arXiv:1402.4037v2 [cs.DS] 18 Feb 2015

Near-Linear Query Complexity for Graph
Inference

Sampath Kannan®, Claire Mathieu?, and Hang Zhou?

! Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA, USA.
kannan@cis.upenn.edu
2 Département d’Informatique UMR CNRS 8548,
Ecole Normale Supérieure, Paris, France
{cmathieu,hangzhou}@di.ens.fr

Abstract. How efficiently can we find an unknown graph using distance
or shortest path queries between its vertices? Let G = (V, E) be an un-
weighted, connected graph of bounded degree. The edge set E is initially
unknown, and the graph can be accessed using a distance oracle, which
receives a pair of vertices (u, v) and returns the distance between u and v.
In the verification problem, we are given a hypothetical graph G = (v, E)
and want to check whether G is equal to G. We analyze a natural greedy
algorithm and prove that it uses n'T°M distance queries. In the more
difficult reconstruction problem, G is not given, and the goal is to find
the graph G. If the graph can be accessed using a shortest path oracle,
which returns not just the distance but an actual shortest path between
u and v, we show that extending the idea of greedy gives a reconstruction
algorithm that uses n'*t°®) shortest path queries. When the graph has
bounded treewidth, we further bound the query complexity of the greedy
algorithms for both problems by O(n) When the graph is chordal, we
provide a randomized algorithm for reconstruction using O(n) distance
queries.

1 Introduction

How efficiently can we find an unknown graph using distance or shortest path
queries between its vertices? This is a natural theoretical question from the
standpoint of recovery of hidden information. This question is related to the
reconstruction of Internet networks. Discovering the topology of the Internet
is a crucial step for building accurate network models and designing efficient
algorithms for Internet applications. Yet, this topology can be extremely dif-
ficult to find, due to the dynamic structure of the network and to the lack of
centralized control. The network reconstruction problem has been studied exten-
sively [T2U6J7TTIT6]. Sometimes we have some idea of what the network should
be like, based perhaps on its state at some past time, and we want to check
whether our image of the network is correct. This is network verification and
has received attention recently [2/4J7]. This is an important task for routing,

http://arxiv.org/abs/1402.4037v2

2 Sampath Kannan, Claire Mathieu, and Hang Zhou

error detection, or ensuring service-level agreement (SLA) compliance, etc. For
example, Internet service providers (ISPs) offer their customers services that
require quality of service (QoS) guarantees, such as voice over IP services, and
thus need to check regularly whether the networks are correct.

The topology of Internet networks can be investigated at the router and
autonomous system (AS) level, where the set of routers (ASs) and their physical
connections (peering relations) are the vertices and edges of a graph, respectively.
Traditionally, we use tools such as traceroute and mtrace to infer the network
topology. These tools generate path information between a pair of vertices. It
is a common and reasonably accurate assumption that the generated path is
the shortest one, i.e., minimizes the hop distance between that pair. In our
first theoretical model, we assume that we have access to any pair of vertices
and get in return their shortest path in the graph. Sometimes routers block
traceroute and mtrace requests (e.g., due to privacy and security concerns), thus
the inference of topology can only rely on delay information. In our second
theoretical model, we assume that we get in return the hop distance between a
pair of vertices. The second model was introduced by Mathieu and Zhou [I1].

Graph inference using queries that reveal partial information has been stud-
ied extensively in different contexts, independently stemming from a number of
applications. Beerliova et al. [2] studied network verification and reconstruction
using an oracle, which, upon receiving a node ¢, returns all shortest paths from ¢
to all other nodes, instead of one shortest path between a pair of nodes as in our
first model. Erlebach et al. [7] studied network verification and reconstruction
using an oracle which, upon receiving a node ¢, returns the distances from ¢ to
all other nodes in the graph, instead of the distance between a pair of nodes as
in our second model. They showed that minimizing the number of queries for
verification is NP-hard and admits an O(log n)-approximation algorithm. In the
network realization problem, we are given distances between certain pairs of ver-
tices and asked to determine the sparsest graph (in the unweighted case) or the
graph of least total weight that realizes these distances. This problem was shown
to be NP-hard [5]. In evolutionary biology, the goal is to reconstruct evolution-
ary trees, thus the hidden graph has a tree structure. See for example [RITOITH].
One may query a pair of species and get in return the distance between them in
the (unknown) tree. In our reconstruction problem, we allow the hidden graph
to have an arbitrary connected topology, not necessarily a tree structure.

1.1 The Problem

Let G = (V,E) be a hidden graph that is connected and unweighted, where
|V| = n. We consider two query oracles. A shortest path oracle receives a pair
(u,v) € V? and returns a shortest path between u and v. A distance oracle
receives a pair (u,v) € V2 and returns the number of edges on a shortest path
between u and v.

In the graph reconstruction problem, we are given the vertex set V' and have
access to either a distance oracle or a shortest path oracle. The goal is to find
every edge in F.

Near-Linear Query Complexity for Graph Inference 3

Table 1: Results (for bounded degree graphs). New results are in bold.
Objective Query complexity

verification using a distance oracle nlto®)
bounded treewidth: O(n)
reconstruction using a shortest path oracle | (Thm [and Thm [3)

Oon*?) 1
2(nlogn/loglogn) (Thm[5)
outerplanar: O(n) [II]

chordal: O(n) (Thm M)

reconstruction using a distance oracle

In the graph verification problem, again we are given V and have access to
one of the two oracles. In addition, we are given an unweighted, connected graph
G = (v, E’) The goal is to check whether G is correct, that is, whether G = G.

The efficiency of an algorithm is measured by its query complexitﬁ, ie.,
the number of queries to an oracle. We focus on query complexity, while all
our algorithms are of polynomial time and space. We note that O(n?) queries
are enough for both reconstruction and verification using a distance oracle or a
shortest path oracle: we only need to query every pair of vertices.

Let A denote the maximum degree of any vertex in the graph G. Unless
otherwise stated, we assume that A is bounded, which is reasonable for real
networks that we want to reconstruct or verify. Indeed, when A is £2(n), both
reconstruction and verification require £2(n?) distance or shortest path queries,
see Section

Let us focus on bounded degree graphs. It is not hard to see that £2(n) queries
are required. The central question in this line of work is therefore: Is the query
complexity linear, quadratic, or somewhere in between? In [I1], Mathieu
and Zhou provide a first answer: the query complexity for reconstruction using a
distance oracle is subquadratic: O(n?/2). In this paper, we show that the query
complexity for reconstruction using a shortest path oracle or verification using
a distance oracle is near-linear: n'To(1),

1.2 Our Results
Verification.

Theorem 1. For graph verification using a distance oracle, there is a determin-

istic algorithm (Algorithm[dl) with query complexity n1+o(\/(log log ntlog 4)/ logn) ,

which is n*t°) when the mazimum degree A = n°M . If the graph has treewidth
tw, the query complexity can be further bounded by O(A(A + tw log n)nlog®n),
which is O(n) when A and tw are O(polylog n).

3 Expected query complexity in the case of randomized algorithms.
4 We note that the £2(n?) lower bound holds even when the graph is restricted to
chordal or to bounded treewidth.

4 Sampath Kannan, Claire Mathieu, and Hang Zhou

The main task for verification is to confirm the non-edges of the graph.
Algorithm [I is greedy: every time it makes a query that confirms the largest
number of non-edges that are not yet confirmed. To analyze the algorithm, first,
we show that its query complexity is O(logn) times the optimal number of
queries OPT for verification. This is based on a reduction to the SET-COVER
problem, see Section Bl It only remains to bound OPT.

To bound OPT and get the first statement in Theorem [I it is enough to
prove the desired bound for a different verification algorithm. This algorithm is
a more sophisticated recursive version of the algorithm in [II]. Recursion is a
challenge because, when we query the pair (u,v) in a recursive subgraph, the
oracle returns the distance between v and v in the entire graph, not just within
the subgraph. Thus new ideas are introduced for the algorithmic design. See
Section

To show the second statement in Theorem [I], similarly, we design another re-
cursive verification algorithm with query complexity O(n) for graphs of bounded
treewidth. The algorithm uses some bag of a tree decomposition to separate the
graph into balanced subgraphs, and then recursively verifies each subgraph. The
same obstacle to recursion occurs. Our approach here is to add a few weighted
edges to each subgraph in order to preserve the distance metric. See Section [3.41

We note that each query to a distance oracle can be simulated by the same
query to a shortest path oracle. So from Theorem [we have:

Corollary 2. For graph verification using a shortest path oracle, Algorithm [l
achieves the same query complexity as in Theorem [

Reconstruction.

Theorem 3. For graph reconstruction using a shortest path oracle, there is a
deterministic algorithm (Algorithm [3) that achieves the same query complexity
as in Theorem [

The key is to formulate this problem as a problem of verification using a
distance oracle, so that we get the same query complexity as in Theorem Il We
extend ideas of the greedy algorithm in Theorem [I] to design Algorithm [and
we show that each query to a shortest path oracle makes as much progress for
reconstruction as the corresponding query to a distance oracle would have made
for verifying a given graph. The main realization here is that reconstruction can
be viewed as the verification of a dynamically changing graph. See Section [l

Theorem 4. For reconstruction of chordal graphs using a distance oracle,
there is a randomized algorithm (Algorithm [8) with query complexity O(A?’QA .
n(24 +log®n)logn), which is O(n) when the mazimum degree A is O(loglogn).

The algorithm first finds a separator using random sampling and statistical
estimates, as in [IT]. Then it partitions the graph into subgraphs with respect
to this separator and recurses on each subgraph. However, the separator here
is a clique instead of an edge in [I1I] for outerplanar graphs. Thus the main

Near-Linear Query Complexity for Graph Inference 5

difficulty is to design and analyze a more general tool for partitioning the graph,
see Section 5.1l The reconstruction algorithm is in Section

On the other hand, graph reconstruction using a distance oracle has a lower
bound that is slightly higher than trivial £2(n) bound, as in the following theo-
rem. Its proof is in Section

Theorem 5. For graph reconstruction using a distance oracle, assuming the
maximum degree A > 3 is such that A = o (n1/2), any algorithm has query
complexity 2(Anlogn/loglogn).

It is an outstanding open question whether there is a reconstruction algorithm
using a near-linear number of queries to a distance oracle for degree bounded
graphs in general.

2 Notation and Preliminaries

Let 6 be the distance metric of G. For a subset of vertices S C V and a vertex v €
V, define (S, v) to be minges §(s,v). Forv € V,let N(v) = {u € V : §(u,v) < 1}
and let Na(v) = {u € V : d(u,v) < 2}. For S CV, let N(S) = U, g N(s). We
define 3, N , and N, similarly with respect to the graph G.

A pair of vertices {u,v} C V is called a non-edge of the graph G = (V, E) if
{u,v} ¢ E.

For a subset of vertices S C V, let G[S] be the subgraph induced by S. For a
subset of edges H C F, we identify H with the subgraph induced by the edges
of H. Let §g denote the distance metric of the subgraph H.

For a vertex s € V and a subset T' C V, define QUERY(s,T') as QUERY(s,t)
for every t € T. For subsets S,T C V, define QUERY(S,T) as QUERY(s,t) for
every (s,t) € S x T.

Definition 6. A subset S C V is a (-balanced separator of the graph G =
(V,E) (for B < 1) if the size of every connected component of G\ S is at most
BIVI.

Definition 7. A tree decomposition of a graph G = (V,E) is a tree T with
nodes ni,na,...,ng. Node n; is identified with a bag S; C V', satisfying the
following conditions:

1. For every vertex v in G, the nodes whose bags contain v form a connected
subtree of T'.
2. For every edge (u,v) in G, some bag contains both u and v.

The width of the decomposition is the size of the largest bag minus 1, and the
treewidth of G is the minimum width over all possible tree decompositions of G.

Lemma 8 ([13]). Let G be a graph of treewidth k. Any tree decomposition of
width k contains a bag S that is a (1/2)-balanced separator of G.

6 Sampath Kannan, Claire Mathieu, and Hang Zhou

A graph is chordal if every cycle of length greater than three has a chord:
namely, an edge connecting two nonconsecutive vertices on the cycle. An intro-
duction to chordal graphs can be found in e.g., [3].

Lemma 9 ([3]). Let G be a chordal graph. Then G has a tree decomposition
where every bag is a maximal cliqueﬁ and every mazimal clique appears exactly
once in this decomposition.

From Lemmas [8 and @ we have:

Corollary 10. Let G be a chordal graph of mazximum degree A. Then G has
treewidth at most A, and there exists a clique S CV of size at most A+ 1 that
is a (1/2)-balanced separator of G.

3 Proof of Theorem (1l

3.1 Greedy Algorithm

The task of verification comprises verifying that every edge in G is an edge in
G, and verifying that every non-edge of G is a non-edge of G. The second part,
called non-edge verification, is the main task for graphs of bounded degree%

Theorem 11. For graph verification using a distance oracle, there is a deter-
ministic greedy algorithm (Algorithm[l) that uses at most An+ (Inn+1)- OPT
queries, where OPT is the optimal number of queries for non-edge verification.

Now we prove Theorem [Tl Let NE be the set of the non-edges of G. For each
pair of vertices (u,v) € V2, we define S, , C NFE as follows:

Sup = {{a,b} ENE : (u,a) + 5(b,v) + 1 <<§(u,v)}. (1)
The following two lemmas relate the sets S, , with non-edge verification.

Lemma 12. Assume that E C E. Let (u,v) € V? be such that §(u,v) = 6(u,v).
Then every pair {a,b} € Sy, is a non-edge of G.

Proof. Let {a, b} be any pair in Sy, ,,. By the triangle inequality, §(u, a)+d(a, b)+
5(b,v) > 6(u,v) = 8(u,v). By the definition of S, , and using £ C E, we have
6(u,v) > 0(u,a) + (b, v) + 1 > 8(u,a) + 6(b,v) + 1. Thus &(a,b) > 1, i.c., {a,b}

is a non-edge of G. ad

Lemma 13. If a set of queries T' verifies that every non-edge of G is a non-edge
of G, then U(u,v)eT Su,n =NE.

5 A maximal clique is a clique which is not contained in any other clique.
6 In non-edge verification, we always assume that ECE.

Near-Linear Query Complexity for Graph Inference 7

Proof. Assume, for a contradiction, that some {a,b} € NE does not belong to
any S,., for (u,v) € T. Consider adding {a, b} to the set of edges of E: this will
not create a shorter path between u and v, for any (u,v) € T. Thus including
{a,b} in E is consistent with the answers of all queries in T'. This contradicts
the assumption that T verifies that {a, b} is a non-edge of G. O

From Lemmas [[2] and [[3] the non-edge verification is equivalent to the SET-
COVER problem with the universe NE and the sets {Sy,, : (u,v) € V2}. The SET-
COVER instance can be solved using the well-known greedy algorithm [9], which
gives a (Inn + 1)-approximation. Hence our greedy algorithm for verification
(Algorithm [). For the query complexity, first, verifying that E C E takes at
most An queries, since the graph has maximum degree A. The part of non-edge
verification uses a number of queries that is at most (Inn + 1) times the optimal
number of queries. This proves Theorem [ITl

Algorithm 1 Greedy Verification

1: procedure VERIFY(G)

2 for {u,v} € E do QUERY(u,v)

3 if some {u,v} € E has 6(u,v) # 6(u,v) then return no
4: Y 0

5: while £ UY does not cover all vertex pairs do

6: choose (u,v) that maximizes |Sy,» \ Y] > Su,» defined in Equation ()
7 Query(u,v)

8: if 6(u,v) = §(u,v) then

9: Y+~ YUSuyu

10: else

11: return no

12: return yes

3.2 Bounding OPT to Prove Theorem [l

From Theorems [[T], in order to prove Theorem [I we only need to bound OPT,
as in the following two theorems.

Theorem 14. For graph verification using a distance oracle, the optimal num-
1+O(\/(log log n+log A)/ log n)

ber of queries OPT for non-edge verification is n

Theorem 15. For graph verification using a distance oracle, if the graph has
treewidth tw, then the optimal number of queries OPT for non-edge verification
is O(A(A + twlogn)nlogn).

Theorem [l follows trivially from Theorems[IT] T4 and[I5 by noting that both

A and logn are smaller than nV/ (oglog ntlog A)/logn e proof of Theorem [I4]
is in Section [33] and the proof of Theorem [I3lis in Section [3.4]

8 Sampath Kannan, Claire Mathieu, and Hang Zhou

3.3 Proof of Theorem [14]

To show Theorem [I4], we provide a recursive algorithm for non-edge verification
with the query complexity in the theorem statement. As in [I1], the algorithm se-
lects a set of centers partitioning V' into Voronoi cells and expands them slightly
so as to cover all edges of G. But unlike [IT], instead of using exhaustive search
inside each cell, the algorithm verifies each cell recursively. The recursion is a
challenge because the distance oracle returns the distance in the entire graph,
not in the cell. Straightforward attempts to use recursion lead either to subcells
that do not cover every edge of the cell, or to excessively large subcells. To make
the recursion work, we allow selection of centers outside the cell, while still lim-
iting the subcells to being contained inside the cell (Figure [dl). This simple but
subtle setup is one novelty of the algorithmic design.

Let U C V represents the set of vertices for which we are currently verifying
the induced subgraph. The goal is to verify that every non-edge of G[U] is a
non-edge of G[U]. This is equivalent to verifying that every edge of G[U] is an
edge of G[U].

The algorithm uses a subroutine to find centers A C V such that the vertices
of U are roughly equipartitioned into the Voronoi cells centered at vertices in A.
For a set of centers A C V and a vertex w € V, let Ca(w) = {v € V : §(w,v) <
(A, v)}, which represents the Voronoi cell of w if w is added to the set of centers.
We note that Cy(w) = § for w € A, since in that case, 6(w,v) > 6(A,v) for
every v € V. The subscript A is omitted when clear from the context.

Lemma 16. Given a graph G = (v, E), a subset of vertices U C V, and an
integer s € [1,n], Algorithm[2 computes a subset of vertices A C V', such that:

— the expected size of the set A is at most 2slogn; and
— for every vertex w € V, we have |Ca(w) NU| < 4|U|/s.

Algorithm 2 Finding Centers for a Subset

1: function SUBSET-CENTERS(G, U, s)

2 A0

3 while there exists w € V such that |C(w) N U| > 4|U|/s do

4: W {weV:|Cw)nU|>4U|/s}

5 Add each element of W to A with probability min (s/|W], 1)
6

return A

Algorithm[is a generalization of the algorithm CENTER in [I7]; and Lemmal[I6]
is a trivial extension of Theorem 3.1 in [17]E

" As noted in [I7], it is possible to derandomize the center-selecting algorithm, and its
running time is still polynomial.

Near-Linear Query Complexity for Graph Inference 9

 Using a set of centers A, we define, for each a € A, its extended Voronoi cell
D, C U as follows:

A

Dy = (U {C‘(b) e Ng(@} UNQ(@) nu. 2)

We define C(w) and D, similarly as C'(w) and D,, but with respect to the graph
G.

The following lemma is the base of the recursion. Its proof is similar to that
of Lemma 3 in [I1].

Lemma 17. . 4 G[D,] covers every edge of G[U].

a€A

Proof. We prove that for every edge {u, v} of G[U], there is some a € A, such that
both u and v are in D,,. Let {u, v} be any edge of G[U]. Without loss of generality,
we assume §(A4,u) < §(A,v). We choose a € A such that §(a,u) = (A4, u).
If §(a,u) < 1, then both u and v are in Na(a) NU C D,. If §(a,u) > 2,
let b be the vertex at distance 2 from a on a shortest a-to-u path in G. By
the triangle inequality, we have 6(b,v) < §(b,u) + 6(u,v) = d(b,u) + 1. Since
0(byu) = d(a,u) — 2 and d(a,u) = 6(A,u) < 6(A,v), we have §(b,u) < §(A4,u)
and §(b,v) < §(A,v). So both w and v are in C(b) N U, which is a subset of D,
since b € Na(a). O

From Lemma [} verifying that every edge of G[U] is an edge of G[U] reduces
to verifying that every edge of G[D,] is an edge of G[Dg] for every D,. To see
this, consider any edge {u,v} of G[U]. There exists a € A such that u,v € D,.
It is enough to verify that {u,v} is an edge of G[D,], hence an edge of G[U].
This observation enables us to apply recursion on each D,.

The main difficulty is: How to obtain D, efficiently? If we compute D,
from its definition, we first need to compute Na(a), which takes too many queries
since Nz (a) may contain nodes outside U. Instead, a careful analysis shows that
we can check whether D, = ﬁa without even knowing N3(a), and ﬁa can be
inferred from the graph G with no queries. This is shown in Lemma [I8 which
is the main novelty of the algorithmic design.

Lemma 18. Assume that E CE. Ifo(u,v) = S(U,’U) for every pair (u,v) from
Uaea Na(a) x U, then Dy = D, for all a € A.

Proof. The proof is delicate but elementary. For every b € (J,c4 Ny(a), we
have C(b) N U = C(b) N U, because we have verified that §(b,u) = §(b,u)
and 6(A,u) = 0(A,u) for every u € U. Therefore, D, can be rewritten as
(U {C(b) be Ng(a)} UNg(a)) N U. Since £ C E, we have Na(a) C Na(a).
Therefore D, C D,. .

On the other hand, we have Na(a)NU C Na(a)NU, because we have verified
that 6(a,u) = 6(a, u) for all u in Ny(a)NU. To prove D, C D, it only remains to
show that, for any vertex u & N2(a) such that u € C(b) N U for some b € Nx(a),
we have v € C(x) NU for some & € Nz(a). We choose = to be the vertex

>

10 Sampath Kannan, Claire Mathieu, and Hang Zhou

The solid points are top-level centers re-
turned by SUBSET-CENTERS((, V, s). The
dotted lines indicate the partition of V
into Voronoi cells by those centers. For a
center a, expanding slightly its Voronoi
cell results in D, (the region inside the
outer closed curve). On the second level of
the recursive call for ﬁa, the hollow points
@ are the centers returned by SUBSET-
CENTERS((, Da, 5). Observe that some of
those centers lie outside ﬁa. The dashed
lines indicate the partition of ﬁa into
Voronoi cells by those centers. Similarly,
for a center a’, expanding slightly its
A Voronoi cell results in D, (the region in-
e side the inner closed curve). Note that ev-
’ ery ﬁ;, is inside D.

Fig. 1: Two levels of recursive calls of VERIFY-SUBGRAPH((, V)

at distance 2 from a on a shortest a-to-u path in G. By the assumption and
the definition of #, we have: §(z,u) = é(z,u) = §(a,u) — 2 = d(a,u) — 2. By
the triangle inequality, and using b € Na(a) and u € C(b), we have: §(a,u) <
0(a,b) + d(b,u) <2+ 0(b,u) < 2+ 6(A,u). Therefore 6(z,u) < 6(A,u). Thus
ueC(z)nU. O

The recursive algorithm for non-edge verification is in Algorithm[Bl It queries
every (u,v) € Ugea Ny(a) x U and then recurses on each extended Voronoi cell
D,. See Figure [l It returns yes if and only if every query during the execution
gives the right distance. The parameters ng and s are defined later. We assume
that every edge of G has already been confirmed, i.e., E C E. Correctness of the
algorithm follows trivially from Lemmas [[7 and I8

Algorithm 3 Recursive Verification

1: procedure VERIFY-SUBGRAPH(G, U)

2: if |U| > no then

3: A < SuBSET-CENTERS(G, U, 5) > Algorithm
4: for a € A do

5: QUERY(Na(a), U)

6 VERIFY-SUBGRAPH(G, D,) > D, defined in Equation ()
7 else QUERY(U,U)

Near-Linear Query Complexity for Graph Inference 11

Next, we analysis the query complexity of VERIFY—SUBGRAPH(CATv , V). Define

b — logn
0 log (logn - 32(A% +1)2) |

Let s = n'/%0 and ny = (4(A2 + 1))]% be the parameters in VERIFY-SUBGRAPH.
Consider any recursive call when |U| > ng. Let A C V be the centers returned
by SUBSET-CENTERS. By Lemma [I6] |A| < 2slogn and every |C(w) N U] is
at most 4|U|/s. Since the graph has maximum degree A, the size of every D,
is at most (A% + 1) - max(4|U|/s, 1). Therefore by induction, for any 1 < k <
ko + 1, any subset U on the k' level of the recursion has size at most t; =

n (4(A% +1)/s) kil, where ti,+1 = no. Hence the maximum level of the recursion
is at most kg + 1.

First, consider the recursive calls with |U| < ng. There are at most (2slogn)*
such calls and each takes [U|? < (4(A% + 1))2]% queries. So their overall query
complexity is at most n - (logn - 32(A? + 1)2)k0 < pltt/ko,

Next, consider the recursive calls with |U| > ng on the k'!' level of the
recursion for some fixed k € [1, ko]ﬁ There are at most (2slogn)*~! such calls
and each takes at most (A2 +1)|A| - |U| queries, where |U| < 4. So their overall
query complexity is at most n!'*1/ko (logn -8(A% + 1))k. Summing over k from
1 to ko, the query complexity of all recursive calls with |U| > ng is at most
2 nitt/ko (logn - 8(A% + 1))k0 < 2. plt2/ko,

Therefore, the overall query complexity is at most 3 - n't2/ko which is

nHO(\/UOg logntlog A)/ log n), as stated in Theorem [I4l

Remark. The recursive algorithm for non-edge verification in this section (as
well as the one in Section [3.7)) can be used for verification by itself. However,
we only use its query complexity to provide guarantee for the greedy algorithm
in Section [T), because the greedy algorithm is much simpler.

3.4 Proof of Theorem

To show Theorem [I5] we provide a recursive algorithm for non-edge verifica-
tion of graphs of bounded treewidth with the query complexity in the theorem
statement. The algorithm first computes (1/2)-balanced separator in G and use
it to obtain a partition of V. Then it verifies the non-edges of G between dif-
ferent components in the partition. Finally, it recurses inside each component.
But there is a catch because of the query oracle: by querying a pair (u,v), we
would like to get back their distance in the recursive subgraph H, but instead
the oracle returns their distance in the entire graph G. It could well be that a
shortest u-to-v path in G goes through two nodes s; and sy in the separator
where the segment between s; and ss is outside H.

8 We note that there are no recursive calls on the (ko + 1) level (i.e., last level) of
the recursion with |U| > ng.

12 Sampath Kannan, Claire Mathieu, and Hang Zhou

As a warmup, we first provide an algorithm for the special case of chordal
graphs, because the above issue does not arise when the graph is chordal[d We
then extend the algorithm to graphs of bounded treewidth: To get around that
issue, we formulate the recursive subproblem by augmenting H, adding virtual
edges between vertices of the separator and giving them weight equal to their
distance in G.

Verifying Chordal Graphs. We have a recursive algorithm to verify that every
non-edge of G is a non-edge of G when G is a chordal graph (Algorithm H). The
algorithm returns yes if and only if every query during the execution gives the
right distance.

Algorithm 4 Recursive Verification for Chordal Graphs

1: procedure VERIFY-CHORDAL(G, U)

2: if |U| >4(A+1) then

3: S+ (1/2)-balanced clique separator of G[U] of size at most A + 1
4: QUERY (S,U) and obtain N(S)NU; QUERY(N(S)NU,U)

5: for every component C of G[U]\ S do VERIFY-CHORDAL(G, C' U S)
6: else QUERY(U,U)

Let U C V represent the set of vertices for which we are currently verifying
the induced subgraph. By Corollary [0 there is a (1/2)-balanced clique separator
S of G[U][M We confirm the non-edges between different components of G[U]\ S
by querying every pair (u,v) € (N(S) NU) x U. Then for each component C of
GIU]\ S, we recursively verify the non-edges inside G[C'U S]. The recursive call
on the subset C'U S still use the global QUERY oracle. But because S is a clique
in G, for any u,v € C'U S, any shortest u-to-v path in G stays inside C' U S, so
the value returned by QUERY(u,v) is the distance in G[C U S]. The following
lemma shows correctness of Algorithm [4] and is a main idea of the algorithm.

Lemma 19. Assume that E C E. If 6(u,v) = 6(u,v) for every (u,v) € (N(S)N
U) x U, then there is no edge in G[U] between different components of G[U]\ S.

Proof. Let X and Y be any two different components in the partition of G [UI\S.
Let = be any vertex in X and y be any vertex in Y. We show that {x,y} is not
an edge in G[U]. Let a (resp. b) be the vertex in N(S) that is closest to = (resp.
y) in G[U]. Then a € X and b € Y. Since E C E, we have N(S) C N(S). It is
then easy to see that a, b € (N(S)NU) \ S. Without loss of generality, assume
0(a,z) < (b, y).

9 Since the separator is a clique, the shortest s1-to-so path is an edge, and thus belongs
to H.
10 We note that S can be computed in polynomial time and with no queries.

Near-Linear Query Complexity for Graph Inference 13

Since (a,y) € (N(S)NU) x U, we have é(a,y) = 4(a,y). Any shortest path
in G[U] from a to y goes through S, so

d(a,y) > d(a,S) + (S, y) = d(a,S) + 1 +8(b,y) =2+ (b, y).

Since (b,y) € (N(S)NU) x U, we have §(b,y) = 6(b,y). Therefore 6(a,y) >
2+40(b,y) > 2+4(a, z). By the triangle inequality, é(x,y) > é(a,y) —d(a,z) > 2.
Thus {z,y} is not an edge in G[U]. O

Since G[U] has maximum degree A and S has size at most A+1, QUERY (S, U)
and QUERY(N(S) N U,U) use O(A?|U]) queries. Let g(m) be the number of
queries of VERIFY-CHORDAL(G,U) when |U| = m. We have

q([U]) = OA*|U) + > a(IC] +1S]),
C

where |U| = |S| 4+ Y~ |C| and S is a (1/2)-balanced separator. Hence ¢(n) =
O(A%nlogn).

Remark. We note that there are simpler algorithms for verifying chordal graphs,
but the algorithm presented here conveys ideas that can be extended to verify
graphs of bounded trecwidth.

Verifying Graphs of Bounded Treewidth. We extend Algorithm[dlto graphs
of treewidth tw. The input specification is now the graph G,asubset U CV, plus
a set F of additional, new edges {u, v} with weight §(u,v). The set F is initially
empty, and increases during the recursion. The algorithm verifies whether the
metric of (U, E[U] U F[U]) is identical to that of (U, E[U] U F[U]). Instead of S
being a clique, now S is an existing bag of some tree decomposition of width tw
(see Lemma [§]). Lemma [T9 still holds. We create new edges {u,v} with weight
w(u,v) := §(u,v) for all pairs {u, v} C S, and we add them to the set F. For each
connected component C' of G[U]\ S, we make a recursive call for the vertex set
C U S and the updated set F' of weighted edge. Every subgraph in the recursive
call has treewidth at most tw, since the new edges are added inside S. This
concludes the description and correctness of the algorithm.

For the query complexity, we need to bound the size of the neighborhood
N(S) of S: it is with respect to the subgraph E[U]U F[U], so the vertex degree
is no longer bounded by A. However, for any vertex v, the number of weighted
edges adjacent to v is bounded by the maximum bag size times the number of
bags S containing v that have been used as separators in the recursive calls.
Since the graph has treewidth tw, every bag has size at most tw + 1. Since all
separators are (1/2)-balanced, the recursion has depth O(logn), so v belongs to
O(logn) such bags. Therefore, the degree of v is O(A + twlogn). The overall
query complexity is O(A(A + twlogn)nlogn).

Thus we proved Theorem

14 Sampath Kannan, Claire Mathieu, and Hang Zhou

Algorithm 5 Greedy Reconstruction

1: procedure RECONSTRUCT(V)

2: ug < an arbitrary vertex

3: for u € V' \ {uo} do QUERY(u,up) to get a shortest u-to-up path

4 X < the union of the above paths

5: Y « 0

6: while X UY does not cover all vertex pairs do

7 choose (u,v) that maximizes |Sq, \ Y| > Si, defined in Equation (3)
8: Query(u,v) to get a shortest u-to-v path

9: if é¢(u,v) = dx (u,v) then
10: Y + Y USy,
11: else
12: let e be some edge of the above u-to-v path that does not belong to X
13: X +— X U{e}

14: return X

4 Proof of Theorems

The algorithm (Algorithm [l constructs an increasing set X of edges so that in
the end X = FE. At any time, the candidate graph is X [Initially, X is the
union of the shortest paths given as answers by n — 1 queries, so that X is a
connected subgraph spanning V. At each subsequent step, the algorithm makes
a query that leads either to the confirmation of many non-edges of G, or to the
discovery of an edge of G.

Formally, we define, for every pair (u,v) € V2,

Siy = {{a,b} is an non-edge of X : 6x (u,a) + dx(b,v) + 1 < 6x(u,v)}. (3)

This is similar to S, defined in Equation (). From Lemma [I2] ijv contains
the pairs that can be confirmed as non-edges of G if d¢(u,v) = Ix(u,v). At
each step, the algorithm queries a pair (u,v) that maximizes the size of the set
S, \Y. As a consequence, either all pairs in S;\, \' Y are confirmed as non-edges
of G, or d¢(u,v) # dx(u,v), and in that case, the query reveals an edge along a
shortest u-to-v path in G that is not in X; we then add this edge to X.

To see the correctness, we note that the algorithm maintains the invariant
that all pairs in X are confirmed edges of GG, and that all pairs in Y are confirmed
non-edges of G. Thus when X UY covers all vertex pairs, we have X = F.

For the query complexity, first, consider the queries that lead to d¢g(u,v) #
0x (u,v). For each such query, an edge is added to X. This can happen at most
|E| < An times, because the graph has maximum degree A.

Second, consider the queries that lead to d¢(u,v) = dx(u,v). Define R to be
the set of vertex pairs that are not in X UY. We analyze the size of R. For each
such query, the size of R decreases by |S;\, \ Y. To lower bound S, \ Y], we
consider the problem of non-edge verification using a distance oracle on the input

' We identify X with the subgraph induced by the edges of X.

Near-Linear Query Complexity for Graph Inference 15

graph X, and let 7" be an (unknown) optimal set of queries. By Theorem[I4d], |T'| is

at most f(n,A) = n1+o(\/(log logn-+log 4)/logn). By Lemma [I3] the sets S, for
all pairs (u,v) € T together cover RUY", hence R. Therefore, at least one of these
pairs satisfies |S;y, \ Y| > |R|/|T]. Initially, |R| < n(n — 1)/2, and right before
the last query, |R| > 1, thus the number of queries with dg(u,v) = dx(u,v) is
O(logn) - f(n, A).

Therefore, the overall query complexity is at most (n — 1) + An + O(logn) -
f(n, A). Thus we obtained the same query bound as in the first statement of
Theorem[Il To prove the query bound for graphs of treewidth tw as in the second
statement, the analysis is identical as above, except that we use Theorem
instead of Theorem [I4 to obtain f(n, A).

Remark. Note that the above proof depends crucially on the fact that f(n,A)
18 a uniform bound on the number of distance queries for non-edge verification
of any n-vertex graph of mazximum degree A. Thus, even though the graph X
changes during the course of the algorithm because of queries (u,v) such that
0c(u,v) # dx(u,v), each query for which the distance in G and the current X
are equal confirms 1/ f(n, A) fraction of non-edges.

5 Proof of Theorem [

The algorithm for Theorem [uses a clique separator to partition the graph into
balanced subgraphs, and then recursively reconstructs each subgraph. The main
difficulty is to compute the partition. The partition algorithm and its analysis
are the main novelty in this section, see Section B} In what follows, the set
U represents the set of vertices for which we are currently reconstructing the
induced subgraph during the recursion.

Definition 20. A subset of vertices U C V is said to be self-contained if, for
every pair of vertices (x,y) € U?, any shortest path in G between x and y goes
through nodes only in U.

The set U during the recursion is always self-contained, because every sepa-
rator is a clique.

5.1 Subroutine: Computing the Partition

Let U be a self-contained subset of V. Let S be a subset of U. We want to
compute the partition of G[U]\ S into connected components. Let W = (N (S)N
U)\ S. For every a € W, define B(a) as the cluster at a:

B(a) ={z €U\ S|6d(a,x) <§(S,z)}. (4)

Since U is self-contained, every « € U\ S belongs to some cluster B(a). However,
the clusters may have overlaps. The algorithm (see Algorithm [) successively
merges two clusters with overlaps. See Figure

16 Sampath Kannan, Claire Mathieu, and Hang Zhou

Algorithm 6 Computing the Partition

1: function PARTITION(U, S)
2: QUERY(S,U) and obtain N(S)NU; QUERY(N(S)NU,U)

3: W+ (N(S)NnU)\ S
4: B+ {B(a) |ac W} > B(a) defined in Equation (@)
5: while 3 By, Bs € B s.t. B N Bs #) do merge By and Bz in B
6: return B
S © In the example, S = {s1,s2} and W =
@ 6"’ {a,b,c,d,e}. The clusters B(a), B(b),
B(c), B(d), B(e) are indicated by the
<> balls. Using their overlaps, the algorithm

produces the partition B = {B(a) U
B(b), B(c) UB(d)U B(e)}.

ik

Fig. 2: Example of the Partition

Lemma 21. Algorithm PARTITION uses O(A|S| - |U|) queries and outputs the
partition of GIU]\ S into connected components.

The query complexity of the algorithm is O(|N(S)| - |U|) = O(A|S] - |U)).
Lemma 2] then follows directly from Lemmas [22] and

Lemma 22. Let C be a connected component in G[U]\ S. Then C C B for
some set B in the output of the algorithm.

Proof. Let A be the set of vertices in C N W. Since U is self-contained, for every
vertex x € C, there exists some a € A such that 2 € B(a). Thus we only need
to prove that all sets {B(a) : a € A} are eventually merged in our algorithm.
Define a weighed graph H whose vertex set is A, and such that for every
(a,b) € A2, there is an edge (a,b) in H with weight w(a, b), which is defined as
the distance between a and b in G[C[. To show that all sets {B(a) : a € A}
are eventually merged, we use an inductive proof that is in the same order that
Prim’s algorithm would construct a minimum spanning tree on H. Recall that
Prim’s algorithm initializes a tree 7 with a single vertex, chosen arbitrarily from
A. Then it repeatedly chooses an edge (a,b) € T x (A\T) with minimum weight
and add this edge to T. We will show that if an edge (a,b) is added to T, then
B(a) and B(b) are merged in our algorithm. Since Prim’s algorithm finishes by

2 This distance may be larger than §(a,b), the distance between a and b in G.

Near-Linear Query Complexity for Graph Inference 17

providing a spanning tree including every a € A, we thus proved that all sets
B(a) for a € A are merged in our algorithm.

Suppose that the ¢ unions corresponding to the first ¢ edges chosen by Prim’s
algorithm have been performed already, for ¢ > 0. Let 7 be the tree in H after
adding the first i edges[™ Let (a,b) be the (i + 1)*" edge chosen by Prim’s
algorithm. Thus a € T, b € A\ T, and w(a,b) is minimized. Consider a shortest
path py,...,px in G[C] between a and b. Let z = pry /27 be the mid-point vertex
of the path. We show that both B(a) and B(b) contain z, thus B(a) and B(b) are
merged in our algorithm. It is easy to see that p1,...,prx/21 and prr/2y, .-, Pk
are shortest paths in G. Thus d(a, z) = [k/2] —1 and §(b, z) = | k/2]. So we have
0(a,z) < 46(b,2) < d(a,z) + 1. To show z € B(a) and z € B(b), we only need
to show that (b, z) < (S, z). Choose the vertex s € S that minimizes (s, 2)
and consider a shortest z-to-s path P. Let ¢ be the neighbor of s on P, and let
P’ be the shortest z-to-c path. We note that ¢ € A and P’ is in G[C]. Since
0(S,2) = d(s,z) = d(c,z) + 1, we only need to show that §(b, z) < d(c, z) + 1.
There are 2 cases:

Case 1: ¢ € A\ T. Then the concatenation of pi,...,prr/2) and P’ gives a
path in G[C] between a and ¢ of length 6(a, z) + d(c, z), which is at least w(a, c)
by the definition of the weight. From the choice of (a,b), w(a,c) > w(a,b) =
d(a,z)+ 6(b, z). So we have §(b, z) < d(c, z).

Case 2: ¢ € T. Similarly, the concatenation of py, px—1, . .., prr/2) and P’ gives
a path in G[C] between b and ¢ of length &(b, z) +d(c, z), which is at least w(b, ¢)
by the definition of the weight. From the choice of (a,b), w(b,¢) > w(a,b) =
0(a, z)+0(b, z). So we have §(a, z) < d(c,z). Thus §(b, z) < §(a, 2)+1 < (¢, z)+1.

O

Lemma 23. Let B be a set in the output of the algorithm. Then B C C for
some connected component C in G[U]\ S.

Proof. First we show that for every a € W and every € B(a), a and x belong
to the same component in G[U] \ S. Suppose there exists some = € B(a), such
that = and a belong to different components in G[U]\ S. Any shortest path from
a to x must pass through the separator S, so we have d(a, z) > §(a, S)+d(S,z) =
1+ d(S,z). Contradiction with z € B(a).

Next we prove an invariant on B during the while loop (Line B): Fvery set
B € B is a subset of some component of G[U]\ S. This invariant holds before
the while loop starts. Suppose the invariant holds before the ! iteration of the
while loop, and in this iteration By, Bo € B get merged. Since By N By # 0,
there exists z € ByNBa. All nodes in B; (resp. in By) are in the same component
as z. Thus all nodes in B; U By are in the same component as z. By induction,
the invariant holds when the while loop terminates.

Thus we complete the proof. O

3 For the base case (i = 0), T contains a single vertex and no union operation is
performed.

18 Sampath Kannan, Claire Mathieu, and Hang Zhou

Algorithm 7 Finding a Shortest Path

1: function SHORTEST-PATH(U, a, b)

2: if 6(a,b) > 1 then

3: QUERY (a,U); QUERY (b, U)

4: T+ {veU|dwv,a)+d(v,b) =6(a,b)}
5: I+ [6(a,b)/2]

6: ¢ < an arbitrary node in T such that d(c,a) = ¢
7 U+ {veT|déwv,a) <}

8: Uz {veT|éwv,a)> L}

9: Py < SHORTEST-PATH(Uq, a, ¢)

10: P, <+ SHORTEST-PATH(U3, ¢, b)

11: return the concatenation of P1 and P
12: else

13: return the path of a single edge (a,b)

5.2 Subroutine: Computing a Shortest Path

Given a self-contained subset of vertices U C V and two vertices a,b € U,
Algorithm [computes a shortest path between a and b by divide-and-conquer.
The query complexity is O(|U|log |U]). See Appendix A.1 of [I1] for the analysis
of the algorithm.

5.3 Algorithm and Analysis

The reconstruction algorithm is in Algorithm 8 To find a balanced separator,
we use ideas from [I1]: the algorithm computes a vertex that is on many shortest
paths in the sampling, and grows a clique including this vertex. The constants
ng, C1, and 0 < 8 < 1 are defined later.

Lemma 24. RECONSTRUCT-CHORDAL(U) indeed returns the edge set of G[U].

Proof. By Lemma 21} Us,...,U, are the connected components in G[U] \ K.
There cannot be edges between different U; and U;. Thus every edge of G[U]
belongs to some G[U; U K. So the edge set of G[U] is the union of the edge sets
of G[U; U K] over i. Hence correctness follows by induction. O

The rest of this section is to analyze the query complexity. We set the con-
stants ng = 24%2(A + 1)% 8 = max (1 —1/(A284Y, T 1/A(A + 1)));
and C7 = 256(A + 1)2. The key is the following lemma.

Lemma 25. In every repeat loop of BALANCED-SEPARATOR, a (-balanced sep-
arator is found with probability at least 2/3.

We defer the proof of Lemma 25 to Section [.4] and show in the rest of this
section how Lemma [25] implies the query complexity stated in Theorem [l

First we analyze the query complexity of BALANCED-SEPARATOR. Comput-
ing C;log|U| shortest paths takes O(A2|U|log? |U|) queries, since a shortest

Near-Linear Query Complexity for Graph Inference 19

Algorithm 8 Reconstruction of Chordal Graphs

1: procedure RECONSTRUCT-CHORDAL(U)
if |U| > no then

3 K <BALANCED-SEPARATOR(U)

4 (Ui, ...,Us) <PARTITION(U, K) > See Algorithm
5: return UiRECONSTRUCT—CHORDAL(Ui UK)

6: else
T

8

reconstruct G[U] by QUERY (U, U)

: function BALANCED-SEPARATOR(U) > finds a S-balanced separator of G[U]
9: repeat
10: for i + 1 to Cylog|U| do
11: (as, b;) + a pair of uniformly random nodes from U
12: P; + SHORTEST-PATH(a;, bi, U) > see Section
13: z < the node in U with the most occurrences among all P;’s
14: QUERY (z,U) and obtain N (x)
15: QUERY (N (z), N(z)) and obtain all cliques containing x
16: for every clique K containing x do
17: (U1, ...,Up) + ParTITION(U, K) > See Algorithm
18: if max; |U;| < B|U| then return K
19: until a balanced separator is found

path between two given nodes can be computed using O(|U|log |U|) queries (see
Section [5.2]). We note that the neighborhood N(z) of a has size at most A + 1,
and there are at most 22 cliques containing . By Lemma 21, PARTITION(U, K)
takes O(A|K]|-|U|) queries, where | K| < A+ 1. Therefore every repeat loop in
BALANCED-SEPARATOR takes O (A2|U|(22 + log® |U|)) queries. By Lemma 25|
the expected number of repeat loops is constant. So the query complexity of
BALANCED-SEPARATOR is O (A%|U|(22 + log? |U])).

Next, we analyze the query complexity of RECONSTRUCT-CHORDAL(U). Let
g(m) be the number of queries when |U| = m. We have

q(JU) = O (A%|U|(2* + log® [U])) + Z‘I(|Uz'| + K1),

where [U| = |K|+)_, |U;| and K is a -balanced separator of size at most A+1.
Hence ¢(n) = O (A2n(2A + log? n) log% n) = 0 (A%24 - n(22 +log”n)logn).

5.4 Proof of Lemma
First, we need Lemmas [26] and 271

Lemma 26. Forv € U, let p, denote the fraction of pairs (a,b) € U? such that
v is on some shortest path between a and b. Then max, p, > 1/(2(A+ 1)).

Proof. By Corollary [I0] there is some clique separator S of size at most A + 1
such that every connected component in G[U]\ S has size at most |U|/2. Notice

20 Sampath Kannan, Claire Mathieu, and Hang Zhou

that for any pair of vertices a,b from different components, any shortest a-
to-b path must go by some node in S. The number of such pairs is at least
|U|?/2. By Pigeonhole Principle, there exists some z € S, such that for at least
1/]1S| > 1/(A + 1) fraction of these pairs, their shortest paths go by z. Thus
p: > 1/(2(A+1)). O

Lemma 27 (slightly adapted from [11]). For ever vertex v € U, let p,
denote the fraction of pairs (a;,b;) among Cy log |U| uniformly and independently
random pairs of U? such that v is on some shortest path between a; and b;. Let
x = argmax p,. Then with probability at least 2/3, we have p, > (max, p,)/2.

Now we prove Lemma By Lemma [0 there is a tree decomposition 1" of
GU] such that every bag of T is a unique maximal clique of G[U]. Let z be the
node computed on Line [I3] of Algorithm Bl Let T, be the subtree of T' induced
by the bags containing x. Define F' to be the forest after removing T, from T.
For any subgraph H of T, define V(H) C U to be the set of vertices that appear
in at least one bag of H.

Case 1: There exists some connected component 77 in F' with (1 — 5)|U| <
|[V(T")| < B|U|. Consider the edge (K7, K3) in T such that Ky € T, and K5 € T".
K1NK, is a S-balanced separator, since V(T") is a component in G[U]\ (K1NK3).
Thus K1 O K1 N K is also a B-balanced separator. Observe that x € Ki, so
K is one of the cliques checked on Line The algorithm succeeds by finding
a [-balanced separator.

Case 2: There exists some connected component 7’ in F with |V(T7)| >
B|U|. The algorithm then fails to find a S-balanced separator. We bound the
probability of this case by at most 1/3. Again let (K7, K2) be the edge in T such
that Ky € T, and Ky € T’. For any vertices u,v € V(T"'), any shortest u-to-v
path cannot go by z. Since there are at least 52 fraction of such pairs in U2, we
have p, < 1 — 32, which is at most 1/(4(A + 1)) by the definition of 3. This
happens with probability at most 1/3 by Lemmas 26 and

We argue that the two cases above are exhaustive. Suppose, for the sake of
contradiction, that every component 7" in F is such that |V (T”)| < (1 — 8)|U]|.
The number of components in F is at most A - 22, because every component
has a bag that contains a neighbor of z, and all bags are unique. So |V (F)| <
A-24.(1—B)|U|, which is at most |U|/2 by the definition of 3. On the other hand,
every node v € U\ N(z) is covered by some clique in F, so |V (F)| > |U|—(A+1),
which is greater than |U|/2 since |U| > ng. Contradiction.

Thus we complete the proof of Lemma

6 Lower Bounds

6.1 Lower Bound for Graphs of Unbounded Degree

Reconstruction of graphs of unbounded degree using a distance oracle requires
2(n?) queries [14]. This lower bound can be easily extended to verification

Near-Linear Query Complexity for Graph Inference 21

or/and to the shortest path oracle model as follows. Consider the graph G of ver-
tices vy, ..., v, which contains a star: it has an edge {v1,v;} for every 2 < i < n.
G may or may not contain one additional edge {v;,v;} for 2 < 4,5 < n. (In the
verification version of the problem, the star graph is given as G‘) To detect if
G contains such an edge {v;,v;} for 2 < i,j < n, we need to perform §2(n?)
distance or shortest path queries.

6.2 Lower Bound for Reconstruction of Bounded Degree Graphs

We assume that n = 3t — 1 where ¢t = 2F for some integer k. (The general
case is similar.) Consider a family G of graphs G as follows: the vertex set is
{v1,...,v,}; the first 2¢ — 1 vertices form a complete binary tree of height k
(with leaves vy, ..., v2t—1); the other vertices v, ..., vs3:—1 induce an arbitrary
subgraph of maximum degree A — 1; there is an edge between v; and v;4; for
every i € [t,2t — 1] and there are no other edges. Then every vertex in G has
degree at most A, and the diameter of the graph is at most 2k+2. Every distance
query returns a number between 1 and 2k+ 2 = O(logn), so it gives O(loglogn)
bits of information. From information theory, the number of queries is at least
the logarithm of the number of graphs in G divided by the maximum number of
bits of information per query. The number of graphs in G is the number of graphs
of size t and of maximum degree A — 1, which is 2 (n(4™)) when A = o(y/n)
(see [12]). Therefore, we have a query lower bound of

log (Q (nQ(A”))) _ 0 Anlogn
O(loglogn) loglogn /

Acknowledgments. We thank Uri Zwick for Theorem Bl We thank Fabrice
Benhamouda, Mathias Baek Tejs Knudsen, and Mikkel Thorup for discussions.

References

1. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute
sampling: or, power-law degree distributions in regular graphs. Journal of the ACM
(JACM) 56(4), 21 (2009)

2. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, E., Hoffmann, M., Ram, L.S.: Net-
work discovery and verification. In: WG. pp. 127-138. Springer (2005)

3. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In:
Graph theory and sparse matrix computation, pp. 1-29. Springer (1993)

4. Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: recent
developments. Statistical Science 19, 499-517 (2004)

5. Chung, F., Garrett, M., Graham, R., Shallcross, D.: Distance realization prob-
lems with applications to internet tomography. Journal of Computer and System
Sciences 63, 432-448 (2001)

6. Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vazquez, A., Vespignani, A.: Ex-
ploring networks with traceroute-like probes: Theory and simulations. Theoretical
Computer Science 355(1), 6-24 (2006)

22

10.

11.

12.

13.

14.

15.

16.

17.

Sampath Kannan, Claire Mathieu, and Hang Zhou

Erlebach, T., Hall, A., Hoffmann, M., Mihal’dk, M.: Network discovery and verifi-
cation with distance queries. Algorithms and Complexity pp. 69-80 (2006)

Hein, J.J.: An optimal algorithm to reconstruct trees from additive distance data.
Bulletin of Mathematical Biology 51(5), 597-603 (1989)

Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
computer and system sciences 9(3), 256-278 (1974)

King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary
tree reconstruction. In: SODA. pp. 444-453. STAM (2003)

Mathieu, C., Zhou, H.: Graph reconstruction via distance oracles. In: ICALP (1).
pp. 733-744. Springer (2013)

McKay, B.D., Wormald, N.C.: Asymptotic enumeration by degree sequence of
graphs with degrees o(n'/?). Combinatorica 11(4), 369-382 (1991)

Reed, B.A.: Algorithmic aspects of tree width. In: Recent advances in algorithms
and combinatorics, pp. 85-107. Springer (2003)

Reyzin, L., Srivastava, N.: Learning and verifying graphs using queries with a focus
on edge counting. In: Algorithmic Learning Theory. pp. 285-297. Springer (2007)
Reyzin, L., Srivastava, N.: On the longest path algorithm for reconstructing trees
from distance matrices. Information processing letters 101(3), 98-100 (2007)
Tarissan, F., Latapy, M., Prieur, C.: Efficient measurement of complex networks
using link queries. In: INFOCOM Workshops. pp. 254-259. IEEE (2009)

Thorup, M., Zwick, U.: Compact routing schemes. In: Symposium on Parallel Al-
gorithms and Architectures. pp. 1-10. ACM (2001)

	Near-Linear Query Complexity for Graph Inference

