consider SF (j) and let t ∈ SF (j) be the item that reaches the stopping
condition first in [P (j − 1), P (j)] in the original algorithm. Clearly for all p′ > p in that interval,
it must meet the stopping criterion and for p′ < p, no item in SF (j) could have met the stopping
criterion. Therefore, we can effectively use binary search to identify p. Now we can repeat this for
all t′ ∈ SF (j) in the reduced interval [p, P (j)].

5 Relaxing the Uniform Peak Valuation Assumption

In this section, we relax the assumption that for all demand functions, λi(0) is the same. We
capture the distortion in this quantity via a parameter ∆ which is the ratio of the maximum value
of λi(0) over all i to the minimum. Even though the λi’s may not be the same, it is likely that
they are closely distributed if all buyer types are interested in a similar type of good. Our next
result shows that in such markets, we can still extract a good fraction of the optimum revenue and
welfare. For this result, we also require that each cost function Ct(x) is doubly convex, i.e., its
derivative ct(x) is also convex with ct(0) = 0.

Theorem 5.1. For any instance with MHR Demand and Doubly Convex Costs, we can compute
an envy-free solution which has a O(log ∆)-approximation to the optimal revenue and which also

guarantees 1
4

th
of the optimum welfare.

Moreover, we also prove in the Appendix that this result is actually tight under mild complexity
assumptions and that the doubly convex assumption is required.
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Proposition 5.2. 1. There cannot be a O(∆k)-approximation algorithm for any k > 0 for UDP
in Large Markets with MHR Inverse Demand and Convex Costs (instead of doubly convex)
unless NP ⊆ DTIME(n(logcn)) for some constant c.

2. There is no constant factor approximation algorithm for our UDP problem in large markets
with MHR inverse demand and doubly convex costs unless NP ⊆ DTIME(n(logcn)) for some
constant c.

6 Conclusion

In this paper, we considered envy-free pricing in very large markets. Our results suggest that,
unlike in markets with few buyers, very good pricing schemes can be computed efficiently for such
large markets. For example, if the seller wants to maximize his revenue, our algorithm provides
prices which result in a 1.88 approximation to maximum revenue. If the seller cares about both
revenue and welfare (as is often the case in repeated interactions), then our second result provides
a pricing scheme which results in provably high revenue and welfare.
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Appendix A More Preliminary Results and Proofs from Section
2

Additional Notation

Proposition 2.1. Any UDP instance with uniform valuations in markets with a finite number of
buyers can be reduced to an instance of our problem where all buyer types have monotone hazard
rate inverse demand.

Proof. First consider a UDP-Uniform-Valuations (UDP-UV) problem with unlimited supply on the
items. Let B′ be the set of buyers with unit demand and valuation vi and S′ be the set of items.
Reducing this to an instance of our problem, create one buyer type for every i ∈ B′ such that
λi(x) = vi for x ≤ 1 and 0 otherwise. Clearly λi is continuously differentiable in (0, 1) and is MHR
in that interval, so these functions do follow our framework. Next the items are the same as S′ and
the cost functions are zero everywhere.

Consider an solution of UDP −UV , clearly the solution is feasible for our instance and has the
same value of the objective function. Consider a solution of our problem, we show that ∃ a solution
of the UDP-UV with equal or larger revenue. Suppose that some buyer is receiving a positive but
fractional allocation, then we can simply increase the allocation of this buyer to one leading to a
solution with increased profit. If ∃ some i ∈ B sending flow to more than one item, we can simply
transfer all of the flow to any one of these items without any decrease in profit. Therefore, we can
convert any allocation to an integral allocation and therefore, a feasible solution for UDP-UV with
the same prices. Therefore, the optima must also coincide.
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Next, what if we have limited supply? We have already shown how to model these limited
supply functions using cost. That is, we can set Ct(x) = 0 for x ≤ γt and Ct(x) = ∞ for x > γt,
where γt is the capacity of the item. Alternatively, we can also take Ct(x) to be zero until x gets very
close to γt at which point Ct starts increasing very fast upto a large number at Ct(γt). We assume
that the capacities or supply of every item is integral in the original UDP-UV instance or else we
round it down while forming our instance. So any solution for UDP-UV is still a feasible solution
for our problem. Consider any solution for our problem with finite cost (we can safely ignore
the solutions where capacities are violated). Once again, suppose that some buyer is receiving a
fractional allocation. Either we can increase the allocation to this buyer to one without violating
the supply constraints or since all the supplies are integral, we can increase the allocation of this
buyer to one, reducing the allocations of some other buyers with fraction allocation without any
change in profit. In this way, we can convert the solution to one every buyer is receiving an integral
amount of the good. Similarly, we can rearrange flow on the items so that every buyer is receiving
one unit of one single good without violating capacity constraints (integral capacities imply integral
flows).

Proposition 2.2. Consider the optimum solution ~x∗, ~y∗ for a given instance. Define the price vector
~p∗ as p∗t = ct(y

∗
t ) for item t. Then (~p∗, ~x∗, ~y∗) is an envy-free solution to the prices. Moreover, ~y∗

is the min-cost flow for buyer demand ~x∗.

Proof. Look at the optimum solution and the prices p∗t = ct(y
∗
t ). Every buyer has to necessarily

send flow on the cheapest items available to her. Indeed, assume by contradiction that some buyer
i has non-zero flow on item t′ and access to item t such that p∗t < p∗t′ . Then ct(y

∗
t ) < ct′(y

∗
t′).

Therefore, one can shift some infinitesimal flow corresponding to buyer i from t′ to t and reduce
the cost of the optimal solution, a contradiction. Also, notice if ∃ another flow satisfying the same
buyer demand but with a smaller cost, then we can use that flow and reduce the cost of the optimal
solution. So ~y∗ is a min-cost flow.

Lemma A.1. Let ( ~popt, ~xopt, ~yopt) be the revenue-maximizing solution. Then for every t, poptt ≥ p∗t .
That is, the prices at the welfare maximizing solution provide a weak lower bound for optimal prices.

Proof. Assume by contradiction that in the optimal solution some items have a price strictly smaller
than their price in ~p∗. Let Smin be the subset of such items with the smallest price (call it pmin).
As per Lemma D.2, ∃ tmin ∈ Smin, such that ct(y

∗
t ) ≤ ct(y

opt
t ).

Construct a directed graph G′ whose vertices are the same as in G but with the following edges
E′

1. (t, i) ∈ E′ if i is receiving non-zero amounts of item t in ~yopt.

2. (i, t) ∈ E′ if (i, t) ∈ E and poptt = p̄opti , i.e., t’s price coincides with the price of the cheapest
item available to i

Let S+
min be the set of items that are reachable from tmin and B+

min be the set of buyers reachable
from tmin in this graph G′. We make two simple observations here: first, for every item t ∈ S+

min,
its price must equal pmin. Second, every buyer in B+

min is only receiving allocations of the items in
S+
min and has no edge in E to any item outside of S+

min priced at pmin.
We know that in the welfare maximizer, for every item t, p∗t = ct(y

∗
t ). But we know that for

tmin, pmin < p∗tmin . Therefore for every item t ∈ S+
min, poptt = pmin < p∗tmin = ctmin(y∗tmin) ≤ ct(yoptt ).

This cannot be a good sign for any profit maximizing solution because the price has to be at least
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the marginal cost, otherwise the seller can increase his price, lower the marginal cost and improve
profits. We show this more formally.

Let x(p) be the total demand from the buyers in B+
min at a price of p. Look at the revenue-

maximizing solution and increase the price of only the items in S+
min by a sufficiently small ε.

Clearly, for a small enough ε, the best response of all buyers in B+
min is to still send a flow on S+

min.
Moreover, for a small enough increase in price, buyer demand can only decrease by a small amount.

Recall that in the allocation ~yopt, we showed that for all t ∈ S+
min, we have ct(y

opt
t ) > pmin.

Since the marginal costs on all items are continuous with the allocation, it is not hard to reason
that for a sufficiently small increase in price, for every t, the marginal cost on every item t ∈ S+

min

after the price increase still cannot be smaller than pmin + ε. Let the new allocation on every item
be y2

t . Then, the difference in profit from OPT is due to only these items and buyers and is,

=(pmin + ε)(x(pmin + ε))− pminx(pmin)−
∑

t∈S+
min

(Ct(y
2
t )− Ct(y

opt
t )

≥(pmin + ε)(x(pmin + ε))− pminx(pmin)−
∑

t∈S+
min

(
ct(y

2
t )(y

opt
t − y2

t ))
)

≥(pmin + ε)(x(pmin + ε))− pminx(pmin)− (pmin + ε)(x(pmin + ε)− x(pmin))

≥εx(pmin) > 0.

This is a contradiction with the fact that OPT maximizes the profit.

Important Properties of Min-Cost Flows

We now show some nice properties of min-cost flows that we will use extensively in the following
sections. For a flow ~y, we define ri(~y) to be the minimum marginal cost ct(yt) of all items received
by buyer i (i.e., with yt(i) > 0). Due to KKT conditions, if ~y is a min-cost flow, then i is only
allocated items with marginal cost equal to the minimum marginal cost of any item available to
i, i.e., for a min-cost flow ri(~y) = min(i,t)∈E ct(yt). Given an allocation ~y, we will also use C(~y) to
denote the total (production) cost of all the items as long as the instance is clear.

Finally, for the rest of the Appendix, we are only concerned about solutions where the prices are
at least ~p∗. This is for obvious reasons since we know by Lemma A.1 that the revenue maximizing
prices cannot be smaller than ~p∗. We call this the weak price lower bound assumption.

Assumption (Weak Price Lower Bound Assumption for given ~p)

~p ≥ ~p∗.

Lemma 2.3. Consider buyer demand vectors ~x1 and ~x2 such that ~x2 dominates ~x1, i.e., ~x2 ≥ ~x1

componentwise. Let ~z1 and ~z2 be the min-cost flows corresponding to the two demands respectively.
Then for all items t, ct(z

1
t ) ≤ ct(z2

t ). Moreover, for every buyer i, ri(~z1) ≤ ri(~z2).

Proof. We only need to prove the first part of the lemma, i.e., for all t, ct(z
1
t ) ≤ ct(z

2
t ). Once we

show this, the second part follows almost directly. Indeed, suppose that a buyer i received some
quantity of item t in ~z2, then whatever item she receives in ~z1 has to have a marginal that is smaller
or equal to that of t. We know that the marginal cost of t in ~z1 is not larger than that in ~z2.

We now proceed to prove our main claim by contradiction, suppose for some item t, ct(z
1
t ) >

ct(z
2
t ). Since the marginal cost function is monotone non-decreasing, this must mean that z1

t > z2
t .
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Now let us construct the following graph G′ = (S,E′) where S is the set of all items. We say
that there is a directed edge from item t1 to t2 if ∃ some buyer i such that

z1
t1(i) > z2

t1(i) and z1
t2(i) < z2

t2(i).

In simple terms, this means that i is receiving more amount of t2 and less of t1 in ~z2 than what
she received in ~z1. This also means that i is receiving non-zero amounts of t1 in ~z1 and t2 in ~z2.
Now, look at item t. Since the total allocation of this item is smaller in ~z2, this must mean that
there is at least one buyer i who is sending less flow on t in ~z2 as compared to before. However,
the total demand of i is only larger in ~x2, which means there must be some other item t1 to which
she is sending more flow than before. This implies that (t, t1) ∈ E′.

Suppose that St represents the set of items that are reachable from t in G′ including t itself.
We have already shown that St has at least one item other than t. Our first claim is that all the
nodes in St have a marginal cost in ~z2 that is no larger than the marginal cost of t in the same
allocation. To show this consider an edge (t1, t2) where both the items belong to St. By definition,
there must be some buyer who has access to both these items and is sending non-zero flow on t2
in ~z2. Since is a min-cost allocation, it means the marginal cost of t2 in ~z2 cannot be larger than
that of t1. Applying this transitively from t, all nodes reachable from t must have a marginal cost
smaller than or equal to ct(z

2
t ).

Similarly, for (t1, t2) ∈ E′, both belonging to St, some buyer has non-zero flow on t1 in ~z1

and this must imply that ct(z
1
t ) ≤ ct1(z1

t1) for all t1 ∈ St. Using these inequalities regarding the

marginal costs in ~z1 and ~z2, we get for all t1 ∈ St,

ct1(z2
t1) ≤ ct(z2

t ) < ct(z
1
t ) ≤ ct1(z1

t1). (3)

What this means is that for all the items in St, the incoming flow is larger in ~z1 as compared
to ~z2. Suppose that B1

t is the complete set of buyers who receive non-zero amounts of the items in

St in ~z1. Our final claim is that every buyer in B1
t receives more or equal amount of the items in

St in ~z2 as compared to ~z1. That is for buyers in B1
t ,∑

t1∈St

z1
t1(i) ≤

∑
t1∈St

z2
t1(i).

Notice that for any buyer i if this is not true, then there must exist at least one t1 ∈ St which
she receives more in ~z1 than ~z2. However buyer i’s total demand has increased in ~x2 but the
consumption from St has decreased and so there must be some t3 outside of St to which she sends
more flow in ~z2 than ~z1. But this means that there must be an edge from t1 to t3 and so t3 ∈ St,
a contradiction.

Now, we are ready to prove our main result. Recall that ∀t1 ∈ St, z1
t1 > z2

t1 . Since for all t1 ∈ St,
the incoming flow in ~z1 can only come from the buyers in B1

t .∑
t1∈St

z1
t1 =

∑
i∈B1

t

∑
t1∈St

z1
t1(i)

≤
∑
i∈B1

t

∑
t1∈St

z2
t1(i)

≤
∑
t1∈St

z2
t1

<
∑
t1∈St

z1
t1 .
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This is a contradiction.

Corollary A.2. Consider two price vectors ~p and ~p′ such that ~p′ ≥ ~p for every component. Let
(~p, ~x, ~y) be a solution in which x is a best-response demand vector to prices ~p, and ~y is a min-cost
flow with demand ~x. Let (~p′, ~x′, ~y′) be the similar solution for prices ~p′. Then, for every t, either
y′t < yt or ct(yt) = ct(y

′
t).

Proof. Higher prices imply that the demand vector is smaller. This allows us to apply Lemma 2.3,
and the rest follows due to these being min-cost flows.

Corollary A.3. Consider an instance (B1 ∪S,E1) where the buyers have a demand vector ~x1 and

the corresponding min-cost flow is ~z1. Let (B2 ∪ S,E1 ∪E2) be another instance with B1 ⊆ B2 and

E2 only has edges between B2 \ B1 and S. Let ~x2 be some demand vector for this instance and ~z2

is the min-cost flow for this demand such that ~x2 dominates ~x1, i.e., ∀i ∈ B1, x
2
i ≥ x1

i . Then for
all t ∈ S, ct(x

1
t ) ≤ ct(x2

t ).

Proof. We can simply reduce the first instance to another instance where the set of buyers is B2,
edges E1 ∪ E2 but the demand for the additional buyers is zero. Now, the corollary reduces to
Lemma 2.3.

Lemma A.4. (Flow Partition Lemma) Consider an instance (B,S) with buyer demand ~x and
corresponding min-cost flow ~y. Suppose that BH ⊆ B and let ~x(BH) denote the demand sub-vector
for this subset and ~y(BH) be the min-cost flow for this demand sub-vector alone (i.e., when the
buyer set is BH). Then, we can partition the total cost as

C(~y) = C(~y(BH)) +
(
C(~y)− C(~y(BH))

)
.

Moreover, the following must be true

1. ∀t, either yt(B
H) ≤ yt or ct(yt(B

H)) = ct(yt).

2.
∑

i∈B\BH ri(~y)xi ≥
∑

t∈S ct(yt)(yt − yt(BH)) ≥
∑

t∈S
(
Ct(yt)− Ct(yt(BH))

)
.

Proof. The partitioning of the cost is a trivial result (just add and subtract Ct(yt(B
H)) for all t).

Moreover, Point 1 in the second part of the lemma follows almost directly from Corollaries A.3 and
A.2. So, we only focus on proving point 2.

Now for any given t, suppose that yt ≥ yt(B
H). Then, by the convexity of Ct it follows that

Ct(yt) − Ct(yt(BH)) ≤ ct(yt)(yt − yt(BH)). If yt < yt(B
H), then we know that the marginal cost

is the same at both these flows. Therefore, Ct(yt) − Ct(yt(BH)) = ct(yt)(yt − yt(BH)). Summing
this up over all t, we get one half of Result (Point) 2.

Now, ∑
t

ct(yt)(yt − yt(BH)) =
∑
t

ct(yt)yt −
∑
t

ct(yt)yt(B
H)

=
∑
i∈B

ri(~y)xi −
∑
t

ct(yt)
∑
i∈B

yt(B
H)(i).

Note that yt(B
H)(i) > 0 only for i ∈ BH and only if i is receiving non-zero amount of item t in

~y(BH). This means that i has an edge to t and therefore in ~y, ri(~y) ≤ ct(yt). Therefore, some flow
rearrangement gives us∑

t

∑
i∈B

ct(yt)yt(B
H)(i) ≥

∑
t

∑
i∈B

ri(~y)yt(B
H)(i) =

∑
i∈BH

ri(~y)xi(B
H).
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And so we finally get ∑
t

ct(yt)(yt − yt(BH)) ≤
∑
i∈B

ri(~y)xi −
∑
i∈BH

ri(~y)xi,

which gives us Point 2.

Proposition A.5. (Ignoring Profit Propostion) Consider any price vector ~p ≥ ~p∗ componentwise.
Let ~x be the corresponding B-R buyer demand and let ~y be the min-cost flow for ~x. Then, for any
desired subset B1 of the buyers B,

π1 =
∑
i∈B

pixi − C(~y) ≥
∑
i∈B1

pixi − C(~y(B1)),

where ~y(B1) is the min-cost flow for the reduced demand by only the buyers in B1.

That is, we set the demand to be zero for all buyers outside B1 and compute the min-cost flow
for the same instance.

Proof. Since the price dominates ~p∗, ~x∗ has to dominate ~x, i.e., increasing price on all items can only
lead to a drop in buyer demand. Applying Lemma 2.3, we get that for all i, ct(yt) ≤ ct(y

∗
t ) = p∗t .

Now applying the flow partition lemma (Lemma A.4), we get,

π1 =
∑
i∈B1

pixi − C(~y(B1)) +
∑
i/∈B1

pixi −
∑
i/∈B1

ri(~y)xi.

But we know that ri(~y) ≤ ri( ~y∗) = p̄∗i ≤ pi. Therefore, the second term in the above inequality
is non-negative and the first term is a lower bound for π1.

Appendix B Proofs from Section 3

In this section, we will consider a market where every buyer’s1 inverse demand function λi(x) has
a monotone hazard rate and the same value of λi(0). Formally,

Assumption There exists some λmax > 0 such that for every buyer i, λi(0) = λmax.

Proposition 3.1. The Unit Demand Pricing problem in large markets with MHR Inverse Demand
and Uniform Peaks (λi(0) = λmax for all i) is NP-Hard even with zero production costs.

Proof. We just sketch the proof here since the general idea is the same as the hardness proof in [15].
Consider an instance of vertex cover. Reducing this to our problem, there is one buyer for each
vertex and r buyers for every edge e such that r = |V | = n. Moreover, there is also one item in S
for every vertex of the original instance All vertex buyers have unit demand with valuation 2, i.e.,
λi(x) = 2 for x ≤ 1 and 0 otherwise. All the edge buyers have the following MHR inverse demand
function λi(x) = 2 − x. The vertex buyers have access only to the corresponding vertex item and
the edge buyers have access to items corresponding to its two end points.

First, it is not hard to see that the maximum profit from the set of r buyers for an edge is r
(each of these can give only a max profit of 1 when p = 1). Next, in any solution of our problem,
the items whose prices are less than 2 must form a vertex cover of the original graph. Moreover,
the price of these sellers is at most 1 + 1

2r . Say you are given some solution where there are k nodes

1We use buyer and buyer type interchangeably from now on.
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priced below 2, then the profit of this solution is at least 2(n−k) +k+mr, where m is the number
of edges. This is obtained by pricing all these nodes at 1. Next, the profit of this solution is at
most, 2(n− k) + k(1 + 1

2r ) +mr. Now, it is not hard to show that any optimal solution must be a
minimal vertex cover.

Recall our notation from Section 3, ~pk, ~xk, ~yk is the solution returned by Algorithm 1 for a given
value of k.

Properties Regarding the Stopping Criterion

The following simple lemma shows that for a fixed value of k, if there are two items and the one
with the larger marginal cost meets the stopping criterion, then the other must also satisfy the
condition.

Proposition B.1. Consider two items t, t′ at the same price p and let ~y be some min-cost allocation
such that ct(yt) ≤ ct′(yt′). If t′ satisfies the stopping criterion, then t must also satisfy the stopping
criterion.

Proof. The proof follows from a rearrangement of Equation 1. The stopping criterion for t′ can
also be written as

λmax ≤ kp− (k − 1)ct′(yt′).

The term in the RHS is in turn no larger than kp− (k− 1)ct(yt), which implies that t also satisfies
the stopping criterion.

Our second proposition compares the prices of items in the solution returned by our algorithm
for two different values of k. We say that vector ~a ≥ ~b iff each element of ~a is not smaller than its
corresponding element of ~b.

Proposition B.2. Suppose that k1, k2 ≥ 1 are two values of the stopping parameter with k1 ≥ k2.

Then, ~pk2 ≥ ~pk1 and ~xk1 ≥ ~xk2.

Proof. Notice that the initial prices ~p∗ are independent of k. This means that whatever be the
value of the stopping parameter k, an item enters the active set at the exact same value of the
active price. Also, note that when an item becomes finished, all the buyers having an edge to this
item must also be finished (or else why is it not using this item?). Suppose that during Algorithm 1
for k = k2, the items become finished in the order O = (t1, t2, t3, . . . , t|S|), breaking ties arbitrarily.

Then, clearly pk2t1 ≤ p
k2
t2
≤ . . . ≤ pk2t|S| . Assume by contradiction that t is the item with the smallest

index in O such that pk2t < pk1t .
Consider the run of Algorithm 1 for k = k1 and let A(pk2t ) be the buyers and items in the

active set when the active price is pk2t . Clearly t belongs to the set but does not meet the stopping
criterion yet. We claim that for any buyer i ∈ A(pk2t ), for the state of Algorithm 1(k = k2) at active
price pk2t , i belonged to the active set. Moreover, all the items in A(pk2t ) must have been active for
the same active price but k = k2. Therefore, applying Corollary A.3 comparing the contents of the
active set at k = k1 and k = k2, we conclude that the marginal cost of t at k = k1 cannot be larger
than its marginal cost for k = k2 at the same active price. Therefore, it is not hard to see that for
k = k1, t must satisfy the stopping condition at active price pk2t .

Price-Hierarchy: The next proposition is a trivial observation from the definition of the algo-
rithm, which we state without proof. It states that at a given active price p, the price of items in
F (p) are no larger than p and the items in I(p) cannot be smaller than p.
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Proposition B.3. Suppose at some given active price p, t1, t2, t3 are three items such that t1 ∈
A(p), t2 ∈ I(p) and t3 ∈ F (p). Then,

Pt3(p) ≤ Pt1(p) = p ≤ Pt2(p).

We now establish some easy invariants that hold during the course of our algorithm. In par-
ticular, we show that there can be no edges between buyers in BI(p) and items in SA(p) or SF (p)
and between buyers in BA(p) and items in SF (p).

Proposition B.4. At any active price p, the following must be true

1. Suppose user i belongs to BI(p) and item t ∈ SA(p) or t ∈ SF (p). Then, there cannot be an
edge between user i and item t.

2. Suppose user i ∈ BA(p) and item t ∈ SF (p). Then, there cannot be an edge between user i
and item t.

The invariants indicate a natural hierarchy in the partitions as shown in Figure 1. Users who
are inactive can only have edges to items that are inactive. Users that are active can only have
edges to items that are active or inactive.

Proof. We prove these invariants by contradiction. First, suppose that for some i ∈ BI(p) and
t ∈ SA(p), (i, t) ∈ E. Since i is inactive, this must mean that every item t′ that i used in the
optimum solution must have an initial price ct′(y

∗
t′) > p, where p is the active price. But since

t ∈ SA(p), this must mean that at some p′ ≤ p, the active price must have been equal to the initial
price ct(y

∗
t ) of the item t. So, ct(y

∗
t ) is smaller than ct′(y

∗
t′) where t′ is some item used by i in the

optimum solution. Thus, if i had access to t, then we could have shifted an infinitesimal amount
of flow to t and reduced the cost of the optimum solution, which is a contradiction. The proof for
the case when t ∈ SF (p) is similar since if a item is finished, then it must have been active at some
lower price.

For the second invariant, assume that there is some i ∈ BA(p) and item t ∈ SF (p) such that
i has access to item t. Let p′ be the price where t met the stopping criterion and was transferred
to the finished set. If at this price, i used t, then by definition, i would have also been added
to FINISH. This means that either i ∈ BI(p

′) or i did not send any flow on item t. i ∈ BI(p
′)

contradicts the first invariant. Now suppose, t′ is some item that was allocated to user i at active
price p′. Then since we computed a min-cost allocation inside the active set, ct′(yt′(p

′)) ≤ ct(yt(p′)).
However, by Proposition B.1, t′ also meets the stopping criterion and thus i would have also been
transferred to FINISH, a contradiction.

Lemma 3.2. Suppose that some item t belongs to the active set at two different active prices p1

and p2 with p1 < p2, then ct(yt(p1)) ≥ ct(yt(p2)).

Proof. Let’s begin by considering the set of items and buyers in the active set at price p2, i.e.,
buyers BA(p2) and items SA(p2). Suppose that the demand of only these buyers at price p2 is ~x2

and their corresponding allocations from the items in SA(p2) are ~y2. By definition, ~y2 is a min-cost

flow for ~x2 for the sub-instance (BA(p2), SA(p2)). Moreover for every item t ∈ SA(p2), y2
t = yt(p2)

(same allocation as when the active price was p2).
Now, consider the same set of buyers and items as above but when the active price was p1.

Define a demand vector ~x1 such that for every buyer i in BA(p2), x1
i = xi(p1), i.e., that buyer’s

demand when the active price was p1. Let the corresponding min-cost allocation for this demand
using only the items in SA(p2) be ~y1.

In summary,
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• ( ~x2, ~y2): For Active buyers at p2, their total demand when the active price is p2 and allocation
using only the items SA(p2).

• ( ~x1, ~y1): Same set of buyers and items as before, but with the corresponding buyer demand
when the active price was p1, i.e., xi(p1).

Clearly ~x1 dominates ~x2 and therefore from Lemma 2.3, it is clear that

ct(y
1
t ) ≥ ct(y2

t ) = ct(yt(p2)).

So all we need to show now in order to prove the lemma is ct(yt(p1)) ≥ ct(y1
t ).

Let the buyers in BA(p1) ∩BA(p2) be B1 and items in SA(p1) ∩ SA(p2) be S1. Now, in ~y1, the
flow from the items in S1 only reaches the buyers in B1 (other buyers in BA(p2) were inactive at
that price). But in the actual solution of our algorithm at active price p1, the items in S1 may have
flow to B1 and other buyers in BA(p1). We now define two new demand vectors

• Let ~x1(B1, S1) be sub-demand of ~x1 from the buyers in B1 corresponding to their allocations

from S1 in ~y1. The allocation on t ∈ S1 is still y1
t .

• Let ~x3 be defined for every i as follows: x3
i is the total allocation for every buyer when the

active price was p1 but only from the items in S1. The allocation on t ∈ S1 is yt(p1).

Since ~x3 ≥ ~x1 for all the common buyers, we can apply Corollary A.3 and get ct(yt(p1)) ≥ ct(y1
t ).

This completes the proof.

Proposition 3.3. For any given item t and fixed k, the stopping condition must be obeyed at
equality. Formally, suppose that t meets the stopping criterion at an active price of p, then

p− ct(yt(p)) =
1

k
(λmax − ct(yt(p)).

Proof. We first claim that for every item t in the active set at an active price of p, limε→0 ct(yt(p−
ε)) = ct(yt(p)). First assume that no new item joins the active set at the price p. In a sufficiently
small neighborhood around the price p, the contents of the active set cannot change. Moreover,
for the restricted instance consisting only of the items and buyers in A(p− ε), ~y(p− ε) is always a
min-cost flow since the algorithm specifically computes a min-cost flow for the active set.

Applying Lemma D.4 to the restricted instance provided by A(p) where all the active items are
priced at p, we have that limε→0 ct(yt(p− ε)) = ct(yt(p)). Now, we know that for all p− ε < p, item
t does not meet the active criterion and therefore

p− ε− ct(yt(p− ε)) <
1

k
(λmax − ct(yt(p− ε))) .

Applying the limit ε → 0 to both sides of the above inequality, we get the desired result. Indeed,
if instead of equality, we had a strict inequality, then that would imply a jump discontinuity in
ct(yt(p)).

Now, what if some new item t′ joins the active set at price pt? By definition, this would imply
that, ct′(yt′(p)) = p. Then, it is clear that we still have a min-cost flow at p because for any other
item t′′ in the active set, ct′′(yt′′(p)) = p. The same proof is therefore still applicable.
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We now show the proof of the main bound of 1.877 on the revenue returned by our algorithm.
Theorem 3.6. Algorithm 2 returns a 1.877 approximation to the optimal profit, i.e., if π∗ is the
profit of the optimal solution and π̃ is the profit of the solution returned by Algorithm 2, then

π∗

π̃
≤ 4
√
e− 2− e ≈ 1.877.

Proof. We will now provide lower bounds on both π1 and π2 as returned by Algorithm 2 and show
that for any instance, one of these is close enough to the optimal profit π∗. First some notation:
we partition the buyers into sets BH and BL such that for the buyers in BH , the minimally priced

item available to them in ~popt is not smaller than that available to them in ~p
√
e, i.e., i such that

p̄opti > p̄
√
e

i . We already know due to Lemma 3.5 that all buyers in BL have p̄opti > p̄ei .

Let us denote by ~zopt the minimum-cost flow corresponding to the buyer demand ~xopt (since

the optimum allocation ~yopt may not be a min-cost flow). Since the minimum cost flow always
costs lesser than or equal to any given allocation, it is okay to compare our solutions with an upper
bound on the optimum which is,

π∗ ≤
∑
i∈B

p̄opti xopti −
∑
t∈B

Ct(z
opt).

Now we apply the partition lemma (Lemma A.4) to the envy-free profit maximizing solution

with BH as the desired subset. Let ~zopt(BH) be the respective min-cost flow for only the demand
due to buyers in BH in the profit maximizing solution. We then have,

π∗ ≤

∑
i∈BH

p̄opti xopti − C( ~zopt(BH))

+

∑
i∈BL

p̄opti xopti −
(
C( ~zopt)− C( ~zopt(BH))

) (4)

(5)

As shown above, we have decomposed the profit into that due to BH and due to BL respectively.
For convenience, we will refer to the left term above as πopt(BH) and the right term as πopt(BL),
then we have shown that π∗ ≤ πopt(BH) + πopt(BL). We now show a simple claim on the marginal
costs of buyers in BH and BL.

Lemma B.5. 1. For all i ∈ BH , ri( ~zopt(B
H)) ≤ ri( ~zopt) ≤ ri( ~y

√
e) ≤ ri(~ye).

2. For all i ∈ BL, ri( ~zopt) ≤ ri(~ye).

3.
∑

i∈BH ri(~y
e)xopti ≥ C( ~zopt(BH)).

4.
∑

i∈BL ri(~y
e)xopti ≥ (C( ~zopt)− C( ~zopt(BH))).

Proof. Define ~ye(BH) and ~y
√
e(BH) to be the min-cost flows for the demand corresponding only

to the buyers in BH in ~xe and ~x
√
e respectively. Since for i ∈ BH , p̄opti ≥ p̄

√
e

i ≥ p̄ei , we have
~xopt ≤ ~x

√
e ≤ ~xe. Applying Lemma 2.3 gives us the last three terms of the first result. Corollary A.3

gives us that ri( ~zopt(B
H)) ≤ ri( ~zopt).

For all i including the buyers in BL, xopti ≤ xei since ~popt ≥ ~pe. So applying Lemma 2.3 to the
optimum solution and ~xe, we get the second result.
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Now for the third result. Consider
∑

i∈BH ri(~y
e)xopti . As per the first result, this is not greater

than
∑

i∈BH ri(
~zopt(BH))xopti = ct(z

opt
t (BH))zoptt (BH). By Convexity arguments, the last term is

clearly an upper bound for C( ~zopt(BH)).
For the final result, we begin with the observation (from Point 2) that∑

i∈BL
ri(~ye)x

opt
i ≥

∑
i∈BL

ri( ~zopt)x
opt
i .

From Lemma A.4, we know that
∑

i∈BL ri(
~zopt)xopti ≥

∑
t∈S(Ct(z

opt
t ) − Ct(zoptt (BH)), which com-

pletes the result.

Stopping Condition Related Properties

Finally, we rewrite the stopping conditions for all buyers i, for k = e and k =
√
e respectively and

show a simple lemma based on this.

p̄ei =
1

e
λmax + (1− 1

e
)ri(~ye).

p̄
√
e

i =
1√
e
λmax + (1− 1√

e
)ri(

~y
√
e).

Lemma B.6. For all i, p̄ei ≥ 1√
e
p̄
√
e

i + (1− 1√
e
)ri(~ye).

Proof. Multiplying the rewritten stop condition for k =
√
e with 1√

e
, we get 1√

e
p̄
√
e

i = 1
eλ

max+( 1√
e
−

1
e )ri(

~y
√
e). From Lemma B.5, we get that this quantity is no more than 1

eλ
max + ( 1√

e
− 1

e )ri(~ye).

Substituing 1
e (λmax − ri(~ye)) = p̄ei − ri(~ye) gives us the desired result.

Lower bound on π1: Profit at k = e

We now begin with the main proof by showing a lower bound on π1. Recall that π1 is the solution
where all items are priced at pet . First, we apply Lemma D.3 with (~pe, ~xe, ~ye) as the first solution
and the optimum solution as the second. Following this, we apply the flow partition lemma to∑

t∈S C(zoptt ) with BH as the subset.

π1 =
∑
i∈B

p̄eix
e
i − C(~ye)

≥
∑
i∈B

p̄eix
opt
i − C( ~zopt)

=
∑
i∈BH

p̄eix
opt
i − C( ~zopt(BH)) +

∑
i∈BL

p̄eix
opt
i − (C( ~zopt)− C( ~zopt(BH))).

π1: Profit due to buyers in BH

Now consider the first term above corresponding to the buyers in BH . We apply the rewritten
stopping condition to get the following lower bound,∑

i∈BH
p̄eix

opt
i − C( ~zopt(BH)) ≥

∑
i∈BH

(
1

e
λmax + (1− 1

e
)ri( ~xe)

)
xopti − C( ~zopt(BH)).
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From Lemma B.5 (Point 3), we get
∑

i∈BH (1 − 1
e )ri( ~xe)x

opt
i ≥ (1 − 1

e )(C( ~zopt(BH))). And so,
we get a final lower bound on the profit due to the buyers in BH .∑

i∈BH
p̄eix

opt
i − C( ~zopt(BH)) ≥

∑
i∈BH

1

e
λmaxxopti −

1

e
C( ~zopt(BH))

≥ 1

e

∑
i∈BH

p̄opti xopti − C( ~zopt(BH))


=

1

e
πopt(BH).

π1: Profit due to buyers in BL

We move on to the profit due to the terms in BL and apply Lemma B.6.∑
i∈BL

p̄eix
opt
i −(C( ~zopt)−C( ~zopt(BH))) ≥

∑
i∈BL

(
1√
e
p̄
√
e

i + (1− 1√
e

)ri(~ye)

)
xopti −(C( ~zopt)−C( ~zopt(BH))).

Applying the final claim in Lemma B.5, we get that (1 − 1√
e
)ri(~ye)x

opt
i ≥ (1 − 1√

e
)(C( ~zopt) −

C( ~zopt(BH))). Now we are in a position to get a final lower bound for the profit due to the terms
in BL.

=
∑
i∈BL

p̄eix
opt
i − (C( ~zopt)− C( ~zopt(BH))).

≥ 1√
e

∑
i∈BL

p̄
√
e

i xopti − (C( ~zopt)− C( ~zopt(BH)))


≥ 1√

e

∑
i∈BL

p̄opti xopti − (C( ~zopt)− C( ~zopt(BH)))


=

1√
e
πopt(BL).

Recall that πopt(BH) + πopt(BL) ≥ π∗. Our final bound for π1 reads as follows

π1 ≥
1

e
πopt(BH) +

1√
e
πopt(BL).

Lower bound on π2: Profit at k =
√
e

Now we move on to π2 which is the profit due to the solution returned by our algorithm for k =
√
e.

Notice that for the buyers in BH , the demand in this solution is larger than the demand in the
optimum, whereas it is smaller for the buyers in BL. It may be possible that by increasing the
price from the optimum solution for some buyer in BL, we lose most of her flow and thus we may
not be extracting any profit at all from these buyers. Our first main claim leverages a property of

MHR functions to show that for every buyer in BL, x
√
e

i ≥
1
2x

opt
i , i.e., due to the price increase, the

drop in the buyer’s demand cannot be larger than a factor of two.

Consider the function f(x) = λi(x)− ri( ~y
√
e) for any i ∈ BL. Recall that due to the definition

of best-response demand, we have that λi(x
√
e

i ) = p̄
√
e

i . Thus, we know from the stopping con-

dition that f(0) =
√
ef(x

√
e

i ). We also know from Lemma B.6 that
√
ef(xei ) ≥ f(x

√
e

i ). This is
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true because ri(~ye) ≥ ri(
~y
√
e) for all i. Therefore, applying the property of MHR functions from

Lemma E.4, we get the desired claim that x
√
e

i ≥ 1
2x

e
i ≥ 1

2x
opt
i . Now apply Lemma D.5 to the

solutions ( ~p
√
e, ~x
√
e, ~y
√
e) and ( ~popt, ~xopt, ~zopt) with α = 1

2 . We get the following lower bound for the
profit when k =

√
e:

π2 ≥

∑
i∈BH

p̄
√
e

i xopti − C( ~zopt(BH))

 +
1

2

∑
i∈BL

p̄opti xopti − (C( ~zopt)− C( ~zopt(BH)))


We will refer to the above two terms as π2(BH) and π2(BL).
π2: Profit due to buyers in BL:

Clearly since α = 0.5, we immediately have that π2(BL) = 0.5πopt(BL). Therefore, we only need
to focus on bounding π2(BH) in terms of πopt(BH), which we do below.

π2: Profit due to buyers in BH :
So we now exclusively focus on the profit due to the terms in BH .

Using the rewritten stopping condition, we see that for all i ∈ BH , p̄
√
e

i ≥ 1√
e
λmax + (1 −

1√
e
)ri(

~y
√
e). But we also know that ri(

~y
√
e) ≥ ri( ~zopt) ≥ ri( ~zopt(B

H)) due to Lemma B.5. Getting

back to π2, we have

π2(BH) =
∑
i∈BH

p̄
√
e

i xopti − C( ~zopt(BH))

≥
∑
i∈BH

(
1√
e
λmax + (1− 1√

e
)ri( ~zopt(B

H))

)
xopti − C( ~zopt(BH)).

Notice that
∑

i∈BH ri(
~zopt(BH))xopti =

∑
t ct(z

opt
t (BH))zoptt (BH) ≥

∑
t∈S Ct(z

opt
t (BH)). So

cancelling (1− 1√
e
) from the costs, we get

π2(BH) ≥ 1√
e

(
∑
i∈BH

λmaxxopti − C( ~zopt(BH)))

≥ 1√
e

(πopt(BH)).

Therefore, our lower bound on π2 is 1√
e
(πopt(BH)) + 1

2(πopt(BL)). Recall that πopt(BH) +

πopt(BL) ≥ π∗ and

π1 ≥
1

e
(πopt(BH)) +

1√
e

(πopt(BL)).

Some basic algebra gives us that

min(π1, π2) ≥ 1

4
√
e− (2 + e)

π∗ ≥ 1

1.877
π∗ ≈ 0.53π∗.

This completes the proof.
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B.1 Efficient Implementation of the Algorithm

Lemma 4.2. The following invariants hold during the course of the above Algorithm.

1. For any j, BA(j) ∪ SA(j) = BA(P (j)) ∪ SA(P (j)).

2. For any j, all the items in SF (j) meet the stopping criterion in the interval [P (j − 1), P (j)]
during the course of Algorithm 1.

Proof. We show this by induction on j. Clearly at j = 1, no item meets the stopping criterion since
since P (1) = ct(y

∗
t ). This means that the first invariant is also true trivially. Suppose that the

invariants are true up to iteration j − 1. Notice that at the beginning of iteration j, we compute a
min-cost flow for the items and buyers in BA(j − 1) ∪ SA(j − 1).

Assume by contradiction that at j, ∃t ∈ SF (j) that does not meet the stopping criterion in the
interval [P (j − 1), P (j)] in the algorithm. We carefully introduce more notation,

• Let S′F (j) be the subset of SF (j) of all the items that do meet the stopping criterion in the
interval during the course of the algorithm.

• Consider the set of buyers and items belonging to the active set at both P (j − 1) and P (j),
i.e., they did not meet the stopping criterion in the desired interval. Let Balg(j) be the set of
such buyers and Salg(j) be the set of such items. It is not hard to see that Balg(j) ⊆ BA(j−1)
and Salg(j) ⊆ SA(j − 1). Moreover, Salg(j) ∪ S′F (j) = SA(j − 1).

• Let xalg(j) be the demand of the buyers in Balg(j) at price P (j) and let ~yalg(j) be the
corresponding min-cost flow using only the items in Salg(j). Indeed, in algorithm 1, the
buyers in Balg(j) are only using the items in Salg(j) at active price P (j).

Now, it is not hard to see that no buyer in Balg(j) has an edge to any item in S′F (j) (Recall

Figure 1). Define the demand vector ~x′(j) as ~x(j) but counting only the flow sent to items in
Salg(j). For all buyers in Balg(j), x′i(j) = xi(j). Now apply Corollary A.3 for the following two
instances:

1. (Balg(j), Salg(j)) with demand xalg(j) and flow ~yalg(j)

2. (BA(j− 1), Salg(j)) with demand ~x′(j) with flow being ~y(j) but only for the items in Salg(j).

Since t ∈ Salg(j), this means that ct(y
alg
t ) ≤ ct(yt(j)). But we already know that t did not meet

the stopping criteria at P (j), i.e.,

P (j)− ct(yalgt ) <
1

k
(λmax − ct(yalgt )).

And so, t could have not met the stopping criteria in ~y(j), which is a contradiction.
The second invariant follows almost immediately. We know that the items that reached the

stopping criterion in Algorithm 1 in (P (j − 1), P (j)] constitute SF (j). Let BF (j) be the corre-
sponding buyers who also became finished along with the items in the same interval but in the
original algorithm. Clearly, BF (j) ⊆ BA(j − 1) as per definition. Clearly, these buyers have edges
to at least one item in SF (j). Now suppose that the binary search algorithm has found a price p
where item t exactly meets the stopping criterion and suppose that some buyer i ∈ BF (j) who has
an edge to this item has not been removed yet. Since we only compute min-cost flows, either this
buyer is using t or some item with a marginal cost equal to that of t, say t′. Indeed, t′’s marginal
cost cannot be smaller than that of t because that means that t′ would have been removed first.
Therefore, we also remove t′ and along with it buyer i.
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Theorem B.7. The algorithm in Section 4 returns the same solution as Algorithm 1 for any value
of k.

Proof. We just need to show that every item t has the same price in the efficient algorithm as it

does in ~pk. We show this inductively on the set of distinct prices in ~pk. Let Sp be some set of items
priced at p in that vector and let Bp be the buyers using these items. We only have to show that
in the efficient algorithm, these items have the same price and these buyers are also using only the
items in Sp. Suppose that p ∈ (P (j − 1), P (j)] for some j. We know that Bp ⊆ BA(j − 1) and
Sp ⊆ SA(j − 1) as per Lemma 4.2.

Now as per the binary search algorithm, we would be searching in an interval (p′, P (j)] such
that for the active price strictly between p′ and p, no item would meet the stopping criterion. Also
note that the buyers in Bp have not been removed at this stage of the binary search because they
do not have edges to any items that finished before price p. Therefore, we know that the binary
search converges up on price p and at this point we have to remove both item Bp and Sp, items
not in Sp cannot meet the stopping criterion and have to have a marginal cost larger than those in
Sp. So buyers in Bp must only be using items in Sp because this is a min-cost flow.

Appendix C Proofs from Section 4

All our results in this section depend on a parameter ∆ defined as follows

∆ =
λmax0

λmin0

.

In addition, we require a slightly stronger assumption on the cost functions than just convexity.
We call a production cost function Ct(x) doubly convex if its derivative ct(x) is also convex with
ct(0) = 0. Surprisingly, without the doubly convex assumption, we show that this problem admits
no good approximation algorithm. Our starting point for this result is still Algorithm 1. However,
since λmax is no longer uniform for all functions, we redefine the stopping condition as follows.

Definition New Stopping Criterion(pt, yt, k)

pt − ct(yt) ≥
1

k
(λmin0 − ct(yt)). (6)

The above change introduces a new element into the analysis of the algorithm: an item that
is inactive may already satisfy the stopping criterion if their initial price ct(y

∗
t ) = p∗t ≥ λmin0 . The

following two statements summarize the final prices of various items according to the new stopping
condition.

1. For any item t whose initial price p∗t > λmin0 , its final price when the algorithm terminates is
also pkt = p∗t .

2. For any item t, whose initial price p∗t ≤ λmin0 , its final price when the algorithm terminates
still satisfies,

pkt − ct(ykt ) =
1

k
(λmin0 − ct(ykt )).

Algorithm 1, therefore still returns an envy-free allocation that is also a min-cost flow for the
buyer demand. The analysis from Theorem 3.4 can be easily extended to this case by dividing
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the graph into two components based on whether p∗t > λmin0 or not. As usual denote the solution
returned by Algorithm 1 for k = e as (~pe, ~xe, ~ye). Now consider the definition of the following price
vectors ~p(j) for j = 1 to j = log(∆). Assume w.l.o.g that ∆ is a power of e.

(Price Vector) ~p(j) : pt(j) = max(pet , e
j−1λmin0 ). (7)

Note that we can think of ~pe as ~p(0), since pet ≥ e−1λmin0 due to the stopping condition. Let ~x(j)
be the corresponding best-response buyer demand to ~p(j) and ~y(j) be the envy-free allocation that
minimizes the total cost in the space of all envy-free allocations. We later show that ~y(j) is actually
a min-cost flow for ~x(j). With this definition, our algorithm becomes simple, see Algorithm 3.

Algorithm 3 (O(log(∆), 4)-Bicriteria approximation algorithm

1: Let π(0) be the profit of (~pe, ~xe, ~ye).
2: Let π(j) be the profit of the envy-free solution (~p(j), ~x(j), ~y(j)).
3: Let SW (0) be the social welfare of (~pe, ~xe, ~ye).

4: Find the smallest j such that π(j) ≥ 1
2( SW (0)

4.5(1+log(∆))) and return the corresponding solution.

We show our main theorem after proving that for every j, ~y(j) is actually a min-cost flow.

Claim C.1. For all j between 1 and log(∆), ~y(j) is a min-cost flow for the demand ~x(j).

Proof. For a given j, look at the prices. Items are priced at either ej−1λmin0 or at pet if pet > ej−1λmin0 .
The solution is envy-free by definition. So divide the buyers and items as follows: let SH be the set
of items with price higher than ej−1λmin0 and let BH be the buyers using these items. Define SL

as the items with price ej−1λmin0 and BL as the corresponding buyers using these items. Now, for
a solution to be a min-cost flow, all buyers should be sending flow on the items with the smallest
marginal cost available to them.

By definition, we have two min-cost sub-flows: 1) buyers in BL are using the cheapest possible
allocation using only the items in SL, by definition; 2) the same is true for BH and SH , this is
because for these entities, both the prices and the allocation are exactly the same as in ~pe, ~xe, ~ye.
So as was the case before, we only need to consider cross-edges. Moreover, since the solution is
envy-free, there can be no edges going from buyers in BH to items in SL. What about the reverse
case, can there be a buyer i in BL and an item t in SH such that ct(yt(j)) = ct(y

e
t ) < ri(~y(j))?

Consider SL and BL, but in our first solution ~ye. Recall that these items must have a price
smaller than or equal to ej−1λmin0 in ~pe. Clearly, since our solution is both envy-free and a min-cost
flow, it is clear that buyers in BL can only receive allocations from SL in our solution. Moreover, no
buyer from BH has an edge to items in SL. Finally, by definition, the buyers in BL have a smaller
demand in ~x(j) as compared to ~xe. Therefore, applying Lemma 2.3 for the reduced sub-instance
(BL, SL), we get that ri(~y(j)) ≤ ri(~ye) for any buyer i in BL. But since ~ye is full min-cost flow, it
is true ri(~y(j)) ≤ ct(yet ) for any t that i has an edge to including items in SH . This completes the
proof. �

Theorem 5.1. For any instance with MHR Demand and Doubly Convex Costs, Algorithm 3
returns an envy-free solution which has a O(log ∆)-approximation to the optimal revenue and

which also guarantees 1
4

th
of the optimum welfare.

Proof. As with our proof of Theorem 3.6, the approximation factor depends very crucially on
non-trivial lower bounds we show for the optimal prices ~popt.
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Lemma C.2. The price of every item t in the profit-maximizing solution ~popt is at least its price
in ~pe.

The proof is somewhat similar to that of Lemma 3.5, so we will only sketch the relevant details.

Proof. First, as per the new stopping condition (Equation 6), there are two types of items in the
solution. Those whose initial prices are larger than λmin0 (type A) and items whose prices are
smaller than or equal to λmin0 (type B). Recall that for every item in type A, its price pet = p∗t . But
we know from Lemma A.1 that in the revenue-maximizing solution, the price of any item is at least
its price in ~p∗. This means that for all type A items, poptt ≥ pet . So, we only need to worry about
the type B items.

Assume by contradiction that in the optimal solution some items (from type B) have a price
strictly smaller than their price in ~pe. Let Smin be the subset of such items with the smallest
price (call it pmin). As per Lemma D.2, ∃ tmin ∈ Smin, such that ct(y

e
t ) ≤ ct(y

opt
t ). Construct

the graph G′ as in the proof of Lemma 3.5 and define the sets S+
min and B+

min accordingly. The
only additional observation we need for this case is that S+

min cannot include any type A item since
pmin < petmin ≤ λ

min
0 ,

The rest of the proof is extremely similar to what was shown in Lemma 3.5. Since petmin > pmin,
tmin cannot satisfy the new stopping criterion (k = e) based on its price and allocation at OPT .
Moreover, for every other t ∈ S+

min, its price is pmin and marginal is at least as much as that of
tmin. Therefore,

pmin − ct(yoptt ) <
1

e
(λmin0 − ct(yoptt )) (8)

Consider increasing the price of only the items in S+
min and recomputing the min-cost flow for

the buyers in B+
min for any p. We define the quantities p+ and c̃(p) exactly as mentioned in the

proof of Lemma 3.5. Let ~p+ be the full price vector when items in S+
min have a price p+ and other

items retain their price in OPT . Also, define the corresponding best-response demand ~x+ and
envy-free allocation ~y+.

Our main claim is the following: the profit at ( ~p+, ~x+, ~y+) is larger than the optimal profit
which is a contradiction. The proof proceeds in the exact same manner as that of Lemma 3.5. By
definition, for all p smaller than p+, no item meets the stopping criterion in Equation 6. We remark
that if some item meets the stopping condition above at price p+ at all, then it must be the item(s)
whose marginal cost equals c̃(p+) (See Propostion B.1).

Once again, we can bound the difference in profits as with Lemma 3.5, and make the claim
that for all i, (λi(x

+
i ) − c̃(p+))x+

i − (λi(x
opt
i ) − c̃(p+))xopti > 0. Define fi(x) = λi(x) − c̃(p+). The

only property required to show the claim that we make is f(0) ≥ efi(x+
i ). But, from the stopping

criterion, we know that

p+ − c̃(p+) ≤ 1

e
(λmin0 − c̃(p+)) ≤ 1

e
(λi(0)− c̃(p+)).

Indeed, the above inequalities are true because for all i, λi(0) ≥ λmin0 . The rest of the proof
follows. �

We are now ready to prove our main theorem, that the solution returned by Algorithm 3 gives
us a good fraction of both revenue and welfare. We know that in ~popt, every item is priced between
its price in ~pe and λmax0 , i.e., the latter being the largest valuation any infinitesimal buyer may

hold for the items. Next, define ~zopt to be the min-cost flow for the buyer demand ~xopt since ~yopt

is envy-free but not necessarily cost minimizing.
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Finally every j, define SW (j) to be the social welfare of the solution (~p(j), ~x(j), ~y(j)). Let π∗

be the optimal profit and SW ∗ be the welfare of the social welfare maximizing solution. We show
our result using two small lemmas, which we state first and then prove after showing how this leads
to the main result.

Lemma C.3. SW (0) ≥ π∗ (the optimal profit) and SW (0) ≥ 1
2SW

∗.

Lemma C.4. For all j, SW (j)− SW (j + 1) ≤ 4.5 · π(j).

We show how these lemmas lead to the main theorem and then prove the actual lemmas.
First, we show that Algorithm 3 must return at least one such solution which satisfies the desired
lower bound on the profit. Summing up Lemma C.4 from j = 0 to j = 1 + log(∆), we get that
SW (0) ≤ 4.5

∑
j π(j). If the algorithm does not return even one such j, then it means that for

every j,

π(j) <
1

2× 4.5

SW (0)

1 + log(∆)
. (9)

Summing up, we get SW (0) ≤ 1
2SW (0), which is not true since then π(0) would be returned by

the algorithm. Thus, the algorithm must return some solution. Suppose that the index j returned
by the algorithm is j∗. Then, by definition every j < j∗ must satisfy Equation(15).

The revenue bound in the bicriteria result is trivial to see because SW (0) ≥ π∗ and our solution
satisfies

π(j∗) ≥ 1

2

SW (0)

4.5(1 + log(∆))
.

Now, consider the following quantity,

SW (0)− SW (j∗) =

j∗∑
j=1

SW (j − 1)− SW (j)

≤
j∗−1∑
j=0

4.5 · π(j) (Lemma C.4))

< 4.5

j∗−1∑
j=0

1

2

SW (0)

4.5(1 + log(∆))

≤ 1

2
SW (0) (j∗ ≤ 1 + log(∆)).

So, SW (0)− SW (j∗) ≤ 1
2SW (0), which implies that our solution’s social welfare SW (j∗) is at

least half of SW (0) which is one-fourth of the optimal welfare by Lemma C.3. We now prove the
small lemmas.
(Proof of Lemma C.3)
We know that in the revenue-maximizing solution, every buyer’s demand is smaller than in ~xe.
Also recall that ~zopt is the min-cost flow for the demand ~xopt. Let SW ( ~xopt, ~yopt) be the welfare of

the profit maximizing solution. It is not hard to see that SW ( ~xopt, ~yopt) ≥ π∗, because the value
of every infinitesimal buyer is at least the price that she is paying. The costs are the same in both
cases. Next, recall that,

SW ( ~xopt, ~yopt) ≤
∑
i

∫ xopti

x=0
λi(x)dx− C( ~zopt).
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We can write SW (0) as follows (recall that λi is decreasing as x increases and so the minimum
value in the interval xopti to xei is λi(x

e
i ), which in turn is the payment by the buyer).

SW (0) =
∑
i

∫ xei

x=0
λi(x)dx− C(~ye)

≥SW ( ~xopt, ~yopt) +
∑
i

∫ xei

x=xopti

λi(x)dx− (C(~ye)− C( ~zopt))

≥SW ( ~xopt, ~yopt) +
∑
i

λi(x
e
i )(x

e
i − x

opt
i )− (C(~ye)− C( ~zopt))

=SW ( ~xopt, ~yopt) +
∑
i

p̄ei (x
e
i − x

opt
i )− (C(~ye)− C( ~zopt))

Now, create a new instance with buyer set B ∪ B′ such that there is one buyer i′ in B′ for
each buyer i in B with access to the same set of items. Consider the demand vector ~x2 such
that for all i ∈ B, x2

i = xopti and for i′ ∈ B′, x2
i′ = xei − x

opt
i . Let the corresponding min-cost

flow be ~y2. Clearly ~y2 and ~ye must have the exact same total allocation on all items. On the
other hand, notice that the min-cost flow of just the demands of buyers in B is exactly ~zopt.
Therefore, we can apply the flow partition lemma (Lemma A.4) for buyers B and B′, and obtain

that C(~ye)− C( ~zopt) ≤
∑

i′∈B′ ri′(
~y2)(xei − x

opt
i ).

Moreover, we know that ~pe ≥ ~p∗, and so for all i, ri(~ye) ≤ p̄∗i ≤ p̄ei . Therefore, for all i′, ri′( ~y2) =

ri(~ye) ≤ p̄ei . Therefore we know that the term C(~ye)−C( ~zopt) is at most
∑

i′∈B′ ri′(
~y2)(xei −x

opt
i ) =∑

i ri(~y
e)(xei − x

opt
i ) ≤ p̄ei (x

e
i − x

opt
i ). Therefore, the second term in the lower bound for SW (0)

above is non-negative and we can bound SW (0) as

SW (0) ≥ SW ( ~xopt, ~yopt) ≥ π∗,

as desired.
Next, we need to show that SW (0) ≥ 1

2SW
∗. This proof is exactly identical to the bicriteria

result we showed in Theorem 3.7. Notice that the only requirement for the theorem was that for
all i,

λi(x
e
i )− ri(~ye)
|λ′i(xei )|

≤ xei . (10)

To show that this still holds, consider fi(x) = λi(x) − ri(~ye). This function is MHR and at
x = xei satisfies fi(0) ≥ efi(xei ) by the stopping condition. So, by Lemma E.3, Equation 10 is valid
here as well. Notice that for any i whose price is larger than λmin0 , fi(x

e
i ) = λi(x

e
i ) − ri(~ye) = 0

since all of its items were inactive throughout the runtime of the algorithm.

(Proof of Lemma C.4): SW (j)− SW (j + 1) ≤ 4.5π(j)
Recall that for all i, xi(j + 1) is no larger than xi(j).

SW (j)− SW (j + 1) =
∑
i

∫ xi(j)

xi(j+1)
λi(x)dx− (C(~y(j)− C(~y(j + 1))

≤
∑
i

λi(xi(j + 1))(xi(j)− xi(j + 1))− (C(~y(j))− C(~y(j + 1))

≤
∑
i

λi(xi(j + 1))xi(j)− C(~y(j)).
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The last inequality is true because it just states that the profit made at π(j+1) is non-negative,
i.e., ∑

i

λi(xi(j + 1))xi(j + 1) =
∑
i

p̄i(j + 1)xi(j + 1) ≥ C(~y(j + 1)).

Now, look at the profit π(j).

π(j) =
∑
i

p̄i(j)xi(j)− C(~y(j)).

We claim that for every i, p̄i(j) is at least 1
eλi(xi(j+ 1)) = 1

e p̄i(j+ 1). This is true by definition
of the price vectors, because we are increasing by at most a factor e. By definition, p̄i(j + 1) =
max(p̄ei , e

jλmin0 ). If p̄i(j + 1) = p̄ei , then the price at jth iteration is also the same and so the 1
e

factor is trivially true. Otherwise, p̄i(j) = max(p̄ei , e
j−1λmin0 ) ≥ ej−1λmin0 = 1

e p̄
e
i . Therefore, we are

now ready to complete our bound.

SW (j)− SW (j + 1)

π(j)
≤
∑

i p̄i(j + 1)xi(j)− C(~y(j))∑
i p̄i(j)xi(j)− C(~y(j))

≤
∑

i ep̄i(j)xi(j)− C(~y(j))∑
i p̄i(j)xi(j)− C(~y(j))

.

Our next and final claim is that C(~y(j)) ≤ 0.5(
∑

i∈B p̄i(j)xi(j)). For any doubly convex func-

tion, Ct(x) ≤ 0.5x · ct(x). Moreover, we know that since ~x(j) ≤ ~x∗, ri(~y(j)) ≤ ri( ~y∗) ≤ p̄i(j). All
these identities simply come from the fact that reducing demand can only lead to a reduction in
marginal cost. Therefore, we have

C(~y(j)) ≤0.5
∑
t

ct(yt(j))yt(j)

= 0.5
∑
i∈B

ri(~y(j))xi(j)

≤ 0.5
∑
i∈B

p̄i(j)xi(j)

Consider the ratio between the difference in welfare to the profit:

SW (j)− SW (j + 1)

π(j)
≤
∑

i ep̄i(j)xi(j)− C(~y(j))∑
i p̄i(j)xi(j)− C(~y(j))

.

It is not hard to see that the RHS is largest when C(~y(j)) = 0.5
∑

i p̄i(j)xi(j), and so SW (j)−SW (j+1)
π(j) ≤

2e− 1 ≤ 4.45.

C.1 Complexity Results

The following complexity results hold for our problem without the uniform peak assumption.
Proposition 5.2.

1. There cannot be a O(∆k)-approximation algorithm for any k > 0 for UDP in Large Markets
with MHR Inverse Demand and Convex Costs (instead of doubly convex) unless NP ⊆
DTIME(n(logcn)) for some constant c.
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2. There is no constant factor approximation algorithm for our UDP problem in large markets
with MHR inverse demand and doubly convex costs unless NP ⊆ DTIME(n(logcn)) for some
constant c.

Proof. The reductions are from UDP -UV , i.e., the unit demand pricing problem in small markets
with uniform valuations and unlimited supply. It was shown in [4] that this problem is log1−ε(|B|)-
hard to approximate for any constant ε > 0, unless NP ⊆ DTIME(n(logε

′
n)), where ε′ is some

constant that depends only on ε. Fixing some value of ε > 0, this implies that UDP -UV cannot
have a constant factor approximation algorithm unless NP ⊆ DTIME(n(logcn)), where c is now a
constant (since we have fixed some ε > 0). Therefore, we will show both our hardness results above
by proving that the statement would indicate a constant approximation algorithm for UDP -UV .
(Statement 1):
Assume by contradiction that ∃ a O(∆k) approximation algorithm for some constant k > 0. Then,
we show that for UDP with uniform valuations and unlimited supply, there must exist a 2k constant
factor approximation algorithm. Consider some instance of UDP-Uniform valuations with buyer
set B′ and items S′. Suppose that the maximum buyer value is vmax and minimum buyer value is
vmin > 0. Consider the following linear transformation on the buyer values,

λi(x) = 1 +
vi
vmax

for x ≤ 1.

Define an instance of our problem with one buyer type i for every buyer i ∈ B′. The inverse
demand function is uniform as defined above. Moreover, the item set coincides with S but now
having the cost function Ct(x) = x for every single item. Look at the demand functions: λmax0 = 2
and λmin0 ≥ 1. Therefore, ∆ = 2 and we can always obtain a 2k-approximate solution for this
instance. We show that this gives a 2k-approximate solution for the original UDP problem as well.

Consider any solution ~p, ~x, ~y of our problem. Assume w.l.o.g (see proposition 2.1) that every
buyer receives an integral amount of one single good, i.e, yt(i) = 0 or 1 for every i. Consider the

following price vector ~p2 defined as

p2
t = vmax(pt − 1).

We claim that the revenue of (~p2, ~x, ~y) for the original UDP -UV problem is exactly the revenue
of our solution scaled by a factor vmax. First, we show that the allocation is envy-free for these new
prices. It is not hard to see that the transformation is linear and so the order of prices is maintained
for the items, which means that every buyer’s cheapest item set remains the same. Next, suppose
buyer i is sending flow on item t for our solution. Then,

pt ≤ 1 +
vi
vmax

=⇒ p2
t ≤ vi.

So the flow is definitely feasible. The profit of our solution is
∑

t(ptyt−Ct(yt)) =
∑

t((pt−1)yt =∑
t

1
vmax

(p2
t yt).

So this is just a scaled down version of the profit of the UDP problem. Therefore, every solution
of our problem can be converted to a solution of UDP with scaled profits. It is not hard to see that
the same is applicable for the reverse direction as well and so the optima must coincide. So, any
2k-Approximate solution for our problem must retain this factor for the original UDP as well. �
(Statement 2):
This follows directly from our reduction in Propostion 2.1 as a constant factor approximation for
our problem would indicate a constant factor approximation for UDP -UV as well.
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Appendix D Some more properties of minimum cost flows

Lemma D.1. Consider two buyer demands ~x1 and ~x2 where ~x2 ≥ ~x1 and the corresponding min-
cost flows are ~z1 and ~z2. Then, the following provides a bound for the difference in costs∑

t

(Ct(z
2
t )− Ct(z1

t )) ≥
∑
i

ri(~z1)(x2
i − x1

i ).

Proof. The proof follows from Corollary A.2. We know that for t, either z2
t ≥ z1

t or ct(z
2
t ) = ct(z

1
t ).

Therefore, we can write for all t, Ct(z
2
t )− Ct(z1

t ) ≥ ct(z1
t )(z2

t − z1
t ). So we have,∑

t

(Ct(z
2
t )− Ct(z1

t )) ≥
∑
t

ct(z
1
t )z2

t −
∑
t

ct(z
1
t )z1

t =
∑
t

ct(z
1
t )z2

t −
∑
i∈B

ri(~z1)x1
i .

The last equation is simply a rearrangement of flow from the items to the buyers. Now, consider
any buyer i and item t such that z2

t (i) > 0. We know that ct(z
1
t ) ≥ ri(~z1) because the latter

represents the minimum marginal cost of any item i has access to. This gives us
∑

t ct(z
1
t )z2

t ≥∑
i∈B ri(

~z1)x2
i , which completes the proof.

Lemma D.2. Consider a price vector ~p1 and a corresponding solution ( ~x1, ~y1) which is a best-

response envy-free allocation such that ~y1 is also a min-cost flow to the demand ~x1. Let ~p2 be
another price vector such that there is at least one item whose price in ~p2 is smaller than its
price in ~p1. Let ( ~x2, ~y2) be an envy-free allocation for ~p2. Then, ∃t ∈ S, such that p1

t > p2
t and

ct(y
1
t ) ≤ ct(y2

t ).

Note that ~y2 need not be a min-cost flow for the demand ~x2.

Proof. What the lemma says is that at least one of the items whose price in ~p2 is smaller than the
price in ~p1 has a marginal cost that is larger or equal in the B-R, E-F allocation corresponding
to ~p2. Intuitively this is not hard to see because reducing the price leads to an increase in the
allocation.

Consider the set of all items whose price in ~p2 is strictly smaller than its price in ~p1 and let

Smin be the subset of such items with the smallest price, Smin =
{
t|t ∈ arg minp1t1>p

2
t1

(p2
t1)
}

. Let

B1
min be the set of buyers who receive non-zero amounts of the items in Smin in ~y1. Finally, let

pmin be the price of all the items in Smin.
We claim that for any buyer i in B1

min, their entire allocation in ~y2 can only come from the items
in Smin. If this is not true, the only other possible case is that the buyer is receiving allocation
from some other item t not in Smin but still priced at pmin. But by definition of Smin, t’s price in
~p1 is not larger than pmin which means i cannot have an edge to such a t (or else ~y1 could cease to
be envy-free).

Now construct the following reduced demand vectors ~xR1 and ~xR2 for instances with the full
buyer set but the item set is reduced to Smin. For buyer i, xR1

i is the total amount that buyer i
receives only from the items in Smin. This is zero from some buyers and non-zero for buyers in

B1
min by definition. Let ~yR1 be the exact same allocation as ~y1 but only for the items in Smin.

Since ~y1 is a min-cost flow, the sub-flow on the items in Smin for the given demand must also be
one of minimum cost.

Similarly define ~xR2 as the flow sent by buyers only to the items in Smin and ~yR2 as the
corresponding allocation on these items. Since we have shown that the the buyers in B1

min use
these items exclusively, this means that ∀i ∈ B1

min, xR2
i = x2

i ≥ x1
i ≥ xR1

i . Moreover, since all the
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items in Smin are priced at pmin and the allocation is a min-cost, E-F allocation, it means that for
items at the same price, we have a min-cost flow.

Now, using ( ~xR1 , ~yR1) and ( ~xR2 , ~yR2) as inputs to Lemma 2.3, we get that for all t ∈ Smin,
ct(y

1
t ) ≤ ct(y2

t ).

Lemma D.3. Consider two price vectors ~p1 and ~p2 where ~p2 ≥ ~p1, and their corresponding best-
response buyer demands ~x1 and ~x2. Suppose that ~z1 and ~z2 are the corresponding min-cost flows
for these demand vectors. As long as for all t, we have that p1

t ≥ ct(z
1
t ) and p2

t ≥ ct(z
2
t ), then it

must be true that: ∑
i∈B

p̄1
ix

1
i −

∑
t∈S

Ct(z
1
t ) ≥

∑
i∈B

p̄1
ix

2
i −

∑
t∈S

Ct(z
2
t ).

Proof. Note that these allocations may not be envy-free. The left part of this inequality is exactly
the profit of the solution, but the right parts uses prices ~p1 with the allocation and demand ~x2, ~z2.

Remember for all i ∈ B, x1
i ≥ x2

i . Applying Lemma 2.3 and Corollary A.2 for these two demand
vectors, we can say that for any item t, either z1

t ≥ z2
t or ct(z

1
t ) = ct(z

2
t ). Therefore, in both these

cases, it is easy to show that Ct(z
1
t ) ≤ Ct(z2

t ) + ct(z
1
t )(z1

t − z2
t ). Using this in the LHS of the main

lemma inequality, we get

∑
i∈B

p̄1
ix

1
i −

∑
t∈S

Ct(z
1
t ) ≥

∑
i∈B

p̄1
ix

2
i −

∑
t∈S

Ct(z
2
t ) +

(∑
i∈B

p̄1
i (x

1
i − x2

i )−
∑
t∈S

ct(z
1
t )(z1

t − z2
t )

)
. (11)

If we can show that the second term in the RHS that has been parenthesized is non-negative,
we are done. Recall that for every i, ri( ~x1) is the marginal cost of any item being used by i in ~z1.

We also know that p1
i ≥ ri( ~x1) by our assumption. Consider the quantity

∑
t∈S ct(z

1
t )(z1

t − z2
t ).∑

t∈S
ct(z

1
t )z1

t −
∑
t∈S

ct(z
1
t )z2

t =
∑
i∈B

ri( ~x1)x1
i −

∑
t∈S

ct(z
1
t )z2

t .

The above equation is simply via a rearrangement of the allocation from the items to the buyers.
Now, we claim that

∑
t∈S ct(z

1
t )z2

t ≥
∑

i∈B ri(
~x1)x2

i . Look at the all the items t where user i’s

allocation x2
i turns up in the vector ~z2. We claim that for all such items, ct(z

1
t ) ≥ ri(~z1). This has

to hold because ~z1 is a min-cost flow and therefore for any other item t that i has access to, its
marginal cost has to be greater than or equal to ri(~z1).

Therefore using this in Equation 11,∑
i∈B

p̄1
i (x

1
i − x2

i )−
∑
t∈S

ct(z
1
t )(z1

t − z2
t ) ≥

∑
i∈B

p̄1
i (x

1
i − x2

i )−
∑
i∈B

ri(~z1)(x1
i − x2

i )

=
∑
i∈B

(p̄1
i − ri(~z1))(x1

i − x2
i )

≥0.

The above term is strictly non-negative because because p̄1
i ≥ ri(~z1) and x1

i ≥ x2
i for all i. This

completes the proof. �

Lemma D.4. Let G be a bipartite market and let ~x(p) denote the corresponding best-response buyer
demand vector when all the items in the market have a price of p. Let ~z(p) denote the min-cost
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flow at this demand. Then, for any given p̄ and item t, its marginal cost is left continuous at p̄.
Formally,

lim
ε→0

ct(zt(p̄− ε)) = ct(zt(p̄)).

Proof. Assume by contradiction that for some t, limε→0 ct(zt(p̄− ε)) 6= ct(zt(p̄)). We have already
shown that as the price increases, the marginal cost cannot increase in Lemma 2.3. Therefore, this
can only mean that limε→0 ct(zt(p̄ − ε)) > ct(zt(p̄)). The monotonicity of the marginal cost also
means that for every other item t′, limε→0 ct′(zt′(p̄− ε)) ≥ ct′(zt′(p̄))

Consider any user i, it is not hard to reason out that xi(p̄) must be continuous. Formally,
limε→0 xi(p̄− ε) = xi(p̄). This holds because λi(x) is continuous and differentiable. So, we have the
following,∑

t′

zt′(p̄) =
∑
i

xi(p̄) =
∑
i

lim
ε→0

xi(p̄− ε) = lim
ε→0

∑
i

xi(p̄− ε) = lim
ε→0

∑
t

zt(p̄− ε).

Now the claim is that the last term in the right hand side of the above equation is strictly larger
than

∑
t′ zt′(p̄). This is true because for every t′, the limit of zt′(p̄− ε) is greater than or equal to

zt′(p̄) and for item t, this inequality happens to be strict. This is a contradiction and therefore, the
marginal cost at the item has to be continuous. �

Lemma D.5. Let (~p, ~x, ~z) be a given solution where ~x is a best-response demand to ~p and ~z is

the corresponding min-cost flow. Let (~pb, ~xb, ~zb) be some benchmark solution for the same instance.

Suppose that BH is the set of buyers to whom the minimum priced item available in ~pb is not
smaller than that in ~p and BL = B \ BH . Moreover, there is a fraction α ≤ 1 such that for all
buyers in BL, xi ≥ αxbi . Then, consider the following quantity,

π =
∑
i∈B

p̄ixi − C(~z).

If we denote by ~zb(BH) the min-cost flow for the demand ~xb but only for the buyers from BH , then

π ≥

∑
i∈BH

p̄ix
b
i − C(~zb(BH))

+ α

∑
i∈BL

p̄bix
b
i − (Ct(

~zb)− Ct(~zb(BH)))

 .

Recall that we are only looking at prices obeying ~p, ~pb ≥ ~p∗ (Assumption A). The above term
deserves careful attention. For the buyers in BH , the price is from ~p but the demand and allocation
are from the benchmark solution. For the other set of buyers, both the price and the allocation are

from the benchmark. Also notice that ~z or ~zb may not be envy-free and therefore, π is the profit
that the seller makes at the cheapest (non-envy-free solution), given the price and the demand.

Proof. Notice that for the buyers in BH , ~x dominates ~xb and for the buyers in BL, ~x dominates

α~xb. Therefore, in order to get an allocation only in terms of ~xb for the buyers in BH and α~xb

for buyers in BL, we need to show that the profit due to the additional demand from ~x − ~xb and

~x − α~xb for the respective buyer sets is non-zero. This can be done via the flow partition lemma
by creating dummy buyers and reallocating this flow to them.

Construct a new instance with a set of buyers B1 ∪B2, such that for every i ∈ B, there is an i1
in B1 and i2 in B2 with access to the same set of items as i. Now construct a new demand vector
~x′ such that for all i ∈ BH , x′i1 = xbi and for the corresponding i2 ∈ B2, x′i2 = xi − xbi . Similarly
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∀i ∈ BL, x′i1 = αxbi and for the corresponding i2 ∈ B2, x′i2 = xi − αxbi . The min-cost flow for ~x′

must coincide with ~z. Moreover, look at the demand from the buyers in B1, i.e., ~x′(B1), let the
corresponding min-cost for this demand alone be ~z(B1).

Applying the flow partition lemma for this new instance and with B1 being the desired subset
of the total buyer set. We get,

C(~z) = C(~z(B1)) + (C(~z)− C(~z(B1))) ≤ C(~z(B1)) +
∑
i2∈B2

ri(~z)x
′
i2 .

The last term above comes from the fact that the marginal cost faced by every i2 must be equal
to the marginal cost faced by the corresponding i in ~z. We slightly abuse notation here since we sum
over i2, but the marginal cost is that faced by i in ~z, where i2 is the corresponding buyer to that i
in B2. Moreover, since ~x∗ dominates ~x, by the weak price lower bound condition (Assumption A),
this implies ri(~z) ≤ p̄i, giving us,

C(~z)− C(~z(B1)) ≤
∑
i2∈B2

ri(~z)x
′
i2 ≤

∑
i2∈B2

p̄ix
′
i2 .

Now dividing up the term π into the two buyer sets, we get

π =
∑
i1∈B1

p̄ix
′
i1 − C(~z(B1)) +

∑
i2∈B2

p̄ix
′
i2 − (C(~z)− C(~z(B1))

≥
∑
i1∈B1

p̄ix
′
i1 − C(~z(B1)) +

∑
i2∈B2

p̄ix
′
i2 −

∑
i2∈B2

p̄ix
′
i2

≥
∑
i1∈B1

p̄ix
′
i1 − C(~z(B1))

Now consider the allocation ~z(B1). B1 is merely a repetition of the buyer set B but with a
different flow on the buyers, namely xbi on the buyers corresponding to BH and αxbi on buyers
corresponding to BL. We can once again use the flow partition lemma to this flow with BH (or
rather the elements in B1 corresponding to BH) as the desired set. Notice that the min-cost flow

with only the buyers from BH having flow of x′i1 = xbi must indeed coincide with ~zb(BH). Therefore,
we can further sub-divide the profit as,

π ≥

∑
i∈BH

p̄ix
b
i − C(~zb(BH))

+

∑
i∈BL

p̄iαx
b
i − (C(~z(B1))− C(~zb(BH)))


≥

∑
i∈BH

p̄ix
b
i − C(~zb(BH))

+

α ∑
i∈BL

p̄ix
b
i − (C(~z(B1))− C(~zb(BH)))

 .

We are almost done with the proof. The terms for BH coincide with what we are required to
prove. We only need to get an α factor out of the terms in BL. That is, all that remains is for us
to show the following:

C(~z(B1))− C(~zb(BH)) ≥ α(C(~zb)− C(~zb(BH))).
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Let’s recap what these allocations actually mean.

~zb−All buyers sending xbi

~z(B1)−Buyers in BH sending xbi , buyers in BL sending αxbi
~zb(BH)−Buyers in BH sending xbi , buyers in BL sending zero

Suppose, we denote by ~xH the demand vector where all buyers in BH are sending xbi units of

flow and rest 0 and similarly by ~xL, the demand vector where all buyers in BL are sending xbi units
of flow and the rest are sending 0 flow. Moreover, for any of these demand vectors, define MC() be
to the cost of the min-cost flow for that demand vector. What we need to show can be simplified
as

[MC( ~xH + α ~xL)−MC( ~xH)] ≤ α[MC( ~xH + ~xL)−MC( ~xH)].

First, it is not hard to argue that MC is a convex function of the vector demand ~x since all
items have convex production costs. Moreover, for any convex function C and positive a, x and
0 < α ≤ 1), the following is true.

C(a+ x)− C(a)

a+ x− a
≥ C(a+ αx)− C(a)

a+ αx− a
.

Simplifying the denominators and cancelling x from both of them tells us that C(a+αx)−C(a) ≤
α(C(a + x) − C(a)). So, we can easily extend this property to convex functions of vector inputs,
thereby showing

[MC( ~xH + α ~xL)−MC( ~xH)] ≤ α[MC( ~xH + ~xL)−MC( ~xH)].

Appendix E Some properties of MHR functions

Lemma E.1. Let f(x) be any non-increasing function of x with a monotone hazard rate. Let c(x)
be a non-decreasing function such that the function f(x) − c(x) is non-zero in the interval [0, x).
Then f(x)− c(x) also has a monotone hazard rate in this interval.

Lemma E.2. For a non-increasing monotone hazard rate inverse demand function λ(x), the in-
verse λ−1(p) is uniquely defined at all prices other than p = λ(0).

Lemma E.3. Let f(x) be a non-increasing non-negative function with a monotone hazard rate,

i.e., f(x)
|f ′(x)| is non-increasing. Let x̃ > 0 be a point satisfying f(x̃)

|f ′(x̃)| > x̃. Then f(0) < ef(x̃).

Notice that since f is non-increasing, f(0) is the maximum value of the function.

Proof. Consider the function g(x) = ln f(x). Differentiating this gives us,

g′(x) =
f ′(x)

f(x)
.
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Recall that since f(x) is non-increasing, its derivative cannot be positive. Integrating g(x) from x̃
to 0 gives us ∫ 0

x̃
g′(x) =

∫ 0

x̃

f ′(x)

f(x)
dx

g(0)− g(x̃) =−
∫ 0

x̃

|f ′(x)|
f(x)

dx

ln
f(0)

f(x̃)
=

∫ x̃

0

|f ′(x)|
f(x)

dx

≤
∫ x̃

0

|f ′(x̃)|
f(x̃)

dx

=x̃
|f ′(x̃)|
f(x̃)

<x̃
1

x̃
=1.

The first inequality is due to f being MHR, and the final inequality comes from the fact that
f(x)
|f ′(x)| > x̃. So, we have ln f(0)

f(x̃) < 1, which gives that f(0) < ef(x̃).

Lemma E.4. Consider any non-increasing MHR function f(x). Let x1 < x2 be two parameters
such that

f(0) =
√
ef(x1) ≤ ef(x2).

Then, x2 ≤ 2x1.

Proof. From the proof of Lemma E.3, we know that for any MHR function, the following is true.

log(
f(x0)

f(x)
) =

∫ x1

x0

|f ′(x)|
f(x)

dx. (12)

First, let x0 = 0 and x = x1. We know that for all x ∈ [0, x1], |f
′(x)|
f(x) ≤

|f ′(x1)|
f(x1) .

log(
f(0)

f(x1)
) =

∫ x1

0

|f ′(x)|
f(x)

dx

=⇒ log(
√
e) ≤

∫ x1

0

|f ′(x1)|
f(x1)

dx

=⇒ 1

2
≤x1
|f ′(x1)|
f(x1)

.

So, we have x1 ≥ 1
2
f(x1)
|f ′(x1)| . Let’s go back to Equation 12 with x0 = x1 and x = x2. We know

that in the interval x ∈ [x1, x2], |f
′(x)|
f(x) ≥

|f ′(x1)|
f(x1) . Applying this,

log(
f(x1)

f(x2)
) =

∫ x2

x1

|f ′(x)|
f(x)

dx

=⇒ log(
√
e) ≥

∫ x2

x1

|f ′(x1)|
f(x1)

dx

=⇒ 1

2
≥(x2 − x1)

|f ′(x1)|
f(x1)

.
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So we have (x2 − x1) ≤ 1
2
f(x1)
|f ′(x1)| ≤ x1, which completes the proof that x2 ≤ 2x1. �

Lemma E.5. Let f(x) be a non-increasing monotone hazard rate function and let x2 > x1 be two
points in its domain. Then, the following must be true

1. If x1 satisfies |f
′(x1)|
f(x1) ≥

1
x1

, then x1f(x1) > x2f(x2).

2. If x2 satisfies |f
′(x2)|
f(x2) ≤

1
x2

, then x2f(x2) > x1f(x1).

Proof. The starting point for both these results is what we already showed in Lemma E.3. Define
g(x) to be log(f(x)). Then using the same idea as in Lemma E.3, we get

log(
f(x1)

f(x2)
) =

∫ x2

x1

|f ′(x)|
f(x)

dx.

Statement 1:
For all x in [x1, x2], the following is true,

|f ′(x)|
f(x)

≥ |f
′(x1)|
f(x1)

≥ 1

x1
.

Therefore, we can bound the ratio between f(x1) and f(x2) as,

log(
f(x1)

f(x2)
) ≥

∫ x2

x1

|f ′(x1)|
f(x1)

dx

≥(x2 − x1)
1

x1

=
x2

x1
− 1.

Therefore,
f(x1)

f(x2)
≥ e(

x2
x1
−1)

>
x2

x1
.

The last inequality is strict because for any α > 1, eα−1 > α.

Statement 2:
For all x in [x1, x2], the following is true,

|f ′(x)|
f(x)

≤ |f
′(x2)|
f(x2)

≤ 1

x2
.

Therefore, we can bound the ratio between f(x1) and f(x2) as,

log(
f(x1)

f(x2)
) ≤

∫ x2

x1

|f ′(x2)|
f(x2)

dx

≤(x2 − x1)
1

x2

=1− x1

x2
.

Therefore,
f(x1)

f(x2)
≤ e(1−x1

x2
)
<
x2

x1
.

The last inequality is strict because for any 0 < α < 1, αe1−α < 1.

45


	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Model and Preliminaries
	3 Large Markets with Uniform Peak Valuations
	3.1 Approximating Revenue and Social Welfare Simultaneously

	4 Efficient Implementation of the Ascending-Price Procedure
	5 Relaxing the Uniform Peak Valuation Assumption
	6 Conclusion
	A More Preliminary Results and Proofs from Section 2
	B Proofs from Section 3
	B.1 Efficient Implementation of the Algorithm

	C Proofs from Section 4
	C.1 Complexity Results

	D Some more properties of minimum cost flows
	E Some properties of MHR functions

