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Abstract

We are given a set of weighted unit disks and a set of points in Euclidean plane. The
minimum weight unit disk cover (WUDC) problem asks for a subset of disks of minimum total
weight that covers all given points. WUDC is one of the geometric set cover problems, which
have been studied extensively for the past two decades (for many different geometric range
spaces, such as (unit) disks, halfspaces, rectangles, triangles). It is known that the unweighted
WUDC problem is NP-hard and admits a polynomial-time approximation scheme (PTAS). For
the weighted WUDC problem, several constant approximations have been developed. However,
whether the problem admits a PTAS has been an open question. In this paper, we answer this
question affirmatively by presenting the first PTAS for WUDC. Our result implies the first PTAS
for the minimum weight dominating set problem in unit disk graphs. Combining with existing
ideas, our result can also be used to obtain the first PTAS for the maximum lifetime coverage
problem and an improved 4.475-approximation for the connected dominating set problem in
unit disk graphs.
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1 Introduction

The set cover problem is a central problem in theoretical computer science and combinatorial
optimization. A set cover consists of a ground set U and collection S of subsets of U . Each set S ∈ S
has a non-negative weight wS . The goal is to find a subcollection C ⊆ S of minimum total weight
such that

⋃
C covers all elements of U . The approximibility of the general SC problem is rather well

understood: it is well known that the greedy algorithm is an Hn-approximation (Hn =
∑n

i=1 1/i)
and obtaining a (1 − ε) lnn-approximation for any constant ε > 0 is NP-hard [15, 23]. In the
geometric set cover problem, U is a set of points in some Euclidean space Rd, and S consists
of geometric objects (e.g., disks, squares, triangles). In the geometric setting, we can hope for
better-than-logarithmic approximations due to the special structure of S. Most geometric set cover
problems are still NP-hard, even for the very simple classes of objects such as unit disks [11, 29]
(see [9, 27] for more examples and exceptions). Approximation algorithms for geometric set cover
have been studied extensively for the past two decades, not only because of the importance of the
problem per se, but also its rich connections to other important notions and problems, such as VC-
dimension [5, 12, 22], ε-net, union complexity [10, 39, 40], planar separators [25, 35], even machine
scheduling problems [3].

In this work, we study the geometric set cover problem with one of the simplest class of objects
− unit disks. The formal definition of our problem is as follows:

Definition 1. Weighted Unit Disk Cover (WUDC): Given a set D = {D1, . . . ,Dn} of n unit disks
and a set P = {P1, . . . , Pm} of m points in Euclidean plane R2. Each disk Di has a weight w(Di).
Our goal is to choose a subset of disks to cover all points in P, and the total weight of the chosen
disks is minimized.

WUDC is the general version of the following minimum weight dominating set problem in unit
disk graphs (UDG).

Definition 2. Minimum Weight Dominating Set (MWDS) in UDG: We are given a unit disk graph
G(V,E), where V is a set of weighted points in R2 and (u, v) ∈ E iff ‖u− v‖ ≤ 1 for any u, v ∈ V .
A dominating set S is a subset of V such that for any node v 6∈ S, there is some u ∈ S with
(u, v) ∈ E. The goal of the minimum weight dominating set problem is to find a dominating set
with the minimum total weight.

Given a dominating set instance with point set V , we create a WUDC instance by placing, for
each point in v ∈ V , a point (to be covered) co-located with v and a unit disk centered at v, with
weight equal to the weight of v. Thus, WUDC is a general version of problem MWDS in UDG. In
this paper, we only state our algorithms and results in the context of WUDC.

1.1 Previous Results and Our Contribution

We first recall that a polynomial time approximation scheme (PTAS) for a minimization problem
is an algorithm A that takes an input instance, a constant ε > 0, returns a solution SOL such that
SOL ≤ (1 + ε)OPT, where OPT is the optimal value, and the running time of A is polynomially in
the size of the input for any fixed constant ε.

WUDC is NP-hard, even for the unweighted version (i.e., w(Di) = 1) [11]. For unweighted
dominating set in unit disk graphs, Hunt et al. [31] obtained the first PTAS in unit disk graphs.
For the more general disk graphs, based on the connection between geometric set cover problem
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and ε-nets, developed in [5,12,22], and the existence of ε-net of size O(1/ε) for halfspaces in R3 [36]
(see also [26]), it is possible to achieve a constant factor approximation. As estimated in [35], these
constants are at best 20 (A recent result [6] shows that the constant is at most 13). Moreover,
there exists a PTAS for unweighted disk cover and minimum dominating set via the local search
technique [25,35].

For the general weighted WUDC problem, the story is longer. Ambühl et al. [2] obtained the
first approximation for WUDC with a concrete constant 72. Applying the shifting technique of [28],
Huang et al. [30] obtained a (6 + ε)-approximation algorithm for WUDC. The approximation factor
was later improved to (5 + ε) [13], and to (4 + ε) by several groups [14, 20, 42]. The current best
ratio is 3.63. 1 Besides, the quasi-uniform sampling method [10, 40] provides another approach to
achieve a constant factor approximation for WUDC (even in disk graphs). However, the constant
depends on several other constants from rounding LPs and the size of the union complexity. Very
recently, based on the separator framework of Adamaszek and Wiese [1], Mustafa and Raman [34]
obtained a QPTAS (Quasi-polynomial time approximation scheme) for weighted disks in R2 (in
fact, weighted halfspaces in R3), thus ruling out the APX-hardness of WUDC.

Another closely related work is by Erlebach and van Leeuwen [21], who obtained a PTAS for
set cover on weighted unit squares, which is the first PTAS for weighted geometric set cover on
any planar objects (except those poly-time solvable cases [9,27]). Although it may seem that their
result is quite close to a PTAS for weighted WUDC, as admitted in their paper, their technique is
insufficient for handling unit disks and “completely different insight is required”.

In light of all the aforementioned results, it seems that we should expect a PTAS for WUDC,
but it remains to be an open question (explicitly mentioned as an open problem in a number of
previous papers, e.g., [2, 17, 19–21, 38] ). Our main contribution in this paper is to settle this
question affirmatively by presenting the first PTAS for WUDC.

Theorem 3. There is a polynomial time approximation scheme for the WUDC problem. The
running time is nO(1/ε9).

Because WUDC is more general than MWDS, we immediately have the following corollary.

Corollary 4. There is a polynomial time approximation scheme for the minimum weight dominat-
ing set problem in unit disk graphs.

We note that the running time npoly(1/ε) is nearly optimal in light of the negative result by
Marx [33], who showed that an EPTAS (i.e., Efficient PTAS, with running time f(1/ε)poly(n) )
even for the unweighted dominating set in UDG would contradict the exponential time hypothesis.

Finally, in Section 9, we show that our PTAS for WUDC can be used to obtain improved
approximation algorithms for two important problems in wireless sensor networks, the connected
dominating set problem and the maximum lifetime coverage problem in UDG.

2 Our Approach - A High Level Overview

By the standard shifting technique [16], it suffices to provide a PTAS for WUDC when all disks
lies in a square of constant size (we call it a block, and the constant depends on 1/ε). This idea is
formalized in Huang et al. [30], as follows.

1 The algorithm can be found in Du and Wan [17], who attributed the result to a manuscript by Willson et al.
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Lemma 5 (Huang ta al. [30]). Suppose there exists a ρ-approximation for WUDC in a fixed L×L
block, with running time f(n,L). Then there exists a (ρ + O(1/L))-approximation with running
time O(L ·n ·f(n,L)) for WUDC. In particular, setting L = 1/ε, there exists a (ρ+ε)-approximation
for WUDC, with running time O

(
1
ε · n · f(n, 1

ε )
)
.

In fact, almost all previous constant factor approximation algorithms for WUDC were obtained
by developing constant approximations for a single block of a constant size (which is the main
difficulty 2). The main contribution of the paper is to improve on the previous work [2, 13, 20, 30]
for a single block, as in the following lemma.

Lemma 6. There exists a PTAS for WUDC in a fixed block of size L×L for L = 1/ε. The running
time of the PTAS is nO(1/ε9)

From now on, the approximation error guarantee ε > 0 is a fixed constant. Whenever we say
a quantity is a constant, the constant may depend on ε. We use OPT to represent the optimal
solution (and the optimal value) in this block. We use capital letters A,B,C, . . . to denote points,
and small letters a, b, c, . . . to denote arcs. For two points A and B, we use |AB| to denote the line
segment connecting A and B (and its length). We use Di to denote a disk and Di to denote its
center. For a point A and a real r > 0, let D(A, r) be the disk centered at A with radius r. For a
disk Di, we use ∂Di to denote its boundary. We call a segment of ∂Di an arc.

First, we guess that whether OPT contains more than C disks or not for some constant C. If
OPT contains no more than C disks, we enumerate all possible combinations and choose the one

which covers all points and has the minimum weight. This takes O
(∑C

i=1

(
n
i

))
= O(nC) time,

which is polynomial.
The more challenging case is whether OPT contains more than C disks. In this case, we guess

(i.e., enumerate all possibilities) the set G of the C most expensive disks in OPT. There are at
most a polynomial number (i.e., O(nC)) possible guesses. Suppose our guess is correct. Then, we
delete all disks in G and all points that are covered by G. Let Dt (with weight wt) be the cheapest
disk in G. We can see that OPT ≥ Cwt. Moreover, we can also safely ignore all disks with weight
larger than wt (assuming that our guess is correct). Now, our task is to cover the remaining points
with the remaining disks, each having weight at most wt. We use D′ = D \ G and P ′ = P \ P(G)
to denote the set of the remaining disks and the set of remaining points respectively, where P(G)
denote the set of points covered by some disk in G.

Next, we carefully choose to include in our solution a set H ⊆ D′ of at most εC disks. The
purpose ofH is to break the whole instance into many (still a constant) small pieces (substructures),
such that each substructure can be solved optimally, via dynamic programming. 3 One difficulty
is that the substructures are not independent and may interact with each other (i.e., a disk may
appear in more than one substructure). In order to apply the dynamic programming technique to
all substructures simultaneously, we have to ensure the orders of the disks in different substructures
are consistent with each other. Choosing H to ensure a globally consistent order of disks is in fact
the main technical challenge of the paper.

Suppose we have a set H which suits our need (i.e., the remaining instance (D′ \H,P ′ \ P(H))
can be solved optimally in polynomial time by dynamic programming). Let S be the optimal

2 For the unweighted dominating set problem in a single block, it is easy to see the optimal number of disks is
bounded by a constant, which implies that we can compute the optimum in poly-time. However, for the weighted
dominating set problem or WUDC the optimal solution in a single block may consist of O(n) disks.

3 An individual substructure can be solved using a dynamic program similar to [2, 27].
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solution of the remaining instance. Our final solution is SOL = G ∪ H ∪ S. First, we can see that

w(S) ≤ w(OPT− G −H) ≤ OPT− w(G),

since OPT−G −H is a feasible solution for the instance (D′ \ H,P ′ \ P(H)). Hence, we have that

SOL = w(G) + w(H) + w(S) ≤ OPT + εCwt ≤ (1 + ε)OPT,

where the 2nd to last inequality holds because |H| ≤ εC, and the last inequality uses the fact that
OPT ≥ w(G) ≥ Cwt.

Constructing H: Now, we provide a high level sketch for how to construct H ⊆ D′. First, we
partition the block into small squares with side length µ = O(ε) such that any disk centered in
a square can cover the whole square and the disks in the same square are close enough. Let the
set of small squares be Ξ = {Γij}1≤i,j≤K where K = L/µ. For a small square Γ, let DsΓ ∈ Γ and
DtΓ ∈ Γ be the furthest pair of disks (i.e., |DsΓDtΓ | is maximized). We include the pair DsΓ and
DtΓ in H, for every small square Γ ∈ Ξ, and call the pair the square gadget for Γ. See Figure 1 for
an example. We only need to focus on covering the remaining points in the uncovered region U(H).

We consider all disks in a small square Γ. The uncovered portion of those disks defines two
disjoint connected regions (See right hand side of Figure 1, the two shaded regions). We call such
a region, together with all relevant arcs, a substructure (formal definition in Section 4). In fact, we
can solve the disk covering problem for a single substructure optimally using dynamic programming
(which is similar to the dynamic program in [2, 27]). It appears that we are almost done, since
(“intuitively”) all square gadgets have already covered much area of the entire block, and we
should be able to use similar dynamic program to handle all such substructures as well. However,
the situation is more complicated (than we initially expected) since the arcs are dependent. See
Figure 2 for a “not-so-complicated” example. Firstly, there may exist two arcs (called sibling
arcs) which belong to the same disk when the disk is centered in the core-central area, as show in
Figure 1). The dynamic program has to make decisions for two sibling arcs, which belong to two
different substructures (called R(emotely)-correlated substructures), together. Second, in order to
carry out dynamic program, we need a suitable order of all arcs. To ensure such an order exists,
we need all substructures interact with each other “nicely”.

In particular, besides all square gadgets, we need to add into H a constant number of extra
disks. This is done by a series of “cut” operations. A cut can either break a cycle, or break one
substructure into two substructures. To capture how substructures interact, we define an auxiliary
graph, call substructure relation graph S, in which each substructure is a node. The aforementioned
R-correlations define a set of blue edges, and geometrically overlapping relations define a set of red
edges. Though the cut operations, we can make blue edges form a matching, and red edges also
form a matching, and S acyclic (we call S an acyclic 2-matching). The special structure of S
allows us to define an ordering of all arcs easily. Together with some other simple properties, we
can generalize the dynamic program from one substructure to all substructures simultaneously.

3 Square Gadgets

We discuss the structure of a square gadget Gg(Γ) associated with the small square Γ. Recall that
the square gadget Gg(Γ) = Ds ∪ Dt, where Ds and Dt are the furthest pair of disks in Γ. We can
see that for any disk Di in Γ, there are either one or two arcs of ∂Di which are not covered by
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Figure 1: A square gadget. Ds and Dt are the furthest pair of disks in square Γ whose centers are
Ds and Dt. On the left hand side, the blue region is the central area C = D(Ds, rst) ∩ D(Dt, rst),
where rst = |DsDt|. The brown region is the core-central area Co = D(P, 1) ∩ D(Q, 1). On the
right hand side, the green area is the active regions, defined as

(⋃
i∈Co

Di − (Ds ∪ Dt)
)
∩ H+ and(⋃

i∈Co
Di − (Ds ∪ Dt)

)
∩H−.

Gg(Γ). Without loss of generality, assume that DsDt is horizontal. The line DsDt divides the
whole plane into two half-planes which are denoted by H+ (the upper half-plane) and H− (the
lower half-plane). ∂Ds and ∂Dt intersect at two points P and Q. We need a few definitions which
are useful throughout the paper. Figure 1 shows an example of a square gadget.

1. (Central Area and Core-Central Area) Define the central area of Gg(Γ) as the intersection
of the two disks D(Ds, rst) and D(Dt, rst) in the square Γ, where rst = |DsDt|. We use C to
denote it. Since Ds and Dt are the furthest pair, we can see that every other disk in Γ is
centered in the central area C.

We define the core-central area of Gg(Γ) is the intersection of two unit disks centered at P,Q
respectively. Essentially, any unit disk centered in the core-central area has four intersections
with the boundary of gadget. Let us denote the area by Co.

2. (Active Region) Consider the regions ⋃
Di∈Co

Di − (Ds ∪ Dt)

 ∩H+ and

 ⋃
Di∈Co

Di − (Ds ∪ Dt)

 ∩H−.
We call each of them an active region associated with square Γ. An active region can be
covered by disks centered in the core-central area. We use Ar to denote an active region.

4 Substructures

Initially, H includes all square gadgets. In Section 7, we will include inH a constant number of extra
disks. For a set S of disk, we use R(S) to denote the region covered by disks in S (i.e., ∪Di∈SDi).
Assuming a fixed H, we now describe the basic structure of the uncovered region R(D′)−R(H). 4

4 Recall that D′ = D \ G where G is the C most expensive disks in OPT.
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Figure 2: The general picture of the substructures in a block. The red points are the grid points
of small squares. Dash green disks are what we have selected in H. There are five substructures in
the block.

For ease of notation, we use U(H) to denote the uncovered region R(D′) − R(H). Figure 2 shows
an example. Intuitively, the region consists of several “strips” along the boundary of H. Now, we
define some notions to describe the structure of those strips.

1. (Arcs) Consider a disk D ∈ D′ and suppose the center of D is in the square Γ. Let DsDt be the
square gadget Gg(Γ), and without loss of generality assume the line DsDt is horizontal and
divides the plane into two halfplanes H+ and H−. D may contribute at most two uncovered
arcs, one in H+ and one in H−. Let us first focus on H+. ∂D intersects ∂H at several points
5 in H+. The uncovered arc is the segment of ∂D starting from the first intersection point
and ending at the last intersection point. 6 We can define the uncovered arc for H− in the
same way (if |∂D∩∂H| 6= 0). Figure 3 illustrates why we need so many words to define an arc.
Essentially, some portions of an arc may be covered by some other disks in H, and the arc
is broken into several pieces. Our definition says those pieces should be treated as a whole.
In this paper, when we mention an arc, we mean an entire uncovered arc (w.r.t. the current
H). Note that both endpoints of an arc lie on the boundary of H.

2. (Subarcs) For an arc a, we use a[A,B] to denote the closed subarc of arc a from point A
to point B. Similarly, we only write a(A,B) to denote the corresponding open subarc (with
endpoints A and B excluded).

3. (Central Angle) Suppose arc a is part of ∂D for some disk D with center D. The central
angle of a, denoted as ∠(a) is the angle whose apex (vertex) is D and both legs (sides) are
the radii connecting D and the endpoints of a. We can show that ∠(a) < π for any arc a (See
Lemma 39 in Appendix A.1)

5 The number must be even.
6 Note that an uncovered arc may not entirely lie in the uncovered region U(H) (some portion may be covered by

some disks in H).
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Figure 3: The figure gives an example of an arc. The blue curves are part of the boundary of H.
The red curve is an uncovered arc.

Figure 4: A substructure. The baseline b consists of the red arcs which are the part of consecutive
boundary of ∂H. Qs, Qt are the endpoints of b. The black curves are are uncovered arcs. The bold
black arcs form the envelope. The arc a ≺ c because A ≺ C and B ≺ D.

4. (Baseline) We use ∂H to denote to be the boundary of H. Consider an arc a whose endpoints
P1, P2 are on ∂H. We say the arc a cover a point P ∈ ∂H, if P lies in the segment between
P1 and P2 along ∂H. We say a point P ∈ ∂H can be covered if some arc in D′ covers P . A
baseline is a consecutive maximal segment of ∂H that can be covered. We usually use b to
denote a baseline.

5. (Substructure) A substructure St(b,A) consists of a baseline b and the collection A of arcs
which can cover some point in b. The two endpoints of each arc a ∈ A are on b and ∠(a) is
less than π. Note that every point of b is covered by some arc in A. Figure 4 illustrates the
components of an substructure.

Occasionally, we need a slightly generalized notion of substructure. For a set A of uncovered
arcs, if they cover a consecutive segment of the boundary of H, A also induces a substructure
denoted as St[A].

Arc Order: Now we switch our attention to the order of the arcs in a substructure St(b,A).
Suppose the baseline b starts at point Qs and ends up at point Qt. Consider any two points P1

and P2 on the baseline b. If P1 is closer to Qs than P2 along the baseline b, we say that P1 appears
earlier than P2 (denoted as P1 ≺ P2). Consider any two arcs a and c in A. The endpoints of arc a
are A and B, and the endpoints of arc c are C and D. All of points A,B,C,D are on the baseline
b. Without loss of generality, we assume that A ≺ B, C ≺ D and A ≺ C. If B ≺ D, We say arc
a appears earlier than arc c (denoted as a ≺ c). Otherwise, we say a and c are incomparable. See
Figure 4 for an example. It is easy to see that ≺ defines a partial order.

Adjacency: Consider two arcs a (with endpoints A ≺ B) and c (with endpoints C ≺ D). If a ≺ c
and C ≺ B, we say that a and b are adjacent (we can see that they must intersect exactly once), and
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c is the adjacent successor of a. Similarly, we can define the adjacent successor of subarc a[P1, P2].
If c is the adjacent successor of a, meanwhile c intersects with subarc a[P1, P2], we say that c is the
adjacent successor of subarc a[P1, P2]. Among all adjacent successors of a[P1, P2], we call the one
whose intersection with a[P1, P2] is closest to P1 the first adjacent successor of a[P1, P2].

In order to carry out the dynamic program in Section 6, we need to properly orient the baseline
for each substructure so that the (partial) order or the arcs is well defined. Our final solution in
each substructure can be represented as a path (which is a segment of the boundary of the union
of chosen disks). Our dynamic program essentially needs to determine such a path. To be precise,
we provide a formal definition of a valid path, as follows.

Definition 7 (A Valid Path). Consider a substructure St(b,A). Suppose the baseline b is oriented
from Qs to Qt. A valid path is a path from Qs to Qt which consists of a sequence of subarcs
{a1[Qs, Q1], a2[Q1, Q2], . . ., ak[Qk−1, Qt]} (baseline segments are considered as subarcs as well).
For any ai, ai+1 is its adjacent successor (so ai ≺ ai+1). Qi is the intersection points of the arcs
ai and ai+1.

Note that the baseline from Qs to Qt is a trivial valid path (we do not consider any coverage
requirement yet). Among all the valid paths in a substructure, there is one that is maximal in
terms of the coverage ability, which we call the envelope of the substructure.

Definition 8 (Envelope of a Substructure). Consider a substructure St(b,A). Suppose the baseline
b is oriented from Qs to Qt. The envelope of St is the valid path {a1[Qs, Q1], a2[Q1, Q2], . . .,
ak[Qk−1, Qt]} where ai+1 is the first adjacent successor of ai for all i ∈ [k].

Coverage: Consider a substructure St(b,A). Consider an arc a with endpoints A and B on
baseline b. We use b[A,B] to denote the segment of b that is covered by a. We say that the region
surrounded by the arc a and b[A,B] is covered by arc a and use R(a) to denote the region. We note
that the covered region R(a) is with respected to the current H. Similarly, consider a valid path
Path. The region covered by Path is ∪a∈PathR(a) (the union is over all arcs in Path) and is denoted
by R(Path). Finally, we define the region covered by the substructure St, denoted by R(St), to be
the region covered by the envelope of St.

5 Simplifying the Problem

The substructures may overlap in a variety of ways. As we mentioned in Section 2, we need to
include in H more disks in order to make the substructures amenable to the dynamic programming
technique. However, this step is somewhat involved and we decide to postpone it to the end of the
paper (Section 7). Instead, we present in this section what the organization of the substructures
and what properties we need after including more disks in H for the final dynamic program.

Self-Intersections: In a substructure St, suppose there are two arcs a and c in A with endpoints
A,B and C,D respectively. If A ≺ B ≺ C ≺ D and a and c cover at least one and the same point
in P, we say the substructure is self-intersecting. In other words, there exists at least one point
covered by two non-adjacent arcs in a self-intersecting substructure. See Figure 9 for an example.
Self-intersections are troublesome obstacles for the dynamic programming approach. So we will
eliminate all self-intersections in Section 7. In the rest of the section, we assume all substructures
are non-self-intersecting and discuss their properties.
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Lemma 9 (Single Intersection Property). For any two arcs in a non-self-intersecting substructure,
they have at most one intersection in the interior of the substructure.

Proof. We prove by contradiction. Suppose ai and aj belong to the same substructure. ai and aj
intersect at point A and B. Since the substructure is non-self-intersecting, ai and aj lie on the same
side of line A and B. Because the two radii of ai and aj are equivalent, the sum of central angles
of ai and aj equals 2π. Thus at least one central angle of ai and aj is no less than π, rendering a
contradiction to the fact that the central angle (defined in Sec. 4) of any arc is less than π.

Base on the single intersection property, we can easily get the following property.

Lemma 10. In a non-self-intersecting substructure, if a point is covered by two arcs a and b, a is
adjacent to b.

Order Consistency: There are two types of relations between substructures which affect how the
orientations should be done. One is the overlapping relation and the other is remote-correlation.
See Figure 2 for some examples.

As we alluded in Section 2, the two substructures which contain different related active regions
of the same gadget interact with each other, i.e.,

Definition 11 (Remote correlation). Consider two substructures Stu and Stl which are not over-
lapping. They contain two different active regions of the same gadget respectively (recalling that
one gadget may have two different active regions, one in H+, one in H−). We say that they are
remotely correlated or R-correlated. See Figure 2.

There are two possible baseline orientations for each substructure (clockwise or anticlockwise
around the center of the arc), which gives rise to four possible ways to orient both Stu and Stl. How-
ever, there are only two (out of four) of them are consistent (thus we can do dynamic programming
on them). More formally, we need the following definition:

Definition 12 (Local Order Consistency). Consider two substructures Stu(bu,Au) and Stl(bl,Al).
There is an orientation for each substructure, such that the partial orders of the disks for both
substructures are consistent in the following sense: It can not happen that ai ≺ bi in substructure
Stu but aj ≺ bj in Stl, where ai, aj ∈ ∂Da, bi, bj ∈ ∂Db and ai, bi ∈ Au, aj , bj ∈ Al.

We show in the following simple lemma that the local order consistency can be easily achieved
for the two substructures containing different active regions of the same gadget.

Lemma 13 (Local Order Consistency). Consider two substructures Stu and Stl which are R-
correlated. Each of them contains only one active region. Then the local order consistency holds
for the two substructures Stu and Stl.

Proof. We consider two substructures Stu and Stl. The arcs not in the active regions have no
influence on the order consistency since each of them only appears in one substructure. So, we only
need to consider the order of the arcs in two active regions. We use the same notations as those on
the RHS of Figure 1. We orient the upper baseline from Qs to Qt, and the lower baseline from Ps
to Pt. Suppose two arcs c1, c3 belong to disk Du, and two arcs c2, c4 belong to the disk Dv. Assume
c4 ≺ c3 in substructure Stu and c1 ≺ c2 in substructure Stl. There must exist another intersection
point on each side of the line connecting the two intersections of (c1, c2), (c3, c4). This contradicts
the fact that two unit disks have at most two intersections.
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Then, we discuss the situation where two substructures overlap. We first need a few notations.
For an arc a, we use D(a) to denote the disk associated with a. For a substructure St(b,A), we let
D(b) be the set of disks that contributes an arc to the baseline b.

Definition 14 (Overlapping Relation). Consider two substructures St1(b1,A1) and St2(b2,A2) and
the point set P. We say St1 and St2 overlap when there are two arcs a ∈ A1 and b ∈ A2 such that
both a and b can cover at least one and the same point of P .

The dynamic program need the following property.

Proposition 15. The orientations of the two overlapping substructures should be different (i.e., if
one is clockwise, the other should be anticlockwise).

As different substructures may interact with each other, we need a dynamic program which can
run over all substructures simultaneously. Hence, we need to define a globally consistent ordering
of all arcs.

Definition 16 (Global Order Consistency). We have global order consistency if there is a way to
orient the baseline of each substructure, such that the partial orders of the disks for all substructures
are consistent in the following sense: It can not happen that ai ≺ bi in substructure Sti(bi,Ai) but
aj ≺ bj in Stj(bj ,Aj), where ai, aj ∈ ∂Da, bi, bj ∈ ∂Db and ai, bi ∈ Ai, aj , bj ∈ Aj.

Substructure Relation Graph S: we construct an auxiliary graph S, called the substructure
relation graph, to capture all R-correlations and overlapping relations. Each node in S repre-
sents a substructure. If two substructures are R-correlated, we add a blue edge between the two
substructures. If two substructures overlap, we add a red edge.

Consider a red edge between St1(b1,A1) and St2(b2,A2). If baseline b1 is oriented clockwise
(around the center of any of its arc), then b2 should be oriented counterclockwise, and vise versa.
The blue edge represents the same orientation relation, i.e., if St1(b1,A1) and St2(b2,A2) are R-
correlated, b1 and b2 should be oriented differently.

It is unclear how to orient all baselines if S is an arbitrary graph. So we need to ensure that S
has a nice structure.

Definition 17 (Acyclic 2-Matching). We say the substructure relation graph S is an acyclic 2-
matching, if S is acyclic and is composed by a blue matching and a red matching. In other words,
S contains only paths, and the red edges and blue edges appear alternately in each path.

If S is a acyclic 2-matching, we can easily assign each substructure a global arc order consistent
orientations.

Point-Order Consistency: Similarly to the arc order consistency, we also need define the point-
order consistency, which is also crucial for our dynamic program.

Definition 18 (Point Order Consistency). Suppose a set Pco of points is covered by both of two
overlapping substructures St1(b1,A1) and St2(b2,A2). Consider any two points P1, P2 ∈ Pco and
four arcs a1, a2 ∈ A1, b1, b2 ∈ A2. Suppose P1 ∈ R(a1) ∩ R(b1) and P2 ∈ R(a2) ∩ R(b2). But
P1 /∈ R(a2)∪R(b2) and P2 /∈ R(a1)∪R(b1). We say P1 and P2 are point-order consistent if a1 ≺ a2

in St1 and b1 ≺ b2 in St2. We say the points in Pco satisfy point order consistency if all pairs of
points in Pco are point-order consistent.
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After introducing all relevant concepts, we can finally state the set of properties we need for
the dynamic program.

Lemma 19. After choosing H, we can ensure the following properties holds:

P1. (Active Region Uniqueness) Each substructure contains at most one active region.

P2. (Non-self-intersection) Every substructure is non-self-intersecting.

P3. (Acyclic 2-Matching) The substructure relation graph S is an acyclic 2-matching, i.e., S
consists of only paths. In each path, red edges and blue edges appear alternately.

P4. (Point Order Consistency) Any point is covered by at most two substructures. The points
satisfy the point order consistency.

How to ensure all these properties will be discussed in detail in Section 7. Now, everything is
in place to describe the dynamic program.

6 Dynamic Programming

Suppose we have already constructed the setH such that Lemma 19 holds (along with an orientation
for each substructure). Without loss of generality, we can assume that the remaining disks can cover
all remaining points (otherwise, either the original instance is infeasible or our guess is wrong). In
fact, our dynamic program is inspired, and somewhat similar to those in [2, 20,27].

DP for Two Overlapping Substructures: For ease of description, we first handle the case
where there are only two overlapping substructures. We will extend the DP to the general case
shortly. Suppose the two substructures are St1(b1,A1) and St2(b2,A2), b1 is oriented from Ps to
Pt and b2 is oriented from Qs to Qt

A state of the dynamic program is a pair Φ = (P,Q) where P is an intersection point of two
arcs in substructure St1 and Q is an intersection point of two arcs in substructure St2. Fix the state
Φ = (P,Q) and consider St1. Let bP and tP be the two arcs intersecting at P . Suppose bP ≺ tP
with endpoints (A,B), (C,D) respectively. We call arc bP the base-arc and tP the top-arc for point
P . 7 Our DP maintains that the base-arc is always paid in the subproblem, and intermediate state.

Given state Φ = (P,Q), now we describe the subproblem associated with the state. Again first
focus on St1. Intuitively, a feasible solution to the subproblem restricted to St1 (resp. St2) is a
valid path starting from point P (resp. Q) and terminating at Pt (resp. Qt). More specifically, we

construct a substructure St
[P ]
1 (b1[P ],A1[P ]) (See Figure 5):

• b1[P ] is the concatenation of subarc bP [P,B] and the original baseline segment b1[B,Pt]. All
arcs in b1[P ] have cost zero.

• A1[P ] consists of all arcs a′ ∈ A1 such that bP ≺ a′ (of course, with the portion covered by
b1[P ] subtracted). The cost each such arc is the same as its original cost.

7 If P is the tail endpoint of an arc (so P is on the baseline), P only has a base-arc (no top-arc), which is the
baseline arc it lies on.
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Figure 5: The figure explains the dynamic program of two overlapping substructures. The left
figure shows the subproblem OPT(P,Q). The goal of OPT(P,Q) is to find minimum valid paths
for PPt and QQt respectively in set A1[P ] ∪A2[Q] such that the paths cover all points of P[P,Q].
The right figure illustrates one of its four smaller subproblems OPT(P t, Q).

Similarly, we consider St2 and the intersection point Q, and construct St2[Q] with baseline b2[Q]
and arc set A2[Q]. We use P(a) (or P(A)) to denote the points covered by a (or A) (w.r.t. the
original baseline). Let the point set P[P,Q] that we need to cover in the subproblem Φ(P,Q) be

P[P,Q] = P(A1[P ]) + P(A2[Q])− P(bP )− P(bQ). (1)

We note that the minus term −P(bP ) − P(bQ) is not vacuous as bP (resp. bQ) may cover some
points in A2[Q] (resp. A1[P ]), and it is important that we do not have to cover those point (this
subtlety is crucial in the correctness proof of the DP). The goal for the subproblem Φ(P,Q) is to
find two valid paths with minimum total weight, one from P to Pt and one from Q to Qt, such
that they together cover all points in P[P,Q]. Note that the weights of both base-arcs bP and bQ
should be included in any feasible solution as well.

Suppose bP (P,B] intersects its first successor at P b (called base-adjacent point) and tP (P,D]
intersects its first successor at P t (called top-adjacent point). Similarly, we define Qb, Qt in St2 in
exactly the same way.

Now, computing the optimum for subproblem Φ(P,Q) reduces to computing the optima for
four smaller subproblems OPT(P b, Q), OPT(P t, Q), OPT(P,Qb) and OPT(P,Qt). We define two
Boolean variables IP (reps. IQ) indicating whether we can move from PP b,Q to PP,Q without
choosing a new arc. Formally, if PP,Q = PP b,Q, IP = 0. Otherwise, IP = 1. Similarly, if PP,Q =
PP,Qb , IQ = 0. If not, IQ = 1. The dynamic programming recursion is:

OPT(P,Q) = min


OPT(P,Qb) + IQ · ∞, add no new arc ;
OPT(P,Qt) + w[bQ], add base-arc bQ;
OPT(P b, Q) + IP · ∞, add no new arc ;
OPT(P t, Q) + w[bP ], add base-arc bP .

(2)

The optimal value we return is OPT(Ps, Qs). Now, we prove the correctness of the DP in the
following theorem. We note that both the point-order consistency and the subtlety mentioned
above play important roles in the proof.
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Theorem 20. Suppose that we have two overlapping substructures St1(b1,A1) and St2(b2,A2).
Further suppose that b1 and b2 are oriented in a way such that the point-order consistency holds.
Then, the cost of the optimal solution equals to OPT(Ps, Qs) (which is computed by (2)).

Proof. Consider subproblem OPT(P,Q). As we know the optimal solution of OPT(P,Q) should be
two valid paths. One is from P to Pt and the other is from Q to Qt. Suppose they are Path1 =
{a1[P, P1], a2[P1, P2], . . ., ai[Pi−1, Pi], . . ., ak[Pk−1, Pt]} and Path2 = {b1[Q,Q1], b2[Q1, Q2], . . .,
bi[Qi−1, Qi], . . ., bl[Ql−1, Qt]}. We can see that it suffices to prove that at least one of the two
statements is true.

• The pair of paths (Path1−{a1[P, P1)},Path2) is the optimal solution to subproblem OPT(P1, Q).

• The pair of paths (Path1,Path2−{b1[Q,Q1)}) is the optimal solution to subproblem OPT(P,Q1).

We prove by contradiction. Assume that both of the above statements are wrong. Suppose bP and
bQ are the base-arcs for state Φ(P,Q), i.e., bP intersects with a1 at point P and bQ intersects with
b1 at point Q. We use P(Path) to denote the point set which is covered by path Path. Recall that
P[P,Q] = P(A1[P ]) + P(A2[Q])− P(bP )− P(bQ). Since Path1 ∪ Path2 is the optimal solution for
OPT(P,Q) (hence feasible), we have that P[P,Q] = P(Path1) +P(Path2)−P(bP )−P(bQ). Then,
the pair of paths (Path1 − {a1[P, P1)},Path2) is the optimal solution for the subproblem in which
we need to pick one path from P1 to Pt and one from Q to Qt to cover the points in

P(Path1) + P(Path2)− P(bP )− P(bQ)− P(a1) = P[P,Q]− P(a1).

If not, we can get a contradiction by replacing Path1−a1[P, P1] and Path2 with the optimal solution
of the above subproblem, resulting in a solution with less weight than OPT(P,Q). Since the first
statement is wrong, we must have that

P[P,Q]− P(a1) 6= P[P1, Q]

(otherwise (Path1 − {a1[P, P1)},Path2) is optimal for Φ(P1, Q)). We note that the LHS ⊆ RHS.
Plugging the definition (1), we have that

P(A1[P ]) + P(A2[Q])− P(bP )− P(bQ)− P(a1) 6= P(A1[P1]) + P(A2[Q])− P(a1)− P(bQ).

A careful (elementwise) examination of the above inequality shows that it is only possible if

P(bP ) ∩ (P(A2[Q])− P(bQ)) 6= ∅.

Repeating same argument, we can see that if the second statement is wrong, we have that

P(bQ) ∩ (P(A1[P ])− P(bP )) 6= ∅.

Hence, there exist bi ∈ A2[Q] and aj ∈ A1[P ] such that P(bP )∩P(bi) 6= ∅, and P(bQ)∩P(aj) 6= ∅.
However, this contradicts the point-order consistency because of bP ≺ aj and bQ ≺ bi.

Thus, one of the two statements is true. W.l.o.g, suppose (Path1 − {a1[P, P1]},Path2) is
the optimal solution to subproblem OPT(P1, Q). If P1 is the top-adjacent point of P , through
OPT(P,Q) = OPT(P1, Q) + w[bP ] in DP(2), we can get the optimal solution of subproblem
OPT(P,Q). If not, suppose P t, Qt is the top-adjacent point of P,Q, using the same argument, we
can prove that (Path1,Path2) is the optimal solution to at least one of the subproblems OPT(P,Qt)
or OPT(P t, Q). Thus, we can get the optimal solution for OPT(P,Q) by our DP.
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DP for the general problem: Then, we handle all substructures together. Our goal is find a
valid path for each substructure such that minimizing the total weight of all the paths. We can
see that we only need to handle each path in the substructure relation graph S separately (since
different paths have no interaction at all). Hence, from now on, we simply assume that S is a path.

Suppose the substructures are {Stk(bk,Ak)}k∈[m]. We use Ak and Bk to denote two endpoints
of bk. Generalizing the previous section, a state for the general DP is Φ = {Pk}k∈[m], where Pk is

an intersection point in substructure Stk. We use bPk
, tPk

, P bk , P tk to denote the base-arc, top-arc,
base-adjacent point, top-adjacent point (w.r.t. Pk) respectively. For each k ∈ [m], we also define

St
[Pk]
k (bk[Pk],Ak[Pk]) in exactly the same way as in the previous section. Let P

[
{Pk}k∈[m]

]
be the

point set we need to cover in the subproblem:

P
[
{Pk}k∈[m]

]
=
⋃
k∈[m]

P(Ak[Pk])−
⋃
k∈[m]

P(bP k).

The subproblem OPT({Pk}k∈[m]) is to find, for each substructure Stk, a valid path from Pk to Bk,
such that all points in P[{Pk}k∈[m]] can be covered and the total cost is minimized.

The additional challenge for the general case is caused by R-correlations. If two arcs (in two
different substructures) belong to the same disk, we say that they are siblings of each other. If we
processed each substructure independently, some disks would be counted twice. In order to avoid
double-counting, we should consider both siblings together, i.e., select them together and pay the
disk only once in the DP.

In order to implement the above idea, we need a few more notations. We construct an auxiliary
bipartite graph B. The nodes on one side are all disks in D′ \ H, and the nodes on the other side
are substructures. If disk Di has an arc in the substructure Stj , we add an edge between Di and
Stj . Besides, for each arc of baselines, we add a node to represent it and add an edge between the
node and the substructure which contains the arc. Because the weight of any arc of baselines is
zero, it shall not induce contradiction that regard them as independent arcs. In fact, there is a 1-1
mapping between the edges in B and all arcs. See Figure 6 for an example.

Fix a state Φ = {Pk}k∈[m]. For any arc a in Stk (with intersection point Pk and base-arc bP k),
a has three possible positions:

1. a ≺ bP k: we label its corresponding edge with “unprocessed”;

2. a = bP k: we label its corresponding edge with “processing”;

3. Others: we label its corresponding edge with “done”.

As mentioned before, we need to avoid the situation where one arc becomes the base-arc first (i.e.,
being added in solution and paid once), and its sibling becomes the base-arc in a later step (hence
being paid twice). With the above labeling, we can see that all we need to do is to avoid the states
in which one arc is “processing” and its sibling is “unprocessed”. If disk D is incident on at least
one “processing” edge and not incident on any “unprocessed” edge, we say the D is ready. Let
R be the set of ready disks. For each ready disk D, we use Np(D) to denote the set of neighbors
(i.e., substructures) of D connected by “processing” edges. We should consider all substructures in
Np(D) together.

Again, we need in our DP indicator variables to tell us whether a certain transition is feasible:
Formally, if P[{Pk}k∈[m]] = P[[Pk][P bi ]{i}], let Ii = 0. Otherwise, let Ii = 1. For ease of notation,
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Figure 6: The bipartite graph which is used for marking the ready disks. The nodes on upper side
represent the disks. The nodes on the lower side represent the substructures. If Di has an arc in
Stj , we add an arc between them.

for a set {ek}k∈[m] and S ⊆ [m], we write [ek][e
′
i]S = {ek}k∈[m]\S ∪ {e′i}i∈S . Hence,

[Pk][P
b
i ]{i} = {Pk}k∈[m]\i ∪ P bi and

[Pk][P
t
i ]Np(D) = {Pk}k∈[m]\Np(D) ∪ {P ti }i∈Np(D)

Then we have the dynamic program as follows:

OPT
(
{Pk}k∈[m]

)
= min

{
mini∈[m]

{
OPT

(
[Pk][P

b
i ]{i}

)
+ Ii · ∞

}
, add no disk

minD∈R
{
OPT

(
[Pk][P

t
i ]Np(D)

)
+ wD

}
, add disk D

(3)

Note that in the second line, the arc(s) in Np(D) are base-arcs (w.r.t. state Φ({Pk}k∈[m]).
In the rest of the section, we prove the correctness of the dynamic program. If we use the solution

of a smaller subproblem OPT(Φ′) to compute subproblem OPT(Φ), we say Φ can be reached from
Φ′ (denoted as Φ′ → Φ). If Φ can be reached from initial state Φ0({Pk | Pk = Bk}k∈[m]), we say
the state is reachable, which is denoted by Φ0 → Φ.

We start with a simple consequence of our DP: there is no double-counting.

Lemma 21. If two arcs in the solution belong to the same disk, their weights are counted only once
in the DP (3).

Proof. From the DP, we can see that the weight of an arc is counted only when it becomes a base-
arc (its label changes from “unprocessed” to “processing”). If the two sibling arcs a, b (belonging to
disk D) in the solution are counted twice, there exist two states Φ1 and Φ2 such that (1)Φ1 → Φ2,
(2)a is a base-arc in Φ1, but b is not a base-arc in Φ1, (3) b is a base-arc in Φ2. So, in Φ1 or any
state before that, arc b is “unprocessed”. However, a can become a base-arc only when D is ready,
rendering a contradiction.

Now, we prove the correctness of the dynamic program. The proof is a generalization of Theo-
rem 20.
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Theorem 22. Suppose S is a path. All baselines are oriented such that all properties in Lemma 19
hold. Then, the optimal cost for the problem equals to OPT({Ak}k∈[m]) (computed by our DP (3)).

Proof. Suppose the set {Pathk}k∈[m] of paths is the optimal solution. We need to prove (1) the
final state Φ({Ak}k∈[m]) is reachable, (2) for any reachable state Φ = {Pk}k∈[m], OPT({Pk}k∈[m])
computes the optimal solution for the corresponding subproblem (that is to find one valid path

from Pk to Bk for each substructure St
[Pk]
k to cover all point in P[{Pk}k∈[m]], such that the total

cost is minimized).
We first prove the first statement. Suppose the state Φ is reachable, we prove it can reach

another state if Φ is not the final state (i.e., we do not get stuck at Φ). Let us prove it by
contradiction. Assume we get stuck at state Φ. That means there is no ready disk in Φ. Note
that each substructure, say St, is incident on exactly one “processing” arc, say arc a (which is the
base-arc in St). a’s sibling, say b (in St′), must be labeled “unprocessed” (otherwise the disk would
be ready). Consider the base-arc (or “processing” arc), say a′, in St′. So we have a′ ≺ b in St′.
Again the sibling b′ of a′ must be an “unprocessed” arc in St. 8 So we have b′ ≺ a in St, which
contradicts the global arc-order consistency.

Now, we prove the second statement. We consider state Φ = {Pk}k∈[m]. Suppose the opti-
mal solution for subproblem Φ{Pk}k∈[m] is the set of paths PS = {Pathk}k∈[m] where Pathk =
(ak1 , ak2 . . . , akn). Consider the states ΦNp(D) := [Pk][P

t
i ]Np(D) for all D ∈ R. Obviously, we can see

from our DP that ΦNp(D) → Φ. Define for each D ∈ R, a set of paths

PSNp(D) = {Pathk}k∈[m]−Np(D) ∪ {Pathi − {ai1}}i∈Np(D).

It suffices to prove that there exists at least one D ∈ R such that PSNp(D) is the optimal solution
for OPT(ΦNp(D)).

Consider a substructure Sti. Suppose the intersection point in Sti of Φ is Pi and the base-arc at
point Pi is bP i. For each i ∈ [m], let Stπ(i) be the only substructure (if any) overlapping with Sti. So
bP π(i) is the base-arc of Stπ(i). Using exactly the same exchange argument in Theorem 20, we can
show that if PSNp(D) is not the optimal solution for OPT(ΦNp(D)), there exists some i ∈ Np(D) such
that Ei happens, where Ei is the following event: there exists an arc βπ(i) in Stπ(i) with βπ(i) � bP π(i)

such that
P(bP i) ∩ P(βπ(i)) 6= ∅.

We use Ei to denote the above event. Thus if there is no D ∈ R such that PSNp(D) is the optimal
solution for OPT(ΦNp(D)), we have

∧
Np(D)∈R

 ∨
i∈Np(D)

Ei

 = True. (4)

Converting the conjunctive normal form (CNF) to the disjunctive normal form (DNF), we get

∨
(k1,...,k|R|)∈ΠD∈RNp(D)

 ∧
i∈|R|

Eki

 = True,

8To see that b′ is in St, note that S is a path and St is only R-correlated with St′ (and vice versa).
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where ΠD∈RNp(D) means the Cartesian product of all Np(D) in R. We call each
∧
i∈|R| Eki a clause

(note that ki indexes a substructure). If we can prove that every clause is false, then obviously, (4)
is wrong, resulting in a contradiction.

Now, we show that every clause is false. First, we consider the case that both end nodes of S
are incident to red edges. W.l.o.g., suppose the two nodes of S are St1 and St2. Thus, they are
R-correlated with other substructures. We know if one substructure Sti is not R-correlated with
others, every clause must contain the corresponding event Ei (since the disk corresponding to its
base-arc must be ready and in R). Hence, every clause contains E1 and E2. Moreover, for each
pair (Sti,Stj) of R-correlated substructures, each clause should contain either Ei or Ej . Suppose
the length of the path S is `. Because red and blue edges alternates, there are `−1

2 R-correlated

substructure pairs and `+1
2 overlapping substructure pairs. We should select `−1

2 + 2 terms in each

clause. Because `−1
2 + 2 > `+1

2 , there exists a pair of overlapping substructures (Sti,Stπ(i)) such
that both Ei and Eπ(i) appear in the clause. To make the clause true, we must have

Ei = (P(bP i) ∩ βπ(i) 6= ∅) = True and Eπ(i) = (P(bP π(i)) ∩ βi 6= ∅) = True,

where βπ(i) � bP π(i) and βi � bP i. It yields a contradiction to the point-order consistency.
Next, we consider the remaining case where at least one end of the path S is a blue edge,

meaning the substructure on the end does not overlap with any other substructure. W.l.o.g.,
suppose the end node is St1 and it is R-correlated with St2. The event E1 = P(bP 1)∩P(βπ(1)) 6= ∅)
is always false since βπ(1) does not exist. So all clause containing E1 is false. To make each of
the remaining clauses true, E2 must be true, and the case reduces to the previous case (by simply
omitting node St1). So the same argument again renders a contradiction. This completes the proof
of the theorem.

7 Constructing H
In this section, we describe how to construct the set H in details. We first include in H all square
gadgets. The boundary of H consists of several closed curves, as shown in Figure 2. H and all
uncovered arcs define a set of substructures.

First, we note that there may exist a closed curve that all points on the curve are covered by
some arcs (or informally, we have a cyclic substructure, with the baseline being a cycle). We need
to break all such baseline cycles by including a constant number of extra arcs into H. This is easy
after we introduce the label-cut operation in Section 7.1, and we will spell out all details then.
Note that we cannot choose some arbitrary envelope cycle since it may ruin some good properties
we want to maintain.

From now on, we assume that all baselines are simple paths. Now, each closed curve contains
one or more baselines. So, we have an initial set of well defined substructures. The main purpose
of this section is to cut these initial substructures such that Lemma 19 holds.

We will execute a series of operations for constructing H. We first provide below a high level
sketch of our algorithm, and outline how the substructures and the substructure relation graph S
evolve along with the operations.

• (Section 7.1) First, we deal with active regions. Sometimes, two active region may overlap
significantly and become inseparable (formally defined later), they essentially need to be dealt
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as a single active region. In this case, we merge the two active regions together (we do not
need to do anything, but just to pretend that there is only one active region). We can also
show that one active region can be merged with at most one other active region. For the
rest of cases, two overlapping active region are separable, and we can cut them into at most
two non-overlapping active regions, by adding a small number of extra disks in H. After
the merging and cutting operations, each substructure contains at most one active region.
Hence, the substructures satisfy the property (P1) in Lemma 19. Moreover, we show that if
any substructure contains an active region, the substructure is limited in a small region.

• (Section 7.2) We ensure that each substructure is non-self-intersecting by a simple greedy
algorithm. After this step, (P2) is satisfied.

• (Section 7.3) In this step, we ensure that substructure relation graph S is a acyclic 2-matching
(P3). The step has three stages. First, we prove that the set of blue edges forms a matching.
Second, we give an algorithm for cutting the substructures which overlap with two or more
other substructures. After the cut, each substructure overlaps with no more than one other
substructure. So after the first two stages, we can see that S is composed of a blue matching
and a red matching. At last, we prove that the blue edges and red edges cannot form a cycle,
establishing S is acyclic.

• (Section 7.4) The goal of this step is to ensure the point-order consistency (P4). We first show
there does not exist a point covered by more than two substructures, when S is an acyclic
2-matching. Hence, we only need to handle the case of two overlapping substructures. We
show it is enough to break all cycles in a certain planar directed graph. Again, we can add a
few more disks to cut all such cycles.

• (Section 7.5) Lastly, we show that the number of disks added in H in the above four steps is
O(K2), where K = L

µ and L and µ are side lengths of block and small square respectively.

7.1 Merging and Cutting Active Regions

If two active regions overlap in the same substructure, we need to either merge them into a new
one or cut them into two non-overlapping new ones. As we know, each gadget may have two active
regions. Suppose active regions Ar1 and Ar2 belong to the same gadget Gg, while Ar′1 and Ar′2
belong to a different gadget Gg′. Due to R-correlations, we need consider the four active regions
together.

First, we consider the case where Ar1 overlaps with Ar′1, and Ar2 overlaps with Ar′2. We need
the following important concept order-separability, which characterizes how the two sets of arcs
overlap.

Definition 23 (Order-separability). Consider a substructure St(b,A). A1,A2 are two disjoint
subsets of A. If A1,A2 satisfy that

a ≺ b, for any a ∈ A1 and b ∈ A2, (5)

we say that A1,A2 are order-separable.

We use A1 , A′1, A2, A′2 to denote the set of arc associated with active regions Ar1, Ar′1, Ar2,
Ar′2, respectively. If A1 and A′1 are not order-separable, we say the pair (Ar1,Ar

′
1) is a mixture. If
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both of (Ar1,Ar
′
1) and (Ar2,Ar

′
2) are mixtures, we say the two pairs form a double-mixture. When

they are double-mixture, we merge them simultaneously. It only means that we regard the two
active regions (Ar1,Ar

′
1) as a new single active region, and (Ar2,Ar

′
2) as another single active region.

To show an active region cannot grow unbounded, we prove that the merge operations do
not generate chain reactions. The rough idea is that if two active regions form a mixture, their
corresponding small squares must be adjacent and their core-central areas must overlap. Due to
the special shape of core-central areas (a narrow spindle shape), the overlapping can only happen
between two of them, not more.

Lemma 24. Consider two non-empty small squares Γ, Γ′. Suppose the square gadgets in the
two squares are Gg(Γ) = (Ds,Dt) and Gg′(Γ′) = (D′s,D

′
t). The active region pairs (Ar1,Ar2) and

(Ar′1,Ar
′
2) are associated with gadget Gg(Γ) and Gg′(Γ′) respectively. (Ar1,Ar2) and (Ar′1,Ar

′
2) form

a double-mixture. Then, the following statements hold:

1. Their corresponding squares Γ,Γ′ are adjacent;

2. The core-central areas of Gg(Γ) and Gg′(Γ′) overlap;

3. The angle between DsDt and D′sD
′
t is O(ε)

4. None of the two core-central areas can overlap with any small squares other than Γ and Γ′.

Next, we consider the case where only one of (Ar1,Ar
′
1) and (Ar2,Ar

′
2) is a mixture. However,

we show that it is impossible as follows. We use notation Ar(A) to denote an active region with
arc set A.

Lemma 25. Suppose active region pairs (Ar1(A1), Ar2(A2)) and (Ar′1(A′1), Ar′2(A′2)) are associated
with gadget Gg and Gg′ respectively. If A1 and A′1 are order-separable, then A2 and A′2 are also
order-separable.

The proofs of Lemma 24 and Lemma 25 are elementary planar geometry and we defer them to
Appendix A.2.

Cutting Overlapping Active Regions: After the merging stage, even if any two active regions
overlap in the same substructure, their arcs are order-separable. We define label-cut operation as
below to further separate them such that the baselines of all the active regions are non-overlapping.

We consider two overlapping active regions Ar1(A1) and Ar2(A2) in a substructure St(A). Sup-
pose A1,A2 ⊂ A and A1,A2 are order-separable. We can cut St into two substructures St1 and
St2 with disjoint baselines, such that R(Ar1) ⊂ R(St1) and R(Ar2) ⊂ R(St2). In other words, if
we assign arcs in A1 one kind of label and arcs in A2 a different kind of label, after the label-cut
operation, the arcs with different labels belong to different new substructures. We define label-cut
formally as follows.

Definition 26 (Label-cut). Consider a substructure St(b,A). Suppose A′1,A′2 are two subsets of
A. A′1 and A′2 are order-separable. We can add two consecutive arcs in the envelope of A into
H. After that, St can be separated into two new substructures St1(b1,A1),St2(b2,A2), such that
subarcs in A′1 only belong to A1, and subarcs in A′2 only belong to A2.

Lemma 27. Consider a substructure St(b,A) and two subsets A′1,A′2 of A. There exists a label-cut
when A′1 and A′2 are order-separable, and we can perform the label-cut in polynomial time.
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Figure 7: The example of label-cut. The left hand side illustrates the whole substructure before
cutting. The arcs have two different labels. One is green and the other is brown. The bold black
subarcs are what we select in the envelope. The the right hand side illustrates that each of the two
separable substructures induced by the label-cut operation only contains arcs with the same label.

Figure 8: The farthest disk pair of square Γ is (Ds,Dt). Suppose Ds and Dt intersect at point P,Q.
The disk D(P, 2) is tangent to Ds and Dt at point Qs and Qt respectively. D(Qs, 1) and D(Qt, 1)
intersect at D. The active region of Γ in H+ is totally covered by Dom(Γ+).

Figure 7 illustrates the process of construction. We defer its proof in Appendix A.2.
After the label-cut operation, in each substructure, the baselines for all active regions are

not overlapping. Thus, if any substructure contains more than one active region, consider any
two of them, say A1 and A2. We can add into H one arc a along the envelope which satisfies
a1 ≺ a ≺ a2, ∀a1 ∈ A1, a2 ∈ A2. After the addition of arc a, A1 and A2 are separated into two
different new substructures. Repeat the above step whenever one substructure contains more than
one active region. This establishes the active region uniqueness property (P1).

Limiting the size of substructure which contains an active region: Now, we discuss how
to make substructure which contains an active region bounded inside a small region. This property
is particular useful later when we show the substructure relation graph S is acyclic.

Suppose the gadget of square Γ is (Ds,Dt). The line DsDt divides the plane into two halfplanes
H+ and H−. Ds and Dt intersect at point P and Q. The boundary of disk D(P, 2) is tangent
to Ds and Dt at point Qs and Qt respectively. D(Qs, 1) and D(Qt, 1) intersect at point D. See
Figure 8. We call D the dome-point of gadget Gg(Γ) and use Dom(Γ+) to denote the region
(D(D, 1))− Ds − Dt) ∩H+.

Lemma 28. Consider the substructure St which contains an active region of square Γ. The sub-
structure can be cut into at most three smaller substructures, by doing label-cut twice. At most
one of them contains the active region. Moreover, this new substructure (if any) is bounded by the
region Dom(Γ+) (or Dom(Γ−)) associated with Γ.

We defer the proof to Appendix A.2.
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There may exist a substructure which contains a merged active region (i.e. an active region
which is the union of two initial active regions). Based on Lemma 24, the arcs of the two initial
active regions belong to two adjacent small squares. Suppose the two squares are Γ, Γ′, with square
gadgets (Ds,Dt) and (D′s,D

′
t) respectively. The dome-points of Γ and Γ′ in H+ are respectively

D and D′. We apply the operations in Lemma 28 for each initial active region. Since the angle
between DsDt and D′sD

′
t is O(ε), obviously, the substructure containing the merged active region

is small as well, i.e. bounded in Dom(Γ+) ∪ Dom(Γ′+).
Since each substructure which contains an active region is small enough, we can show the

following lemma, which will be useful for proving the acyclicity of the substructure relation graph
S.

Lemma 29 (Highly parallel arcs). Suppose substructure St(b,A) contains an active region. The
central angle of any arc in St is no more than O(ε). Meanwhile, there exists a line l such that the
angle between l and the tangent line at any point of any arc a ∈ A is at most O(ε).

Actually, for the initial active region, the line DsDt satisfy the property. For the merged active
region, we know the angle between DsDt and D′sD

′
t is O(ε) based on Lemma 24. Hence, we can

still see that the line DsDt satisfies the property.
To summarize, after all operations in this subsection, we can ensure that each substructure con-

tains at most one active region (i.e., (P1) in Lemma 19). Moreover, we have that each substructure
which contains an active region is small enough (so that Lemma 29 holds).

Handling cyclic substructures: At the end of this subsection, we deal with the problem we
left in the very beginning of Section 7, to break all cyclic baselines. Note that this step should be
done in the beginning. First, we consider that case that there exists a point on the baseline which
cannot be covered by any arc of any active region. We can include any envelope arc that covers the
point into H, which is enough to break the cycle. This is essentially a label-cut and do not separate
any single connected active region into disconnected pieces. Then we consider the case where every
point on the baseline is covered by some arc of active regions. Note that the merge operation only
depends on the local property of two active regions, thus, we can merge active regions even in
“cyclic substructure”. Assume that we have done all merge operations. Based on Lemma 29, we
know one active region is very small and thus cannot cover all points on a closed curve. We pick
one active region. Using the same operation as Lemma 28 (do two label-cuts), we can essentially
isolate the active region and cut the original cyclic baseline to two new baselines.

7.2 Eliminating Self-intersections

The goal of this part is to add a few more disks into H so that any substructure is non-self-
intersecting (Recall the definition in Lemma 9). Note that the substructures which contain active
region are non-self-intersecting after the process in Section 7.1. We just need to process the sub-
structures without active regions in this part.

We use a simple greedy approach. We consider one substructure St(b,A). Suppose the endpoints
of b are Qs and Qt, and the envelope is {a1[Qs, Q1],. . ., ak[Qk−1, Qt]}, where Qi is the intersection
point of ai−1 and ai. We denote the endpoints of ai on the baseline b by Pi and P ′i (Note that
P1 = Qs). Let arc set Ai be {a1, a2, . . . , ai}. Then we have a set {Sti[Ai]}i∈[k] of substructures,
where Sti[Ai] is the substructure induced by arc set Ai. We consider the arcs lying on the envelope
one by one and check whether we should add it into H or not. Concretely, we add D(ai+1) in H if
the following condition holds:
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Figure 9: The process to avoid self-intersection. The left hand side is a self-intersection substructure.
We search from point Qs along the envelope. Let arc set Ai be {a1, a2, . . . , ai}. Then we have a set
{Sti[Ai]}i∈[k] of substructures. If Sti is non-self-intersecting but Sti+1 is self-intersecting. We add
arc ai+1 in H. The right hand side illustrates the two new substructures after the cut.

• Sti is non-self-intersecting, but Sti+1 is self-intersecting,

The addition of D(ai+1) cuts the substructure into two smaller substructures. One of which is
certainly non-self-intersecting. The other is induced by arc set A = {ai+2, . . . , ak}. See Figure 9.
We repeat the above process until there is no self-intersection in all substructures. Furthermore,
we can easily prove the following nice property. The proof can be found in Appendix A.3.

Lemma 30. In each of the above iterations, one substructure St(b,A) is cut into at most two new
substructures. Any original arc in A cannot be cut into two pieces, each of which belongs to a
different new substructure.

To summarize, we have obtained the non-self-intersection property ((P2) in Lemma 19).

7.3 Ensuring that S is an Acyclic 2-Matching

We discuss how to add some extra disks in H to make S an acyclic 2-matching ((P3) in Lemma 19).

Blue edges: First we show that the set of blue edges form a matching.

Lemma 31. Two blue edges cannot be incident to the same node.

Proof. Before the merge operation, the set of active region pairs forms a matching. To see this,
note that our merge operations always apply to a double-mixture (which corresponds to merging
two blue edges into one). Moreover, any cut operation cannot break one active region into two,
thus has no effect on any blue edge. Hence, after all merge and cut operations, the set of active
region pairs is still a matching.

Red edges: Then, we prove that any node which has more than one incident red edges can be cut
such that each new node(i.e., substructure) only has at most one incident red edge.

First, we prove a simple yet useful geometric lemma stating that a point cannot be covered by
three or more substructures. Note that from now on, all substructures have no self-intersections.

Lemma 32. We are given a substructure St(b,A). a ∈ A and two arcs b1, b2 /∈ A. If b1, b2 cover
the same point on a, b1, b2 should belong to the same substructure.

Intuitively, if the two disks corresponding to b1 and b2 cover the same point, they should be close
enough such that their corresponding square gadgets overlap (which implies b1 and b2 share the
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Figure 10: The arcs in substructures St1 and St2 cut the envelope of St into 7 segments. The
sequence of the labels for those segments is 0101020. The compressed label sequence is 01020. So
we have 5 l-segments.

same baseline). First we prove that the minimum distance between any two disks in two different
substructure should not be too small, i.e., their overlapping region cannot be too large. The proof
can be found in Appendix A.4.

In fact, essentially the same proof can be used to prove that any two different substructures
cannot both intersect with subarc whose central angle is O(ε), as in the following corollary.

Corollary 33. Suppose St(b,A) is a substructure without any self-intersection. Consider an arc
a ∈ A and two arcs b1, b2 /∈ A. Suppose a′ is a subarc of a whose central angle is O(ε). If both
b1, b2 cover some part of a′, b1, b2 should belong to the same substructure.

Combining with Lemma 29, we can easily see the following lemma.

Lemma 34. Any substructure which contains an active region cannot overlap with two or more
different substructures.

Then we show how to cut the substructure St(b,A) which overlaps with more than one other
substructures. Note that such substructure does not contain an active region based on Lemma 34.
Suppose the envelope of St is {a1[Qs, Q1], . . . , ak[Qk−1, Qt]}. St overlaps with k substructures
Sti(bi,Ai), i = 1, 2, . . . , k.

If Sti overlaps with St, there exists an arc a ∈ Sti intersecting some envelope arc of St. Thus,
the envelope St is subdivided into several segments by those intersection points. We can label those
segments as follows:

• If the segment is covered by some arc in Sti, we label it as ‘i’.

• If there is no arc in any Sti covering the segment, we label it as ‘0’.

See Figure 10 for an example. According to the Lemma 32, we know there is no point on the
envelope covered by two substructures. Thus the above labeling scheme is well defined.

Traversing those segments along the envelope, we obtain a label sequence. First, for each label
i, we identify those maximal consecutive subsequence, which consists of only letter 0 and i, and
starts with and end with i, and replace the subsequence by a single letter i. We obtain a compressed
sequence. In fact, each letter, say i (i 6= 0), in the compressed sequence corresponds to one or more
segments labeled with either i or 0, and the first and last one must be labeled with i. We call
the concatenation of those segments an l(ong)-segment. Of course, a letter 0 in the compressed
sequence corresponding to a segment with label 0. Actually, the sequence is Davenport-Schinzel
sequence of order 2 [37], because two different labels cannot intersect (because the baselines of two
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substructures cannot intersect). For example, the pattern “1212” should never appear. Thus, the
length of the compressed sequence, i.e., the number of l-segments, is at most O(k).

Now, we discuss how to cut St into several new ones based on l-segments. Keep in mind that our
goal is to make sure each new substructure only overlap with one substructure of {Sti}i∈[k]. The
cut operation is again a simple greedy procedure. Consider two consecutive l-segments. Suppose
they are {ai[Qi−1, Qi], ai+1[Qi, Qi+1], . . . , aj [Qj−1, Qj ]} and {aj+1[Qj , Qj+1], . . ., ak[Qk−1, Qk]}.
We add into H the last arc aj of former l-segment and the first arc aj+1 of the later l-segment. St
is thus cut into two new ones. Repeat the above step for all two consecutive l-segments in order.

We still need to show that after the cut, every new substructure overlap at most one of {Sti}i∈[k].
Consider one new substructure. Notice such an original arc in A can only belong to one new
substructure. By our cut operation, all envelope arcs of the new substructure can intersect at most
one of {Sti}i∈[k]. Hence, the new substructure can overlap at most one Sti.

Blue edges and red edges: After the above operations, the set of all blue edges forms a matching,
while the set of all red edges also forms a matching. To show S is an acyclic 2-matching, it suffices
to prove S contains no cycle. So, the rest of the section is devoted to prove the following lemma.

Lemma 35. Suppose the side length of square is µ, where µ = O(ε) and the block contains K ×K
small squares, where K = C0

ε2
and C0 is an appropriate constant. Then, after all operations stated

in this section, there is no cycle in S.

If there is a cycle Cyc in S, the red edges and blue edges alternate in Cyc, which correspond to
a sequence of substructures, each containing an active region (since it is R-correlated with another
active region). Now, we provide a high level explanation why Lemma 35 should hold. Each active
region is associated with a small square. A small square is very small (comparing to a unit disk
or the whole block), and an active region is also very small. We pick a point in each small square
and each substructure. If two substructures in Cyc overlap, the two points in them are also very
close (i.e., O(ε)). So we can pretend the two points as one point (or we just pick a point in their
overlapping region). For each active region Ar, we connect the point in Ar and the point in the small
square associated with Ar. Since Both the small square and the active region are very small, the
distance between two point is about 1−O(ε). Thus, a cycle Cyc would present itself geometrically
as a polygon. We can show the angle between two adjacent edges of the polygon is close to π. So
the size of the polygon cannot be not small (it takes a lot of edges to wrap a loop). However, the
polygon cannot be much larger than the block. By contradiction, we prove that there is no cycle
in S.

Now, we formally prove Lemma 35. We first prove a geometric lemma which will be useful for
bounding the angle between the two adjacent edges of the aforementioned polygon.

Lemma 36. Consider two substructures St1(b1,A1) and St2(b1,A2) in Cyc. Suppose St1 and St2
overlap (there is a red edge between them). For any two arcs a ∈ A1 and b ∈ A2, suppose that D(a)
and D(b) overlap and their intersection points are A and B. The central angles of a, b are θa, θb
respectively. The centers of D(a),D(b) are Da, Db. Then ∠ADaB (or ∠ADbB) is at most (θa+θb).

Proof. We distinguish a few cases depending on whether the intersection points A and B lie on a
or b or none of them. All cases are depicted in Figure 11.

• Both A and B lie on one arc (see Figure (a)(b)). W.l.o.g., suppose they lie on arc a. Obviously,
∠ADaB is no more than θa (or θb) .
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Figure 11: The four kinds of cases for two overlapping arcs.

• If one intersection is on neither a nor b (see Figure (c)), we prove that the case cannot happen.
Suppose A is on neither of a and b. The endpoint A1 of a is covered by disk D(b) and the
endpoint A2 of a is covered by disk D(a). Thus the baseline b1 must intersect with b2 which
contradicts the fact that St1 and St2 are two different substructures.

• If one intersection point is on a but not on b and the other intersection point is on b but not
on a (see Figure (d)), it is easy to see that B1 is covered by arc b, and A2 is covered by a
since their baselines do not intersect. Thus, the length of arc AB (w.r.t. D(a)) is no more
than the sum of lengths of a and b. So ∠ADaB is at most θa + θb.

The above cases are exhaustive, thus our proof is completed.

Based on Lemma 29, Lemma 36, we can prove Lemma 35 below:
Proof of Lemma 35: Consider two substructures St1 and St2. Suppose St1 contains the active
region Ar1 , and St2 contains the active region Ar2. The centers of arcs of Ar1 and Ar2 locate in
small squares Γ1 and Γ2 respectively. The square gadgets of the two squares are Gg(Ds1 ,Dt1) and
Gg(Ds2 ,Dt2) respectively. If St1 and St2 overlap, their must exist an arc a in St1 and an arc b in
St2 such that a and b intersect. Suppose D(a) and D(b) intersect at points A and B. The center of
D(a) and D(b) are Da and Db.

Based on Lemma 29, we know both central angle of a and b are no more than O(ε). According
to Lemma 36, the central angle of the arc AB is at most O(ε). It means angle between the tangent
lines of D(a) and D(b) at point A is no more than O(ε). Thus, ∠DaADb is at least π −O(ε).

We know that all disks in the same active region are centered in one small square or two
adjacent small squares. Moreover Lemma 29 implies all disk centers should lies in one or two
squares. Hence, the distance between (any point in) the square and (any point in) its active region
is at least 1−O(ε). Construct the aforementioned polygon. Consider two adjacent edges XY and
Y Z in the polygon. We consider two cases:

1. Y is in the intersection of two substructures St1 and St2. We can easily see that (1) |Y A| =
O(ε); (2) |XDa| = O(ε); (3) |ZDb| = O(ε). Hence, we can see ∠XY Z is at least π −O(ε).
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Figure 12: Substructure St1(b1,A1) and St2(b2,A2) are overlapping. b1 starts from Qs and ends
up with Qt and b2 starts from Ps and ends up with Pt. There are two paths forming a cycle.

2. Y is in a small square Γ and X and Z are in the the two substructures associated with Γ.
Since both substructures are bound in an O(ε) size region (by Lemma 29), we can see that
∠XY Z is at least π −O(ε) as well.

Hence, we can see the polygon contains at least Ω(2π/ε) nodes and the diameter of the polygon is
at least Ω(1/ε). But this cannot be larger than the diameter of a block, rendering a contradiction.

�
To summarize, we have ensured that S is an acyclic 2-matching ((P3) in Lemma 19).

7.4 Ensuring Point Order Consistence

We have ensured that the set of red edges is a matching in S. Hence, one substructure can overlap
with at most one other substructure. Therefore, if we can guarantee that the points which are
covered by any pair of overlapping substructure are order consistent, then all points in P are order
consistence (after all, point-order consistency is defined over a pair of substructures).

Consider two overlapping substructures St1(b1,A1) and St2(b2,A2) and a set Pco of points
covered by A1 ∪ A2. Suppose P1, P2 ∈ Pco and a1, a2 ∈ A1, b1, b2 ∈ A2. Recall point-order
consistency requires that the following conditions are met

• P1 ∈ R(a1) ∩ R(b1) and P2 ∈ R(a2) ∩ R(b2)

• P1 /∈ R(a2) ∪ R(b2) and P2 /∈ R(a1) ∪ R(b1).

• (a1 ≺ a2)⇔ (b1 ≺ b2).

It is helpful to consider the following directed planar graph D induced by all arcs in A1 ∪ A2

in the uncovered region U(H). Regard each intersection point of arcs in A1 ∪ A2 as a node. Each
subarc is an directed edge with a direction consistent with its baseline. We use A → B to denote
that there is a directed edge between nodes A and B in D. If there is no directed cycle in D,
we can verify that all conditions listed above hold. Indeed, suppose the condition is not satisfied,
which means a1 ≺ a2, b1 � b2, a1, a2 ∈ A1 and b1, b2 ∈ A2. Suppose a1, b1 intersect at (A1, B1) and
A1 → B1, meanwhile a2, b2 intersect at (A2, B2) and A2 → B2. Since a1 ≺ a2, there exists a path
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in St1 which goes from B1 to A2. Similarly, there exists a path in St2 from B2 to A1. Thus, the
two paths and a1, a2 form a directed cycle.

So all we have to do is to break all cycles in D. When D contains a cycle, we can cut the cycle
through adding an arc on the envelope into H. See Figure 12 for an example. Only arcs A1 (or in
A2) cannot form a cycle. So if there is a cycle, the cycle must pass through the envelope of A1 and
A2. Moreover, based on Lemma 29, if St1 and St2 form a cycle, either St1 or St2 does not contains
any active region. W.l.o.g., suppose it is St2. Based on these observations, we have our algorithms
as follows:

Suppose the envelope of St1 is Path1 = {a1, a2, . . . , ak}. ai and aj are the first and last arcs
respectively which intersect St2. Suppose the arc bi′ ∈ A2 overlaps with ai, (if there is more than
one such arc, we select a minimal one, w.r.t. the arc ordering) and the arc bj′ ∈ A2 overlaps with
aj (if there is more than one such arc, we select a maximal one). Since ai ≺ aj and they do not
satisfy point-order consistency, we have bi′ � bj′ . We can see that all arcs between bi′ and bj′ cannot
intersect with Path1. So we can select one arc between bi′ and bj′ to add in H for cutting St2 into
two. After the cut, any cycle in D can be broken.

After cutting St2, St1 overlaps with both of the new substructures obtained from St2. Then, we
encounter the same situation as in Section 7.3 (a node in S has two incident red edges). We can
apply the operation in Section 7.3 to cut St1 such that the set of red edges in S is still a matching.

7.5 The number of disks in H

Finally, we count collectively the total number of disks that we have added in H. First, we add
the square gadget for each nonempty small square in H. The number of the disks is O(K2), where
K = L/µ = O(1/ε2). In order to cut overlapping active regions, the number of disks we add in H
is bounded by the number of active regions. Since there are O(K2) gadgets, we add O(K2) disks
in Section 7.1. In Section 7.2, to ensure that each substructure is non-self-intersecting and contains
at most one active region, we design a greedy algorithm. We can see that each arc we added in H
covers at least one intersection point of two disks in H′, where H′ is the set H before this step. The
algorithm guarantees that each arc which we add in H do not cover the same intersection point on
the boundary of H′. Since the union complexity of unit disks is linear [32] and H′ contains at most
O(K2) disks, there are at most O(K2) intersection points on ∂H′. So, we add at most O(K2) in
this step. In Section 7.3, we break the cycles in S. The number of disks we add H is proportional
to the number of substructures. So, again, we add at most O(K2) disks. Similarly, in Section 7.4,
we also add at most O(K2) disks. To summarize, we have added at most O(K2) disks in H.

8 Time Complexity

The time complexity contains three parts. The first part is to enumerate all combination of G.
We set C = O(K

2

ε ) (since we need C > |H|/ε). Since K = O( 1
ε2

), the number of combinations

is bounded by nC = nO(1/ε5). The second part is the construction of set H. It is easy to see
that the time cost for each operation (i.e., label-cut) is no more than O(n2). Thus, the time
cost is O(K2n2) = O(n2/ε4). The last part is the dynamic program. There are at most O(K2)
substructures and at most O(n2) intersection points in each substructure. Thus, the number of
total states is at most O((n2)K

2
). For each recursion, the time cost is at most O(n). Thus, the

overall time complexity of the dynamic program is O(n2K2+1) = nO(1/ε4).
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Overall, the total time cost is nO(1/ε5) ·max{n2/ε4, nO(1/ε4)}) = nO(1/ε9). This finishes the proof
of Lemma 6.

9 Applications

The weighted dominating set problem (MWDS) in unit disk graphs has numerous applications in
the areas of wireless sensor networks [17]. In this section, we show that our PTAS for WUDC can
be used to obtain PTASs for two important problems in this domain.

9.1 Connected Dominating Set in UDG

The goal for the minimum-weighted connected dominating set problem (MWCDS) is to find a
dominating set which induces a connected subgraph and has the minimum total weight. Clark
et al. [11] proved that MWCDS in unit disk graphs is NP-hard. Ambühl et al. [2] obtained the
first constant factor approximation algorithm for MWCDS(the constant is 94). The ratio was
subsequently improved in a series of papers [13,20,30]. The best ratio known is 7.105 [17, pp.78].

One way to compute an approximation solution for MWCDS is to first compute minimum
weighted dominating set (MWDS) and then connect the dominating set using a node-weighted
steiner tree (NWST) [30, 41]. The optimal MWDS value is no more than the optimal MWCDS
value. After zeroing out the weight of all terminals, the optimal NWST value (for any set of
terminals) is also no more than the optimal MWCDS value. Hence, if there is an α-approximation
for MWDS(or equivalently WUDC) and a β-approximation for NWST, then there is an α+β factor
approximation algorithm for MWCDS.

Zou et al. [41] show that there exists a 2.5ρ-approximation for NWST if there exists a ρ-
approximation for the classical edge-weighted minimum steiner tree problem. The current best
ratio for minimum steiner tree is 1.39 [7]. Thus, there exists a 3.475-approximation for NWST.
Combining with our PTAS for WUDC, we obtain the following improved result for MWCDS.

Theorem 37. There exists a polynomial-time (4.475 + ε)-approximation for MWCDS for any fixed
constant ε > 0.

9.2 Maximum Lifetime Coverage in UDG

The maximum lifetime coverage problem (MLC) is a classical problem in wireless sensor networks:
Given n targets t1, . . . , tn and m sensors s1, ...sm, each covering a subset of targets, find a family of
sensor cover S1, . . . , Sp with time lengths τ1, . . . , τp in [0, 1], respectively, to maximize τ1 + . . .+ τp
subject to that the total active time of every sensor is at most 1. MLC is known to be NP-hard [8].
Berman et al. [4] reduced MLC to the minimum weight sensor cover (MSC) problem through Garg-
Könemann technique [24]. In particular, they proved that if MSC has a ρ-approximation, then MLC
has a (1 + ε)ρ-approximation for any ε > 0. Ding et al. [14] noted that, if all sensors and targets
lie in the Euclidean plane and all sensors have the same covering radius, any approximation result
for WUDC can be converted to almost the same approximation for MLC. Hence, the current best
known result for MLC is a 3.63-approximation. Using our PTAS, we obtained the first PTAS for
MLC.

Theorem 38. There exists a PTAS for MLC when all sensors and targets lie in the Euclidean
plane and all sensors have the same covering radius.
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Let us mention one more variant of MLC, called maximum lifetime connected coverage problem,
studied by Du et al. [18]. The problem setting is the same as MLC, except that each sensor cover
Si should induce a connected subgraph. They obtained a (7.105 + ε)-approximation when the
communication ratios Rc is no less two times the sensing radius Rs. Essentially, they showed that
an α-approximation for WUDC and a β-approximation for NWST imply an α + β-approximation
algorithm for the connected MLC problem. Using our PTAS, we can improve the approximation
ratio to (4.475 + ε).

10 Final Remarks

Much of the technicality comes from the fact that the substructures interact each other in a com-
plicated way and it is not easy to ensure a globally consistent order. The reader may wonder what
if we choose more than two disks (but still a constant) in a small square, hoping that the uncovered
regions become separated and more manageable. We have tried several other ways, like choosing a
constant number of disks in the convex hull of the centers in a small square. However, these seemed
to only complicate, not to simplify, the matter.

We believe our result and insight are useful to tackle other problems involving unit disks or unit
disk graphs. On the other hand, our approach strongly relies on the special properties of unit disks
and does not seem to generalize to arbitrary disks with disparate radius. Obtaining a PTAS for
the weighted disk cover problem with arbitrary disks is still a central open problem in this domain.
An interesting intermediate step would be to consider the special case where the ratio between the
longest radius and the shortest radius is bounded.
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A Missing Proofs

A.1 Missing Proofs in Section 4

Lemma 39. The central angle of any uncovered arc is less than π.

Proof. We only need prove the arc of a gadget is less than π. As we union all gadgets and add more
and more disks in H, the central angle of an arc only becomes smaller. So, now we fix a square
gadget Gg(Γ). Consider the substructure above line DsDt. See the right hand side of Figure 1 for
an example. Suppose an arc a with endpoints M and M ′ on the boundary of Gg. The center of
the arc is in the central area of Gg. If the central angle ∠(a) ≥ π, its center should lie in the cap
region bounded by a and the chord MM ′. Without loss of generality, we suppose M is closer to
the line DsDt than M ′. Draw a auxiliary line at M which is parallel to DsDt. If the line does not
intersect the central area, the center a locates below the line MM ′ (Hence, outside the cap region),
thus the central angle is less than π. If the auxiliary line intersects the boundary of central area at
point N . Then, we can see that

|MN | =
√
|MDs|2 − x2 + |DsDt| −

√
|NDt|2 − x2,

where x is the vertical distance between point M and line DsDt. It is not difficult to see that
|MN | > 1. It means that the center of the arc locates below the line MN (Otherwise, the distance
from the center to M is larger than |NM |, which is larger than 1, rendering a contradiction). So,
the central angle of any arc is less than π.

A.2 Missing Proofs in Section 7.1

Lemma 24 Consider two non-empty small squares Γ, Γ′. Suppose the square gadgets in the
two squares are Gg(Γ) = (Ds,Dt) and Gg′(Γ′) = (D′s,D

′
t). The active region pairs (Ar1,Ar2) and

(Ar′1,Ar
′
2) are associated with gadget Gg(Γ) and Gg′(Γ′) respectively. (Ar1,Ar2) and (Ar′1,Ar

′
2) form

a double-mixture. Then, the following statements hold:

1. Their corresponding squares Γ,Γ′ are adjacent;

2. The core-central areas of Gg(Γ) and Gg′(Γ′) overlap;

3. The angle between DsDt and D′sD
′
t is O(ε)

4. None of the two core-central areas can overlap with any small squares other than Γ and Γ′.

Proof. Suppose the core-central areas of Gg and Gg′ are Co and C′o respectively. Because (Ar1,Ar2)
and (Ar′1,Ar

′
2) form a double-mixture. There exists at least one disk centered in Γ′ which appears

in both Ar1 and Ar2. Thus, the disk is centered in Co. It means that Co and C′o overlap. Hence, Γ
and Γ′ are adjacent. See Figure 13.

It is easy to see that any core-central area can overlap with at most two squares. Since Co and
C′o overlap, at least one of them overlaps with both Γ and Γ′. Without loss of generality, suppose
Co overlap with both Γ and Γ′. We only need to prove C′o cannot overlap with other squares other
than Γ and Γ′.

Our proof needs a useful notion, called apex angle. Consider a square gadget. See the left one
of Figure 1 (and we use the notations there). The line DsE and DsF are the tangent lines to the
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Figure 13: The case that arcs in two different active regions are not order-separable. The two
adjacent squares are Γ = A1A2A5A6 and Γ′ = A2A3A4A5. (Ds,Dt) is the square gadget in Γ and
(D′s,D

′
t) is the square gadget in Γ′. The active regions Ar1 and Ar2 belong to the Gg(Γ), while the

Ar′1 and Ar′2 belong to the Gg′(Γ′).

boundary of core-central area at point Ds. We define apex angle θCo to be ∠EDsF . We notice that
θCo only depends on the distance |DsDt|. When the side length of a small square is ε, θCo is O(ε).
In fact, even the core-central area is completely determined by Ds and Dt. Thus, we can generalize
the concept core-central area by using any two overlapping disks in H.

Now go back to our proof. See Figure 13. The segments DsDt and D′sD
′
t cannot intersect

because they belong to different small squares. Suppose the squares Γ and Γ′ are A1A2A5A6 and
A2A3A4A5, respectively. A2A5 is the common side. W.l.o.g, suppose D′s is closer to line A2A5

than D′t. If any disk centered in C′o can appear in Ar1 but outside the disk D′s (i.e., outside the
disks Ds ∪Dt ∪D′s), the core-central areas defined by D′sDt

9 and C′o should overlap nontrivial (not
only touch at point D′s). Thus, the angle ∠DtD

′
sD
′
t should less than O(ε). It means angle between

DsDt and D′sD
′
t is at most O(ε). Moreover, angle between line D′sD

′
t and A5A4 is no less than

π
2 −O(ε) > O(ε). Thus, C′o cannot intersect A5A4. Hence, C′o cannot overlap other squares.

Lemma 25 Suppose active region pairs (Ar1(A1), Ar2(A2)) and (Ar′1(A′1), Ar′2(A′2)) are associated
with gadget Gg and Gg′ respectively. If A1 and A′1 are order-separable, then A2 and A′2 are also
order-separable.

Proof. We prove the lemma by contradiction. We only consider the arcs which have siblings.
Suppose A1 and A′1 are order-separable but A2 and A′2 are not order separable. W.l.o.g., assume
a ≺ a′,∀a ∈ A1,∀a′ ∈ A′1. Since A2 and A′2 are not order-separable, there exist arcs b1, b2 ∈ A2

and b′ ∈ A′2 such that b1 ≺ b′ ≺ b2. (If not, there exist arcs b ∈ A2 and b′1, b
′
2 ∈ A′2 such that

b′1 ≺ b ≺ b′2.) Suppose a2 is the sibling of b2, a′ is the sibling of b′. Thus, a′ ≺ a2 based on the same
proof to Lemma 13. It yields a contradiction to the assumption that a ≺ a′, ∀a ∈ A1,∀a′ ∈ A′1.

9D′s and Dt do not locate in the same square. This is core-central area in the generalized sense..
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Lemma 28 Consider the substructure St which contains an active region of square Γ. The sub-
structure can be cut into at most three smaller substructures, by doing label-cut twice. At most
one of them contains the active region. Moreover, this new substructure (if any) is bounded by the
region Dom(Γ+) associated with Γ.

Proof. See Figure 8. We use the same notations defined in Section 7.1. The entire active region
[
⋃
i:D∈Co

Di− (Ds ∪Dt)]∩H+ is a sub-region of (D(P, 2)−Ds−Dt)∩H+. Thus, any disk centered
in D(Qs, 1)∩D(Qt, 1)∩H+ can cover the active region. So, if there is a disk centered in D(Qs, 1)∩
D(Qt, 1) ∩ H+, we add it into H such that the entire active region is covered. If not, we prove
we can cut St such that the new substructure contains the active region is bounded by the region
(D(D, 1)−Ds−Dt)∩H+. The disks centered in R(Γ)∩D(Qs, 1)−D(Qs, 1)∩D(Qt, 1)) cover point
Qs. Thus, the arcs of these disks are order-separable to the arcs in active region. Similarly, the
arcs of disks centered in R(Γ)∩D(Qt, 1)−D(Qt, 1)∩D(Qs, 1) are also order-separable to the arcs in
active region. Thus, we can add two disks in H to label-cut St into at most three new substructures.
Obviously, there is only one of them containing arcs centered in Γ − D(Qs, 1) ∪ D(Qt, 1). Hence,
this new substructure is bounded in the region (D(D, 1)− Ds − Dt) ∩H+.

A.3 Missing proofs in Section 7.2

Lemma 30 In each of the above iterations, one substructure St(b,A) is cut into at most two new
substructures. Any original arc in A cannot be cut into two pieces, each of which belongs to a
different new substructure.

Proof. Figure 9 gives an explanation about the change of substructures before and after the pro-
cess. Suppose the envelope is {a1[Qs, Q1], . . . , ak[Qk−1, Qt]}. After we add the disk D(ai) in
H, the baselines of the two new substructures are b1 = b[Qs, Pi+1] ∪ ai+1[Pi+1, Qi] and b2 =
ai+1[Qi+1, P

′
i+1] ∪ b[P ′i+1, Qt]. Since ai+1 is an arc lying on the envelope, there does not exist an

arc b with endpoints (A,B) such that A ≺ Pi+1 ≺ P ′i+1 ≺ B. So the endpoints of any arc in St1
cannot be in R(St2). Thus, any arc cannot be separated into two substructures.

A.4 Missing proofs in Section 7.3

Lemma 40. Consider two disks Du and Dl in squares Γu,Γl respectively. Suppose Du /∈ Gg(Γu),Dl /∈
Gg(Γl) and Du and Dl intersect at points A and B. Suppose the side length of square is µ. If ∠ADuB
(or ∠ADlB) is more than 2

√
2µ, Gg(Γu) and Gg(Γl) should overlap. Moreover, if intersection A

(resp. B) is in U(H), the two arcs which intersect at point A (resp. B) are in the same substructure.

Proof. Suppose Du and Dl intersect at point A and B. Ds ∈ Gg(Γu), D′s ∈ Gg(Γl). Thus, Du,Ds
locate in the same square Γu and Dl,D

′
s locate in the same square. The line DuDl intersect disk

Ds at point E and intersect disk D′s at point F . |DuE| and |DlF | are no less than 1− µ according
to the triangle inequality. Suppose ∠ADuB is θ. Then the length |DuDl| equals 2 cos( θ2). Since
θ > 2

√
2µ, we have |DuE| + |DlF | > |DuDl|, i.e. Ds and D′s overlap. Figure 14 illustrates the

situation. If A (or B) is in U(H), it is obvious that the two arcs which intersect at A (or B) can
cover the same point on the baseline (i.e., the intersection point of Ds and D′s) which means they
are in the same substructure.

Based on the Lemma 40, we prove Lemma 32 as follows.
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Figure 14: Du and Dl intersect at point A and B. Suppose the side length of square is µ. If the
central angle of arc a[A,B] is more than 2

√
2µ. Ds,D

′
s should overlap, where Ds ∈ Gg(Γu),D′s ∈

Gg(Γl).

Lemma 32 We are given a substructure St(b,A). a ∈ A and two arcs b1, b2 /∈ A. If b1, b2 cover
the same point on a, b1, b2 should belong to the same substructure.

Proof. We prove the lemma by contradiction. Suppose the arcs a, b1, b2 are parts of D,D1,D2

respectively. Consider a point P on D that can be covered by all of a, b1, b2. D and D1 intersect at
A1 and B1, meanwhile D and D2 intersect at A2 and B2. See Figure 15. Since D and D1 belong
to different substructures, we know ∠A1DB1 is less than 2

√
2µ based on Lemma 40. Similarly,

∠A2DB2 is less than 2
√

2µ. It is easy to see that ∠D1DD2 is less than 2
√

2µ. When ∠D1DD2 is
O(
√
ε) when µ = O(ε). |D1D2| is less than 1 as |DD1| and |DD2| are more than 1 and less than

2. Suppose A3 and B3 are the two intersection points of D1 and D2. Thus, we have ∠A3D1B3 >
π/3 > 2

√
2µ. Moreover, P is in U(H). By Lemma 40, we can see that it contradicts the fact that

D1 and D2 belong to two different substructures.

Figure 15: Consider a point P on D. a, b1, b2 which belong to disks D,D1,D2 respectively, can
cover the point P . D and D1 intersect at A1 and B1, meanwhile D and D2 intersect at A2 and B2.
Then, D1 and D2 belong to the same substructure.
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