
Condensed Unpredictability

Maciej Skórski∗1, Alexander Golovnev†2, and Krzysztof Pietrzak‡3

1University of Warsaw
2New York University

3IST Austria

Abstract

We consider the task of deriving a key with high HILL entropy (i.e., being computationally
indistinguishable from a key with high min-entropy) from an unpredictable source.

Previous to this work, the only known way to transform unpredictability into a key that
was ε indistinguishable from having min-entropy was via pseudorandomness, for example by
Goldreich-Levin (GL) hardcore bits. This approach has the inherent limitation that from a
source with k bits of unpredictability entropy one can derive a key of length (and thus HILL
entropy) at most k − 2 log(1/ε) bits. In many settings, e.g. when dealing with biometric data,
such a 2 log(1/ε) bit entropy loss in not an option.

Our main technical contribution is a theorem that states that in the high entropy regime,
unpredictability implies HILL entropy. Concretely, any variable K with |K| − d bits of un-
predictability entropy has the same amount of so called metric entropy (against real-valued,
deterministic distinguishers), which is known to imply the same amount of HILL entropy. The
loss in circuit size in this argument is exponential in the entropy gap d, and thus this result only
applies for small d (i.e., where the size of distinguishers considered is exponential in d).

To overcome the above restriction, we investigate if it’s possible to first “condense” unpre-
dictability entropy and make the entropy gap small. We show that any source with k bits of
unpredictability can be condensed into a source of length k with k − 3 bits of unpredictability
entropy. Our condenser simply “abuses" the GL construction and derives a k bit key from a
source with k bits of unpredicatibily. The original GL theorem implies nothing when extracting
that many bits, but we show that in this regime, GL still behaves like a “condenser" for unpre-
dictability. This result comes with two caveats (1) the loss in circuit size is exponential in k
and (2) we require that the source we start with has no HILL entropy (equivalently, one can
efficiently check if a guess is correct). We leave it as an intriguing open problem to overcome
these restrictions or to prove they’re inherent.

1 Introduction

Key-derivation considers the following fundamental problem: Given a joint distribution (X,Z)
where X|Z (which is short for “X conditioned on Z") is guaranteed to have some kind of entropy,
∗maciej.skorski@gmail.com. Research supported by the WELCOME/2010-4/2 grant.
†alexgolovnev@gmail.com
‡pietrzak@ist.ac.at. Research supported by ERC starting grant (259668-PSPC).

1

ar
X

iv
:1

50
4.

07
62

1v
1

 [
cs

.C
R

]
 2

8
A

pr
 2

01
5

derive a “good" key K = h(X,S) from X by means of some efficient key-derivation function h,
possibly using public randomness S.

In practice, one often uses a cryptographic hash function like SHA3 as the key derivation function
h(.) [Kra10,DGH+04], and then simply assumes that h(.) behaves like a random oracle [BR93].

In this paper we continue the investigation of key-derivation with provable security guarantees,
where we don’t make any computational assumption about h(.). This problem is fairly well un-
derstood for sources X|Z that have high min-entropy (we’ll formally define all the entropy notions
used in 2 below), or are computationally indistinguishable from having so (in this case, we say
X|Z has high HILL entropy). In the case where X|Z has k bits of min-entropy, we can either use
a strong extractor to derive a k − 2 log ε−1 key that is ε-close to uniform, or a condenser to get
a k bit key which is ε-close to a variable with k − log log ε−1 bits of min-entropy. Using extrac-
tors/condensers like this also works for HILL entropy, except that now we only get computational
guarantees (pseudorandom/high HILL entropy) on the derived key.

Often one has to derive a key from a source X|Z which has no HILL entropy at all. The
weakest assumption we can make on X|Z for any kind of key-derivation to be possible, is that
X is hard to predict given Z. This has been formalized in [HLR07a] by saying that X|Z has k
bits of unpredictability entropy, denoted Hunp

s (X|Z) > k, if no circuit of size s can predict X
given Z with advantage > 2−k (to be more general, we allow an additional parameter δ > 0, and
Hunp
δ,s (X|Z) > k holds if (X,Z) is δ-close to some distribution (Y,Z) with Hunp

s (Y |Z) > k). We will
also consider a more restricted notion, where we say that X|Z has k bits of list-unpredictability
entropy, denoted H∗unps (X|Z) > k, if it has k bits of unpredictability entropy relative to an oracle
Eq which can be used to verify the correct guess (Eq outputs 1 on input X, and 0 otherwise).1 We’ll
discuss this notion in more detail below. For now, let us just mention that for the important special
case where it’s easy to verify if a guess for X is correct (say, because we condition on Z = f(X)
for some one-way function2 f), the oracle Eq does not help, and thus unpredictability and list-
unpredictability coincide. The results proven in this paper imply that from a source X|Z with k
bits of list-unpredictability entropy, it’s possible to extract a k bit key with k − 3 bits of HILL
entropy

Proposition 1. Consider a joint distribution (X,Z) over {0, 1}n × {0, 1}m where

H∗unps,γ (X|Z) > k (1)

Let S ∈ {0, 1}n×k be uniformly random and K = XTS ∈ {0, 1}k, then the unpredictability entropy
of K is

Hunp
s/22kpoly(m,n),γ

(K|Z, S) > k − 3 (2)

and the HILL entropy of K is
HHILL
t,ε+γ(K|Z, S) > k − 3 (3)

with3 t = s · ε7

22kpoly(m,n)
.

1We chose this name as having access to Eq is equivalent to being allowed to output a list of guesses. This is very
similar to the well known concept of list-decoding.

2To be precise, this only holds for injective one-way functions. One can generalise list-unpredictability and let Eq
output 1 on some set X , and the adversary wins if she outputs any X ∈ X . Our results (in particular Theorem 1)
also hold for this more general notion, which captures general one-way functions by letting X = f−1(f(X)) be the
set of all preimages of Z = f(X).

3We denote with poly(m,n) some fixed polynomial in (n,m), but it can denote different polynomial throughout
the paper. In particular, the poly here is not the same as in (2) as it hides several extra terms.

2

Proposition 1 follows from two results we prove in this paper.
First, in Section 4 we prove Theorem 1 which shows how to “abuse” Goldreich-Levin hardcore

bits by generating a k bit key K = XTS from a source X|Z with k bits of list-unpredictability. The
Goldreich-Levin theorem [GL89] implies nothing about the pseudorandomness of K|(Z, S) when
extracting that many bits. Instead, we prove that GL is a good “condenser" for unpredictability
entropy: if X|Z has k bits of list-unpredictability entropy, then K|(Z, S) has k − 3 bits of unpre-
dictability entropy (note that we start with list-unpredictability, but only end up with “normal"
unpredictability entropy). This result is used in the first step in Proposition 1, showing that (1)
implies (2).

Second, in Section 5 we prove our main result, Theorem 2 which states that any source X|Z
which has |X|−d bits of unpredictability entropy, has the same amount of HILL entropy (technically,
we show that it implies the same amount of metric entropy against deterministic real-valued distin-
guishers. This notion implies the same amount of HILL entropy as shown by Barak et al. [BSW03]).
The security loss in this argument is exponential in the entropy gap d. Thus, if d is very large, this
argument is useless, but if we first condense unpredictability as just explained, we have a gap of
only d = 3. This result is used in the second step in Proposition 1, showing that (2) implies (3). In
the two sections below we discuss two shortcomings of Theorem 1 which we hope can be overcome
in future work.4

1.0.1 On the dependency on 2k in Theorem 1.

As outlined above, our first result is Theorem 1, which shows how to condense a source with k
bits of list-unpredictability into a k bit key having k − 3 bits of unpredictability entropy. The loss
in circuit size is 22kpoly(m,n), and it’s not clear if the dependency on 2k is necessary here, or if
one can replace the dependency on 2k with a dependency on poly(ε−1) at the price of an extra ε
term in the distinguishing advantage. In many settings log(ε−1) is in the order of k, in which case
the above difference is not too important. This is for example the case when considering a k bit
key for a symmetric primitive like a block-cipher, where one typically assumes the hardness of the
cipher to be exponential in the key-length (and thus, if we want ε to be in the same order, we have
log(ε−1) = Θ(k)). In other settings, k can be superlinear in log(ε−1), e.g., if the the high entropy
string is used to generate an RSA key.

1.0.2 List vs. normal Unpredictability.

Our Theorem 1 shows how to condense a source where X|Z has k bits of list-unpredictability
entropy into a k bit string with k − 3 bits unpredictability entropy. It’s an open question to which
extent it’s necessary to assume list-unpredictability here, maybe “normal" unpredictability is already
sufficient? Note that list-unpredictability is a lower bound for unpredictability as one always can
ignore the Eq oracle, i.e., Hunp

ε,s (X|Z) > H∗unpε,s (X|Z), and in general, list-unpredictability can be
much smaller than unpredictability entropy.5

4 After announcing this result at a workshop, we learned that Colin Jia Zheng proved a weaker version of this
result. Theorem 4.18 in this PhD thesis, which is available via http://dash.harvard.edu/handle/1/11745716 also
states that k bits of unpredictability imply k bits of HILL entropy. Like in our case, the loss in circuit size in his
proof is polynomial in ε−1, but it’s also exponential in n (the length of X), whereas our loss is only exponential in
the entropy gap ∆ = n− k.

5E.g., let X by uniform over {0, 1}n and Z arbitrary, but independent of X, then for s = exp(n) we have
Hunp

s (X|Z) = n but H∗unps (X|Z) = 0 as we can simply invoke Eq on all {0, 1}n until X is found.

3

http://dash.harvard.edu/handle/1/11745716

Interestingly, we can derive a k bit key with almost k bits of HILL entropy from a source X|Z
which k bits unpredictability entropy Hunp

ε,s (X|Z) > k in two extreme cases, namely, if either
1. if X|Z has basically no HILL entropy (even against small circuits).

2. or when X|Z has (almost) k bits of (high quality) HILL entropy.
In case 1. we observe that if HHILL

ε,t (X|Z) ≈ 0 for some t � s, or equivalently, given Z we can
efficiently distinguish X from any X ′ 6= X, then the Eq oracle used in the definition of list-
unpredictability can be efficiently emulated, which means it’s redundant, and thus X|Z has the
same amount of list-unpredictability and unpredictability entropy, Hunp

s,ε (X|Z) ≈ H∗unps′,ε′ (X|Z) for
(ε′, s′) ≈ (ε, s). Thus, we can use Theorem 1 to derive a k bit key with k − O(1) bits of HILL
entropy in this case. In case 2., we can simply use any condenser for min-entropy to get a key with
HILL entropy k − log log ε−1 (cf. Figure 2). As condensing almost all the unpredictability entropy
into HILL entropy is possible in the two extreme cases where X|Z has either no or a lot of HILL
entropy, it seems conceivable that it’s also possible in all the in-between cases (i.e., without making
any additional assumptions about X|Z at all).

1.0.3 GL vs. Condensing.

Let us stress as this point that, because of the two issues discussed above, our result does not always
allow to generate more bits with high HILL entropy than just using the Goldreich-Levin theorem.
Assuming k bits of unpredictability we get k− 3 of HILL, whereas GL will only give k− 2 log(1/ε).
But as currently our reduction has a quantitatively larger loss in circuit size than the GL theorem,
in order to get HILL entropy of the same quality (i.e., secure against (s, δ) adversaries for some
fixed (s, δ)) we must consider the unpredictability entropy of the source X|Z against more powerful
adversaries than if we’re about to use GL. And in general, the amount of unpredictability (or any
other computational) entropy of X|Z can decrease as we consider more powerful adversaries.

2 Entropy Notions

In this section we formally define the different entropy notions considered in this paper. We denote
with Drand,{0,1}s the set of all probabilistic circuits of size s with boolean output, and Drand,[0,1]

s

denotes the set of all probabilistic circuits with real-valued output in the range [0, 1]. The analogous
deterministic circuits are denoted Ddet,{0,1}s and Ddet,[0,1]

s . We use X ∼ε,s Y to denote computational
indistinguishability of variables X and Y , formally6

X ∼ε,s Y ⇐⇒ ∀C ∈ Drand,{0,1}s : |Pr[C(X) = 1]− Pr[C(Y) = 1]| 6 ε (4)

X ∼ε Y denotes that X and Y have statistical distance ε, i.e., X ∼ε,∞ Y , and with X ∼ Y we
denote that they’re identically distributed. With Un we denote the uniform distribution over {0, 1}n.

Definition 1. The min-entropy of a random variable X with support X is

H∞(X) = − log2 max
x∈X

Pr[X = x]

6Let us mention that the choice of the distinguisher class in (4) irrelevant (up to a small additive difference in
circuit size), we can replace Drand,{0,1}

s with any of the three other distinguisher classes.

4

For a pair (X,Z) of random variables, the average min-entropy of X conditioned on Z is

H̃∞(X|Z) = − log2 E
z←Z

max
x

Pr[X = x|Z = z] = − log2 E
z←Z

2−H∞(X|Z=z)

HILL entropy is a computational variant of min-entropy, where X (conditioned on Z) has k bits
of HILL entropy, if it cannot be distinguished from some Y that (conditioned on Z) has k bits of
min-entropy, formally

Definition 2 ([HILL99], [HLR07a]). A random variable X has HILL entropy k, denoted by
HHILL
ε,s (X) ≥ k, if there exists a distribution Y satisfying H∞(Y) ≥ k and X ∼ε,s Y .
Let (X,Z) be a joint distribution of random variables. Then X has conditional HILL entropy

k conditioned on Z, denoted by HHILL
ε,s (X|Z) ≥ k, if there exists a joint distribution (Y,Z) such that

H̃∞(Y |Z) ≥ k and (X,Z) ∼ε,s (Y,Z).

Barak, Sahaltiel and Wigderson [BSW03] define the notion of metric entropy, which is defined
like HILL, but the quantifiers are exchanged. That is, instead of asking for a single distribution
(Y,Z) that fools all distinguishers, we only ask that for every distinguisher D, there exists such a
distribution. For reasons discussed in Section 2.0.4, in the definition below we make the class of
distinguishers considered explicit.

Definition 3 ([BSW03], [FR12]). Let (X,Z) be a joint distribution of random variables. Then X
has conditional metric entropy k conditioned on Z (against probabilistic boolean distinguishers),
denoted by HMetric,rand,{0,1}

ε,s (X|Z) ≥ k, if for every D ∈ Drand,{0,1}s there exists a joint distribution
(Y, Z) such that H̃∞(Y |Z) ≥ k and

|Pr[D(X,Z) = 1]− Pr[D(Y,Z) = 1]| 6 ε

More generally, for class ∈ {rand, det}, range ∈ {[0, 1], {0, 1}},
HMetric,class,range
ε,s (X|Z) ≥ k if for every D ∈ Dclass,ranges such a (Y,Z) exists.

Like HILL entropy, also unpredictability entropy, which we’ll define next, can be seen as a com-
putational variant of min-entropy. Here we don’t require indistinguishability as for HILL entropy,
but only that the variable is hard to predict.

Definition 4 ([HLR07a]). X has unpredictability entropy k conditioned on Z, denoted by
Hunp
ε,s (X|Z) ≥ k, if (X,Z) is (ε, s) indistinguishable from some (Y,Z), where no probabilistic circuit

of size s can predict Y given Z with probability better than 2−k, i.e.,

Hunp
s,ε (X|Z) ≥ k ⇐⇒ ∃(Y,Z), (X,Z) ∼ε,s (Y,Z) ∀C, |C| 6 s : Pr

(y,z)←(Y,Z)
[C(z) = y] 6 2−k (5)

We also define a notion called “list-unpredictability”, denoted H∗unpε,s (X|Z) ≥ k, which holds if
Hunp
ε,s (X|Z) ≥ k as in (5), but where C additionally gets oracle access to a function Eq(.) which

outputs 1 on input y and 0 otherwise. So, C can efficiently test if some candidate guess for y is
correct.7

7We name this notion "list-unpredictability" as we get the same notion when instead of giving C oracle access to
Eq(.), we allow C(z) to output a list of guesses for y, not just one value, and require that Pr(y,z)←(Y,Z)[y ∈ C(z)] 6 2−k.
This notion is inspired by the well known notion of list-decoding.

5

Remark 1 (The ε parameter). The ε parameter in the definition above is not really necessary,
following [HLR07b], we added it so we can have a “smooth" notion, which is easier to compare to
HILL or smooth min-entropy. If ε = 0, we’ll simply omit it, then the definition simplifies to

Hunp
s (X|Z) ≥ k ⇐⇒ Pr

(x,z)←(X,Z)
[C(z) = x] 6 2−k

Let us also mention that unpredictability entropy is only interesting if the conditional part Z is not
empty as (already for s that is linear in the length of X) we have Hunp

s (X) = H∞(X) which can
be seen by considering the circuit C (that gets no input as Z is empty) which simply outputs the
constant x maximizing Pr[X = x].

2.0.4 Metric vs. HILL.

We will use a lemma which states that deterministic real-valued metric entropy implies the same
amount of HILL entropy (albeit, with some loss in quality). This lemma has been proven by
[BSW03] for the unconditional case, i.e., when Z in the lemma below is empty, it has been observed
by [FR12,CKLR11] that the proof also holds in the conditional case as stated below

Lemma 1 ([BSW03,FR12,CKLR11]). For any joint distribution (X,Z) ∈ {0, 1}n × {0, 1}m and
any ε, δ, k, s

HMetric,det,[0,1]
ε,s (X|Z) > k ⇒ HHILL

ε+δ,s·δ2/(m+n)(X|Z) > k

Note that in Definition 2 of HILL entropy, we only consider security against probabilistic boolean
distinguishers (as ∼ε,s was defined this way), whereas in Definiton 3 of metric entropy we make the
class of distinguishers explicit. The reason for this is that in the definition of HILL entropy the
class of distinguishers considered is irrelevant (except for a small additive degradation in circuit size,
cf. [FR12, Lemma 2.1]).8 Unlike for HILL, for metric entropy the choice of the distinguisher class
does matter. In particular, deterministic boolean metric entropy HMetric,det,{0,1}

ε,s (X|Y) > k is only
known to imply deterministic real-valued metric entropy HMetric,det,[0,1]

ε+δ,s (X|Y) > k − log(δ−1), i.e.,
we must allow for a δ > 0 loss in distinguishing advantage, and this will at the same time result in
a loss of log(δ−1) in the amount of entropy. For this reason, it is crucial that in Theorem 2 we show
that unpredictability entropy implies deterministic real-valued metric entropy, so we can then apply
Lemma 1 to get the same amount of HILL entropy. Dealing with real-valued distinguishers is the
main source of technical difficulty in the proof of the Theorem 2, proving the analogous statement
for deterministic boolean distinguishers is much simpler.

3 Known Results on Provably Secure Key-Derivation

We say that a cryptographic scheme has security α, if no adversary (from some class of adversaries
like all polynomial size circuits) can win some security game with advantage > α if the scheme is
instantiated with a uniformly random string.9 Below we will distinguish between unpredictability

8This easily follows from the fact that in the definition (4) of computational indistinguishability the choice of the
distinguisher class is irrelevant.

9We’ll call this string “key". Though in many settings (in particular when keys are not simply uniform random
strings, like in public-key crypto) this string is not used as a key directly, but one rather should think of it as the
randomness used to sample the actual keys.

6

applications, where the advantage bounds the probability of winning some security game (a typical
example are digital signature schemes, where the game captures the existential unforgeability under
chosen message attacks), and indistinguishability applications, where the advantage bounds the
distinguishing advantage from some ideal object (a typical example is the security definition of
pseudorandom generators or functions).

3.1 Key-Derivation from Min-Entropy

Strong Extractors. Let (X,Z) be a source where H̃∞(X|Z) > k, or equivalently, no adversary
can guess X given Z with probability better than 2−k (cf. Def. 1). Consider the case where we
want to derive a key K = h(X,S) that is statistically close to uniform given (Z, S). For example,
X could be some physical source (like statistics from keystrokes) from which we want to generate
almost uniform randomness. Here Z models potential side-information the adversary might have
on X. This setting is very well understood, and such a key can be derived using a strong extractor
as defined below.

Definition 5 ([NZ93], [DORS08]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}` is an average-case
(k, ε)-strong extractor if for every distribution (X,Z) over {0, 1}n×{0, 1}m with H̃∞(X|Z) > k and
S ∼ Ud, the distribution (Ext(X,S), S, Z) has statistical distance ε to (U`, S, Z).

Extractors Ext as above exist with ` = k − 2 log(1/ε) [HILL99]. Thus, from any (X,Z) where
H̃∞(X|Z) > k we can extract a key K = Ext(X,S) of length k − 2 log(1/ε) that is ε close to
uniform [HILL99]. The entropy gap 2 log(1/ε) is optimal by the so called “RT-bound" [RTS00],
even if we assume the source is efficiently samplable [DPW14].

If instead of using a uniform ` bit key for an α secure scheme, we use a key that is ε close to
uniform, the scheme will still be at least β = α+ ε secure. In order to get security β that is of the
same order as α, we thus must set ε ≈ α. When the available amount k of min-entropy is small, for
example when dealing with biometric data [DORS08,BDK+05], a loss of 2 log(1/ε) bits (that’s 160
bits for a typical security level ε = 2−80) is often unacceptable.

Condensers. The above bound is basically tight for many indistinguishability applications like
pseudorandom generators or pseudorandom functions.10 Fortunately, for many applications a close
to uniform key is not necessary, and a key |K| with min-entropy |K|−∆ for some small ∆ is basically
as good as a uniform one. This is the case for all unpredictability applications, which includes OWFs,
digital-signatures and MACs.11 It’s not hard to show that if the scheme is α secure with a uniform
key it remains at least β = α2∆ secure (against the same class of attackers) if instantiated with any
key K that has |K|−∆ bits of min-entropy.12 Thus, for unpredictability applications we don’t have

10For example, consider a pseudorandom function F : {0, 1}k × {0, 1}a → {0, 1} and a key K that is uniform over
all keys where F(K, 0) = 0, this distribution is ε ≈ 1/2 close to uniform and has min-entropy ≈ |K| − 1, but the
security breaks completely as one can distinguish F(Uk, .) from F(K, .) with advantage β ≈ 1/2 (by quering on input
0, and outputting 1 iff the output is 0).

11 [DY13] identify an interesting class of applications called “square-friendly", this class contains all unpredictability
applications, and some indistinguishability applications like weak PRFs (which are PRFs that can only be queried
on random inputs). This class of applications remains somewhat secure even for a small entropy gap ∆: For ∆ = 1
the security is β ≈

√
α. This is worse that the β = 2α for unpredictability applications, but much better than the

complete loss of security β ≈ 1/2 required for some indistinguishability apps like (standard) PRFs.
12Assume some adversary breaks the scheme, say, forges a signature, with advantage β if the key comes from the

distribution K. If we sample a uniform key instead, it will have the same distribution as K conditioned on an event
that holds with probability 2−∆, and thus this adversary will still break the scheme with probability β/2∆.

7

to extract an almost uniform key, but “condensing" X into a key with |K| −∆ bits of min-entropy
for some small ∆ is enough.

[DPW14] show that a (log ε + 1)-wise independent hash function Cond : {0, 1}n × {0, 1}d →
{0, 1}` is a condenser with the following parameters. For any (X,Z) where H̃∞(X|Z) > `, for
a random seed S (used to sample a (log ε + 1)-wise independent hash function), the distribution
(Cond(X,S), S) is ε close to a distribution (Y, S) where H̃∞(Y |Z) > ` − log log(1/ε). Using such
an ` bit key (condensed from a source with ` bits min-entropy) for an unpredictability application
that is α secure (when using a uniform ` bit key), we get security β 6 α2log log(1/ε) + ε, which setting
ε = α gives β 6 α(1 + log(1/α)) security, thus, security degrades only by a logarithmic factor.

3.2 Key-Derivation from Computational Entropy

The bounds discussed in this section are summarised in Figures 1 and 2 in Appendix A. The last
row of Figure 2 is the new result proven in this paper.

HILL Entropy. As already discussed in the introduction, often we want to derive a key from a
distribution (X,Z) where there’s no “real" min-entropy at all H̃∞(X|Z) = 0. This is for example
the case when Z is the transcript (that can be observed by an adversary) of a key-exchange protocol
like Diffie-Hellman, where the agreed value X = gab is determined by the transcript Z = (ga, gb)
[Kra10,GKR04]. Another setting where this can be the case is in the context of side-channel attacks,
where the leakage Z from a device can completely determine its internal state X.

If X|Z has k bits of HILL entropy, i.e., is computationally indistinguishable from having min-
entropy k (cf. Def. 2) we can derive keys exactly as described above assuming X|Z had k bits of
min-entropy. In particular, if X|Z has |K|+ 2 log(1/ε) bits of HILL entropy for some negligible ε,
we can derive a key K that is pseudorandom, and if X|Z has |K|+log log(1/ε) bits of HILL entropy,
we can derive a key that is almost as good as a uniform one for any unpredictability application.

Unpredictability Entropy. Clearly, the minimal assumption we must make on a distribution
(X,Z) ∈ {0, 1}n × {0, 1}m for any key derivation to be possible at all is that X is hard to compute
given Z, that is, X|Z must have some unpredictability entropy as in Definition 4. Goldreich and
Levin [GL89] show how to generate pseudorandom bits from such a source. In particular, the
Goldreich-Levin theorem implies that if X|Z has at least 2 log ε−1 bits of list-unpredictability, then
the inner product RTX of X with a random vector R is ε indistinguishable from uniformly random
(the loss in circuit size is poly(n,m)/ε4). Using the chain rule for unpredictability entropy,13 we can
generate an ` = k − 2 log ε−1 bit long pseudorandom string that is `ε indistinguishable (the extra `
factor comes from taking the union bound over all bits) from uniform.

Thus, we can turn k bits of list-unpredictability into k − 2 log ε−1 bits of pseudorandom bits
(and thus also that much HILL entropy) with quality roughly ε. The question whether it’s possible
to generate significantly more than k− 2 log ε−1 of HILL entropy from a source with k bits of (list-
)unpredictability seems to have never been addressed in the literature before. The reason might
be that one usually is interested in generating pseudorandom bits (not just HILL entropy), and for
this, the 2 log ε−1 entropy loss is inherent. The observation that for many applications high HILL

13Which states that if X|Z has k bits of list-unpredictability, then for any (A,R) where R is independent of (X,Z),
X|(Z,A,R) has k − |A| bits of list-unpredictability entropy. In particular, extracting ` inner product bits, decreases
the list-unpredictability by at most `.

8

entropy is basically as good as pseudorandomness is more recent, and recently gained attention by
its usefulness in the context of leakage-resilient cryptography [DP08,DY13].

In this paper we prove that it’s in fact possible to turn almost all list-unpredictability into HILL
entropy.

4 Condensing Unpredictability

Below we state Theorem 1 whose proof is in Appendix B, but first, let us give some intuition. Let
X|Z have k bits of list-unpredictability, and assume we start extracting Goldreich-Levin hardcore
bits A1, A2, . . . by taking inner products Ai = RTi X for random Ri. The first extracted bits
A1, A2, . . . will be pseudorandom (given the Ri and Z), but with every extracted bit, the list-
unpredictability can also decrease by one bit. As the GL theorem requires at least 2 log ε−1 bits of
list-unpredictability to extract an ε secure pseudorandom bit, we must stop after k− 2 log ε−1 bits.
In particular, the more we extract, the worse the pseudorandomness of the extracted string becomes.
Unlike the original GL theorem, in our Theorem 1 we only argue about the unpredictability of the
extracted string, and unpredictability entropy has the nice property that it can never decrease, i.e.,
predicting A1, . . . , Ai+1 is always at least as hard as predicting A1, . . . , Ai. Thus, despite the fact
that once i approaches k it becomes easier and easier to predict Ai (given A1, . . . , Ai−1, Z and the
Ri’s)14 this hardness will still add up to k −O(1) bits of unpredictability entropy.

The proof is by contradiction, we assume that A1, . . . , Ak can be predicted with advantage 2−k+3

(i.e., does not have k− 3 bits of unpredictability), and then use such a predictor to predict X with
advantage > 2−k, contradicting the k bit list-unpredictability of X|Z.

If A1, . . . , Ak can be predicted as above, then there must be an index j s.t. Aj can be predicted
with good probability conditioned on A1, . . . , Aj−1 being correctly predicted. We then can use the
Goldreich-Levin theorem, which tells us how to find X given such a predictor. Unfortunately, j can
be close to k, and to apply the GL theorem, we first need to find the right values for A1, . . . , Aj−1

on which we condition, and also can only use the predictor’s guess for Aj if it was correct on the
first j − 1 bits. We have no better strategy for this than trying all possible values, and this is the
reason why the loss in circuit size in Theorem 1 depends on 2k.

In our proof, instead of using the Goldreich-Levin theorem, we will actually use a more fine-
grained variant due to Hast which allows to distinguish between errors and erasures (i.e., cases where
we know that we don’t have any good guess. As outlined above, this will be the case whenever the
predictor’s guess for the first j − 1 inner products was wrong, and thus we can’t assume anything
about the jth guess being correct). This will give a much better quantitative bound than what
seems possible using GL.

Theorem 1 (Condensing Upredictability Entropy). Consider any distribution (X,Z) over {0, 1}n×
{0, 1}m where

H∗unpε,s (X|Z) > k

then for a random R← {0, 1}k×n

Hunp
ε,t (R.X|Z,R) > k −∆

14The only thing we know about the last extracted bit Ak is that it cannot be predicted with advantage > 0.75,
more generally, Ak−j cannot be predicted with advantage 1/2 + 1/2j+2.

9

where15

t =
s

22k poly(m,n)
, ∆ = 3

5 High Unpredictability implies Metric Entropy

In this section we state our main results, showing that k bits of unpredictability entropy imply
the same amount of HILL entropy, with a loss exponential in the “entropy gap". The proof is in
Appendix C.

Theorem 2 (Unpredictability Entropy Implies HILL Entropy). For any distribution (X,Z) over
{0, 1}n × {0, 1}m, if X|Z has unpredictability entropy

Hunp
γ,s (X|Z) > k (6)

then, with ∆ = n− k denoting the entropy gap, X|Z has (real valued, deterministic) metric entropy

H
Metric,det,[0,1]
ε+γ,t (X|Z) > k for t = Ω

(
s · ε5

25∆ log2 (2∆ε−1)

)
(7)

By Lemma 1 this further implies that X|Z has, for any δ > 0, HILL entropy

HHILL
ε+δ+γ,Ω(tδ2/(n+m))(X|Z) > k

which for ε = δ = γ is
HHILL

3ε,Ω(s·ε7/25∆(n+m) log2(2∆ε−1))
(X|Z) > k

References

[BDK+05] Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam Smith.
Secure remote authentication using biometric data. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 147–163. Springer, May 2005.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM
Press, November 1993.

[BSW03] B. Barak, R. Shaltiel, and A. Wigderson. Computational Analogues of Entropy. In
S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai, editors, RANDOM-APPROX 03,
volume 2764 of LNCS, pages 200–215. Springer, 2003.

[CKLR11] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory delega-
tion. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 151–168.
Springer, August 2011.

[DGH+04] Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin. Ran-
domness extraction and key derivation using the CBC, cascade and HMAC modes.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 494–510.
Springer, August 2004.

15We can set ∆ to be any constant > 1 here, but choosing a smaller ∆ would imply a smaller t.

10

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing,
38(1):97–139, 2008.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In 49th
FOCS, pages 293–302. IEEE Computer Society Press, October 2008.

[DPW14] Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. Key derivation without entropy
waste. In EUROCRYPT 14, LNCS. Springer, 2014.

[DY13] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 1–22. Springer, March 2013.

[FR12] Benjamin Fuller and Leonid Reyzin. Computational entropy and information leakage.
Cryptology ePrint Archive, Report 2012/466, 2012. http://eprint.iacr.org/.

[GKR04] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Secure Hashed Diffie-Hellman over
non-DDH groups. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 361–381. Springer, May 2004.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In 21st ACM STOC, pages 25–32. ACM Press, May 1989.

[Has03] Gustav Hast. Nearly one-sided tests and the Goldreich-Levin predicate. In Eli Biham,
editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 195–210. Springer, May 2003.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[HLR07a] C.-Y. Hsiao, C.-J. Lu, and L. Reyzin. Conditional Computational Entropy, or Toward
Separating Pseudoentropy from Compressibility. In M. Naor, editor, EUROCRYPT 07,
volume 4515 of LNCS, pages 169–186. Springer, 2007.

[HLR07b] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational entropy,
or toward separating pseudoentropy from compressibility. In Moni Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 169–186. Springer, May 2007.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer,
August 2010.

[NZ93] Noam Nisan and David Zuckerman. More deterministic simulation in logspace. In 25th
ACM STOC, pages 235–244. ACM Press, May 1993.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors, and
depth-two superconcentrators. SIAM J. Discrete Math., 13(1):2–24, 2000.

[Sko15] Maciej Skorski. Metric pseudoentropy: Characterizations, transformations and applica-
tions. In ICITS 2015, volume 9063 of LNCS, pages 105–122. Springer, 2015.

11

http://eprint.iacr.org/

A Figures

Deriving a (pseudo)random key of length |K| = k − 2 log ε−1

from a source (X,Z) ∈ {0, 1}n × {0, 1}m where X|Z has k bits (min/HILL/list-unpredictability) entropy
Entropy Entropy quantity and Derive key K of Quality of derived key
type quality of source length k − 2 log ε−1 as HHILL

ε′,s′ (K|Z, S) = k − 2 log ε−1 = |K|
equivalently

(K,Z, S) ∼ε′,s′ (U|K|, Z, S)

min H̃∞(X|Z) = k K = Ext(X,S) ε′ = ε s′ =∞
HILL HHILL

δ,s (X|Z) = k K = Ext(X,S) ε′ = ε+ δ s′ ≈ s
Unpredict. H∗unpδ,s (X|Z) = k K = GL(X,S) = STX ε′ = mε+ δ s′ = s · ε4/poly(m,n)

Figure 1: Bounds on deriving a (pseudo)random key K of length |K| = k − 2 log ε−1 bit from
a source X|Z with k bits of min, HILL or list-unpredictability entropy. Ext is a strong extractor
(e.g. leftover hashing), and GL denotes the Goldreich-Levin construction, which for X ∈ {0, 1}n and
S ∈ {0, 1}n×|K| is simply defined as GL(X,S) = STX. Leftover hashing requires a seed of length
|S| = 2n (extractors with a much shorter seed |S| = O(log n+log ε−1) that extract k−2 log ε−1−O(1)
bits also exist), whereas Goldreich-Levin requires a longer |S| = |K|n bit seed. The above bound
for HILL entropy even holds if X|Z only has k bits of probabilistic boolean metric entropy (a notion
implying the same amount of HILL entropy, albeit with a loss in circuit size), as shown in Theorem
2.5 of [FR12]

Deriving k bit key K with high HILL entropy from X|Z with k bits (min/HILL/list-unpredictability) entropy
Entropy Entropy quantity and Derive key of Quantity and quality of HILL entropy of K

type quality of soucre length |K| = k as HHILL
ε′,s′ (K|Z, S) > k −∆

min H̃∞(X|Z) = k K = Cond(X,S) ε′ = ε s′ =∞ ∆ = log log ε−1

HILL HHILL
δ,s (X|Z) = k K = Cond(X,S) ε′ = ε+ δ s′ ≈ s ∆ = log log ε−1

Unpredict. H∗unpδ,s (X|Z) = k K = GL(X,S) = STX ε′ = ε+ δ s′ = s · ε7/22kpoly(m,n) ∆ = 3

Figure 2: Bounds on deriving a key of length k with min (or HILL) entropy k−∆ from a sourceX|Z
with k bits of min, HILL or unpredictability entropy. Cond denotes a (log ε + 1) wise independent
hash function, which is shown to be a good condenser (as stated in the table) for min-entropy
in [DPW14]. The bounds for HILL entropy follow directly from the bound for min-entropy. The
last row follows from the results in this paper as stated in Proposition 1.

B Proof of Theorem 1

We will use the following theorem due Hast [Has03] on decoding Hadamard code with errors and
erasures.

Theorem 3 ([Has03]). There is an algorithm LD that, on input l and n and with oracle access
to a binary Hadamard code of x (where |x| = n) with an e-fraction of errors and an s-fraction of
erasures, can output a list of 2l elements in time O(nl2l) asking n2l oracle queries such that the
probability that x is contained in the list is at least 0.8 if l > log2(20n(e + c)/(c − e)2 + 1), where
c = 1− s− e (the fraction of the correct answers from the oracle).

12

We’ll often consider sequences v1, v2, . . . of values and will use the notation vba to denote (va, . . . , vb),
with vba = ∅ if a > b. vb is short for vb1 = (v1, . . . , vb).

of Theorem 1. It’s sufficient to prove the theorem for ε = 0, the general case ε > 0 then follows
directly by the definition of unpredictability entropy. To prove the theorem we’ll prove its contra-
position

Hunp
t (R.X|Z,R) < k −∆ ⇒ H∗unps (X|Z) < k (8)

The left-hand side of (8) means there exists a circuit A of size |A| 6 t such that

Pr
(x,z)←(X,Z),r←{0,1}k×n

[A(z, r) = r.x] > 2−k+∆ (9)

It will be convenient to assume that A initially flips a coin b, and if b = 0 outputs a uniformly
random guess. This loses at most a factor 2 in A’s advantage, i.e.,

Pr
(x,z)←(X,Z),r←{0,1}k×n

[A(z, r) = r.x] > 2−k+∆−1 (10)

but now we can assume that for any z, r and w ∈ {0, 1}k

Pr[A(z, r) = w] > 2−k−1 (11)

Using Markov eq.(10) gives us

Pr
(x,z)←(X,Z)

[Pr
r←{0,1}k×n

[A(z, r) = r.x] > 2−k+∆−2] > 2−k+∆−2 (12)

We call (x, z) ∈ supp[(X,Z)] “good" if

(x, z) is good ⇐⇒ Pr
r←{0,1}k×n

[A(z, r) = r.x] > 2−k+∆−2 (13)

Note that by eq.(12), (z, x)← (Z,X) is good with probability > 2−k+∆−2.
We will use A to construct a new circuit B of size s = O(t22k poly(n)) where

Pr
(x,z)←(X,Z)

[B(z) = x |(x, z) is good] > 1/2 (14)

Which with (14) and (12) further gives

Pr
(x,z)←(X,Z)

[B(z) = x] = Pr[B(z) = x|(x, z) is good] · Pr[(x, z) is good]

> 2−1 · 2−k+∆−2 = 2−k+∆−3 (15)

contradicting the right-hand side of (8), and thus proving the theorem.
We’ll now construct B satisfying (14), for this, consider any good (x, z). Let R = Rk =

(R1, . . . , Rk) be uniformly random and let A = Ak = (A1, . . . , Ak) where Ai = Ri.x.
Let Â← A(z,R) and define εi = PrR[Âi = Ai|Âi−1 = Ai−1]. Using (13) in the last step

k∏
i=1

εi = Pr
R

[A = Â] = Pr
R

[A(z,R) = R.x] > 2−k+∆−2

13

Thus, here exists an i s.t., εi > 2
−k+∆−2

k = 1
2 + δ with δ ≈ ∆−2

k ·
ln(2)

2 . We fix this i (we don’t know
which i is good, and later will simply try all of them). Then

ERi−1 [Pr
Ri,Rk

i+1

[Âi = Ai | Âi−1 = Ai−1]] > 1/2 + δ

Using Markov

Pr
Ri−1

[Pr
Ri,Rk

i+1

[Âi = Ai | Âi−1 = Ai−1] > 1/2 + δ/2] >
δ

2
(16)

We call ri−1 good if (note that by the previous equation a random ri−1 is good with probability
> δ/2).

ri−1 is good ⇐⇒ Pr
Ri,Rk

i+1

[Âi = Ai | Âi−1 = Ai−1] > 1/2 + δ/2 (17)

From now on, we fix some good ri−1 and assume we know ai−1 = ri−1.x (later we’ll simply try all
possible choices for ai−1).

We define a predictor Pi(ri) that tries to predict ri.x given a random ri (and also knows
z, ri−1, ai−1 as above) as follows

1. Sample random rki+1 ← Rki+1

2. Invoke Âk ← A(z, r(i), x). Note that r(i) = (ri−1, ri, r
k
i+1) consists of the fixed ri−1, the input

ri and the randomly sampled rki+1.

3. if Âi−1 = ai−1 output Âi, otherwise output ⊥.

Using (11), which implies Pr[Âi−1 = ai−1] > 2−i, and (17) we can lower bound Pi’s rate and
advantage as

Pr
Ri

[Pi(Ri) 6= ⊥] = Pr[Âi−1 = ai−1] > 2−i,

Pr
Ri

[Pi(Ri) = Ri.x] > Pr[Âi−1 = ai−1](
1

2
+ δ/2). (18)

In terms of Theorem 3, we have a binary Hadamard code with e + c = Pr[Âi−1 = ai−1],
c− e = δ · Pr[Âi−1 = ai−1], which implies that (e+ c)/(c− e)2 6 2i

δ2 .
Now Theorem 3 implies that given such a predictor P we can output a list that contains x with

probability > 0.8 in time O(2i poly(m,n)) = O(2k poly(m,n)), as we assume access to an oracle Eq
with outputs 1 on input x and 0 otherwise, we can find x in this list with the same probability.

Using this, we can now construct an algorithm as claimed in (14) as follows: B will sample
i ∈ {1, . . . , k} and then ri−1 at random. Then B calls Pi with all possible ai−1 ∈ {0, 1}i−1. We
note that with probability δ/2k (we lose a factor k for the guess of i, and δ/2 is the probability of
sampling a good ri−1) the predictor Pi will satisfy (18).

If x is not found, B repeats the above process, but stops if x is not found after 2k/δ iterations.
The success probability of B is ≈ (1− 1/e)0.8 > 0.5 as claimed, the overall running time we get is
O(22k poly(m,n)).

14

C Proof of Theorem 2

It’s sufficient to prove the theorem for γ = 0, the case γ > 0 then follows directly by definition
of unpredictability entropy. Suppose for the sake of contradiction that (7) does not hold. That is,
H

Metric,det,[0,1]
t,ε (X|Z) < k, which means that there exists a distinguisher D : {0, 1}n×{0, 1}m → [0, 1]

of size t that satisfies

ED(X,Z)− ED(Y, Z) > ε ∀(Y,Z) : H̃∞(Y |Z) > k. (19)

We will show how to construct an efficient algorithm that given Z uses D to predict X with proba-
bility at least 2−k, contradicting (6). The core of the algorithm is the procedure Predictor described
below.

Function Predictor(z,D′, `)
Input : z ← Z, [0, 2]-valued distinguisher D′

Output: x ∈ {0, 1}n
1 b← 1, i← 1
2 while b 6= 0 and i < ` do
3 x← {0, 1}n
4 b← BernoulliDistribution(D′(x, z)/2) /* outputs 1 w.p. D′(x, z)/2 */
5 if b = 0 then
6 i← i+ 1
7 else
8 return x
9 end

10 end
11 return ⊥

Predictor(Z,D, `) samples an element x ∈ {0, 1}n according to some probability distribution.
This distribution captures the following intuition: as the advantage ED(X,Z)−ED(Y,Z) is positive
(as assumed in (19)), we know that x being the correct guess for X is positively correlated with the
value D(x, Z). The probability that Predictor(Z,D, `) returns some particular value x as guess for
X will be linear in D(x, Z).

Predictor(Z,D, `) may also output ⊥, which means it failed to sample an x according to this
distribution. The probability of outputting ⊥ goes exponentially fast to 0 as ` grows.

A toy example: predicting X when Z is empty and D is boolean. Suppose that ED(X)−
ED(Y) > ε for all Y such that H∞(Y) > k. And assume that D(.) is boolean (not real valued as
in our theorem). Then Predictor(∅,D, `) will output a guess for X that (if it’s not ⊥) is a random
value x satisfying D(x) = 1. The probability that this guess for X is correct equals ED(X)/|D|
where |D| =

∑
xD(x). Consider now the distribution Y of min-entropy k that maximizes ED(Y).

We can assume that Y is flat and supported on those 2k elements x for which the value D(x) is
the biggest possible. Observe that since ED(X) − ED(Y) > 0, we have ED(Y) < 1 and since D
is boolean, the support of Y contains all the elements x satisfying D(x) = 1. Therefore we obtain

15

ED(Y) = 2−k|D|. Now we can estimate the predicting probability from below as follows:

Pr[X is predicted correctly] =
ED(X)

|D|
>

ED(Y) + ε

|D|
= 2−k +

ε

|D|

The above probability holds for ` =∞, i.e., when predictor never outputs ⊥. For efficiency reasons,
we must use a finite, and not too big `. The predictor will output ⊥ with probability (1− 2−n|D|)`

and thus

Pr[we predcit X in time O(` · time(D))] =

(
2−k +

ε

|D|

)(
1−

(
1− 2−n|D|

)`)
With a little bit of effort one can prove that setting ` = 1 + 2n−k/ε ≈ 2∆/ε yields the success
probability 2−k independently of |D|.

Proof in general case - important issues Unfortunately, what we have proven above cannot
be generalized easily to the case considered in the theorem, there are two obstacles. First, in
the theorem we consider a conditional distribution X|Z (i.e., the conditional part Z is not empty
as above). Unfortunately we cannot simply make the above argument separately for all possible
choices Z = z of the conditional part, as we cannot guarantee that the conditional advantages ε(z) =
ED(X|Z = z, z)− ED(Y |Z = z, z) are all positive; we only know that their average ε = Ez←Zε(z)
is positive. Second, so far we assumed that D is boolean. This would only prove the theorem where
the derived entropy in (7) is against deterministic boolean distinguishers, and this is not enough to
conclude that we have the same amount of HILL entropy as discussed in Section 2.0.4.

Actual proof - preliminaries For real-valued distinguishers in the conditional case, just invoking
Predictor(Z,D, `) on a D satisfying (19), will not give a predictor for X with advantage > 2−k

in general. Instead, we first have to transform D into a new distingusiher D′ that has the same
distinguishing advantage, and for which we can prove that the predictor will work.

The way in which we modify D depends on the distribution Y |Z that minimizes the left-hand
side of (19). This distribution can be characterized as follows:

Lemma 2 ([Sko15]). Given D : {0, 1}n × {0, 1}m → [0, 1] consider the following optimization
problem

max
Y |Z

ED(Y,Z)

s.t. H̃∞(Y |Z) > k
(20)

The distribution Y |Z = Y ∗|Z satisfying H̃∞(Y ∗|Z) = k is optimal for (20) if and only if there exist
real numbers t(z) and a number λ > 0 such that for every z

(a)
∑

x max(D(x, z)− t(z), 0) = λ

(b) If 0 < PY ∗|Z=z(x) < maxx′ PY ∗|Z=z(x
′) then D(x, z) = t(z).

(c) If PY ∗|Z=z(x) = 0 then D(x, z) 6 t(z)

(d) If PY ∗|Z=z(x) = maxx′ PY ∗|Z=z(x
′) then D(x, z) > t(z)

16

Proof. The proof is a straightforward application of the Kuhn-Tucker conditions given in Appendix.

Remark 2. The characterization can be illustrated in an easy and elegant way. First, it says that
the area under the graph of D(x, z) and above the threshold t(z) is the same, no matter what z is
(see Figure 3).

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

D
(x
,z

1
)

D(x, z1)

t(z1)

D(x, z1) > t(z1)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

D
(x
,z

2
)

D(x, z2)

t(z2)

D(x, z2) > t(z2)

Figure 3: For every z, the (green) area under D(·, z) and above t(z) equals λ

Second, for every z the distribution Y ∗|Z = z is flat over the set {x : D(x, z) > t(z)} and vanishes
for x satisfying D(x, z) < t(z), see Fig. 4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

D
(x
,z
)

D(x, z)

t(z)

D(x, z) > t(z)

D(x, z) < t(z)

2−10

2−8

2−6

2−4

2−2

20

P
Y

∗
|Z

=
z
(x
)

PY ∗|Z=z

Figure 4: Relation between distinguisher D(x, z), threshold t(z) and distribution Y ∗|Z = z.

Note that because of “freedom" in defining the distribution on elements x satisfying D(x, z) = t(z)
(2, point (b)), there could be many distributions Y ∗|Z corresponding to fixed numbers λ and t(z)
that satisfy the characterization above, and this way are optimal to (20) with k = H̃∞(Y ∗|Z). For
the sake of completeness we characterize bellow the all possible values of k that match to λ and
t(z). We note that this fact might be used to modify our nonuniform guessing algorithm into a
uniform one.

17

Corollary 1. Let D : {0, 1}n × {0, 1}m → [0, 1] and λ ∈ (0, 1). Let t(z) = t(λ, z) be the unique
numbers that satisfy the condition (a) in Lemma 2. Define

k(λ) = n− log (Ez←Z [1/P(D(U, z) > t(z))]) , (21)

which is a non-decreasing right continuous function of λ. Let k−(λ) = limλ′→λ− k(λ′) and k+(λ) =
limλ′→λ+ k(λ′) = k(λ) be the one-sided limits. Then for every Y ∗|Z of min-entropy k = H̃∞(Y ∗|Z)
fulfilling (b),(c) and (d) we have k− 6 k 6 k+. Conversely, if k satisfies k− 6 k 6 k+ then there
exists a distribution Y ∗|Z fulfilling (b),(c) and (d) such that H̃∞(Y ∗|Z) = k.

Predicting given the thresholds t(z). We use the numbers t(z) to modify D and then we
call the procedure Predictor on the modified distinguisher. Lemma 3 below shows that we could
efficiently predict X from Z, assuming we knew the numbers t(z) for all z in the support of Z (later,
we’ll show how to efficiently approximate them)

Lemma 3. Let Y ∗|Z be the distribution satisfying H̃∞(Y ∗|Z) = k and maximizing ED(Y,Z) over
H̃∞(Y |Z) > k, where k < n and D satisfies (19). Let t(z) be as in Lemma 2. Define

D′(x, z) = max(D(x, z)− t(z), 0) (22)

and set ` = 2 · 2n−kε−1 in the algorithm Predictor. Then we have

Pr
(
Predictor(Z,D′, `) = X

)
> 2−k

(
1 + 2k−nε

)
(23)

Proof. We start by calculating the probability on the left-hand side of(23)

Claim 1. For any16 D′, the algorithm Predictor outputs X given Z = z with probability

Pr
X,Z

(
Predictor(Z,D′, `) = X

∣∣Z = z
)

= 2−n−1g

(
ED′(U, z)

2

)
· ED′(X|Z = z, z) (24)

where U is uniform over {0, 1}n and g is defined by g(d) = 1−(1−d)`

d (so g(d) ≈ 1/d for large `)

of Claim. It is easy to observe that

Pr[Predictor(z,D′, `) = x
∣∣Predictor(z,D′, `) 6= ⊥] =

D′(x, z)∑
x
D′(x, z)

(25)

In turn, for every round i = 1, . . . , ` of the execution, the probability that Predictor stops
and outputs x′ is equal to Pr[U = x′]D′(x′, z)/2 = 2−n−1D′(x′, z), the probability that it outputs
anything (and thus leaves the while loop) is thus

∑
x′ Pr[U = x′] ·

(
1− D′(x′,z)

2

)
= 1− ED′(U,z)

2 . So
the probability of not leaving the while loop for ` rounds (in this case the output is ⊥) is

Pr[Predictor(z,D′, `) = ⊥] = 1−
(

1− ED′(U, z)
2

)`
(26)

16We will only use the claim for the distinguisher D′ as constructed above, but the claim holds in general.

18

Combining the last two formulas we obtain

Pr[Predictor(z,D′) = x] = 2−n−1g(ED′(U, z)/2) · D′(x, z) (27)

Hence

Pr[Predictor(z,D′) = X|Z = z] =
∑
x

Pr[Predictor(z,D′) = x,X = x|Z = z]

=
∑
x

Pr[Predictor(z,D′) = x] Pr[X = x|Z = z]

= 2−n−1g(ED′(U, z)/2)
∑
x

D′(x, z) Pr[X = x|Z = z]

= 2−n−1g(ED′(U, z)/2)ED′(X|Z = z, z) (28)

and the claim follows.

Now we can see why we cannot apply the algorithm Predictor using the distinguisher D
satisfying only (19) directly. According to the last formula, the success probability would be an
averaged sum of products g(ED(U, z)) ·ED(X|Z = z, z) over z. We know the average of the second
factors of these products, but in general cannot compare the values of ED(U, z) for different z’s.
The crucial observation is that the distinguisher D′ we defined satisfies the same inequality (19) as
D (though, D′ has the range [0, 2] not [0, 1] as D). Moreover D′ has a special form which allows us
to simplify expression (23). The details are given in the next two claims

Claim 2. We have ED′(X,Z)− ED′(Y, Z) > ε for all Y |Z : H̃∞(Y |Z) > k

of Claim. We argue that (a): ED′(X,Z) − ED′(Y ∗, Z) > ED(X,Z) − ED(Y ∗, Z) and (b): Y ∗|Z
maximizes D′(Y,Z) over H̃∞(Y |Z) > k. For the proof of (a), observe that by (22) we have D′(x, z) >
D(x, z)−t(z) for every x and z. Hence ED′(X,Z) > ED(X,Z)−t(z). Moreover, if D(x, z)−t(z) < 0
then Lemma 2 implies PY ∗|Z=z(x) = 0 and thus ED′(Y ∗|Z = z, z) = ED(Y ∗|Z = z)− t(z). Hence,
for all z we have

ED′(X|Z = z)− ED′(Y ∗|Z = z, z) > ED(X|Z = z, z)− ED(Y ∗|Z = z, z)

The proof of (a) follows now by taking the average over z. The proof of (b) follows by observing
that D′ satisfies the characterization in (2) with t(z) = 0 for all z.

Claim 3. The exists a number λ′ ∈ (0, 1) such that ED′(U, z) = λ′ for every z.

Proof. Lemma 2 implies
∑

xD
′(x, z) = λ for every z. We can define λ′ = 2−nλ and then it remains

to show λ < 2n and λ > 0. Observe that the case t(z) < 0 in Lemma 2 is possible if and only if
PY ∗|Z=z(x) = maxx′ PY ∗|Z=z(x

′) for all x, which means H∞(Y ∗|Z = z) = n. Since k < n, we have
t(z) > 0 for at least one z and then λ =

∑
x max(D(x, z) − t(z), 0) 6

∑
xD(x, z) which essentially

means λ 6 2n. Lemma 2 guarantees that λ > 0 , therefore we need to show that λ 6∈ {0, 2n}.
Observe that if λ = 0 then the condition

∑
xD
′(x, z) = λ implies D′(x, z) = 0 for all x and z,

contradicting to Claim 2 because ε > 0. In turn, if λ = 2n then from Lemma 2 we get D(·, z) ≡ 1
and t(z) = 0 for all z such that t(z) > 0. This is possible only if PY ∗|Z=z(x) = maxx′ PY ∗|Z=z(x

′)
for all x which means H∞(Y ∗|Z = z) = n if t(z) > 0. But then H∞(Y ∗|Z = z) = n for all z which
contradicts k < n.

19

To calculate the success probability we need one more observation. The following claim shows that
support of D′ is contained in the support of Y ∗.

Claim 4. For every z we have

ED′(Y ∗|Z = z, z) = ED′(U, z) · 2n max
x′

PY ∗|Z=z(x
′). (29)

of Claim. By Lemma 2, D(x, z) > t(z) only if PY ∗|Z=z(x) = maxx′ PY ∗|Z=z(x
′) therefore

ED′(Y ∗|Z = z, z) =
∑
x

max(D(x, z)− t(z), 0)PY ∗|Z=z(x)

=
∑
x

max(D(x, z)− t(z), 0) max
x′

PY ∗|Z=z(x
′),

and the claim follows by the definition of D′.

Now we are ready to prove the main result. From Claim 1 and Claim 3 we obtain

Pr
(
Predictor(Z,D′, `) = X

)
= 2−n−1Ez←Z

[
g(λ′/2) · D′(X|Z = z, z)

]
= 2−n−1g(λ′/2) · ED′(X,Z) (30)

Claim 2 applied to Y = Y ∗ yields now the following estimate

Pr
(
Predictor(Z,D′, `) = X

)
> 2−n−1g(λ′/2) ·

(
ED′(Y ∗, Z) + ε

)
. (31)

Observe that Claim 4, Claim 3, and H̃∞(Y ∗|Z) = k imply

ED′(Y ∗, Z) = Ez←Z
[
D′(Y ∗|Z = z, z)

]
= Ez←Z

[
ED′(U, z) · 2n max

x′
PY ∗|Z=z(x

′)

]
= 2nλ′ · Ez←Z

[
max
x′

PY ∗|Z=z(x
′)

]
= 2n−kλ′ (32)

Plugging this into (31) we get the following bound

Pr
(
Predictor(Z,D′, `) = X

)
> 2−n−1g(λ′/2) ·

(
2n−kλ′ + ε

)
= 2−k

(
1− (1− λ′/2)`

)(
1 +

2k−n−1ε

λ′/2

)
(33)

To give a lower bound on the success probability it remains to minimize the last expression over
λ′ ∈ (0, 1). This is answered below

Claim 5. Let h(s) = (1−(1−s)`)(1+as−1), where a > 0 and ` > 1+a−1. Then h(s) > h(1) = 1+a
for all s ∈ [0, 1].

of Claim. The proof uses standard calculus and is given in the appendix.

20

Computing t(z) from λ So far, we have shown how to construct the predicting algorithm pro-
vided that we are given the numbers t(z). Now we will prove that one can compute them approxi-
mately and use successfully in place of the original ones. We start with a few useful facts about the
auxiliary function g already introduced in Claim 1 in the proof of Lemma 3. Below we summarize
its fundamental properties.

Lemma 4. For ` > 1 the function g(d) = 1−(1−d)`

d on [0, 1] satisfies:

(a) g is continuous at 0 and decreasing

(b) g is convex

(c) for any d2 > d1 we have g(d2) > g(d1)
(
1− `

2 · |d2 − d1|
)

of Lemma. The proof uses elementary calculus and is referred to the appendix

The entire solution is based on the next two lemmas. The first lemma is based on the intuition
that replacing D by a distinguisher which approximates it close enough should not affect the success
probability of Predictor(Z,D, `) very much. For technical reasons we present this statement
assuming one-sided L1-approximation. The second lemma describes an efficient algorithm which
obtains λ as a hint on its input and computes approximations for t(z) from below, for every z.

Lemma 5. Let D1,D2 : {0, 1}n × {0, 1}m → [0, 1] be any two functions satisfying

(a) D2(x, z) > D1(x, z) for all x, z

(b) ED2(U, z)− ED1(U, z) 6 δ for all z

Then we have

Pr (Predictor(Z,D2, `) = X) > (1− `δ/2) Pr (Predictor(Z,D1, `) = X) (34)

of Lemma. We have

Pr (Predictor(z,D2, `) = X|Z = z) = g(ED2(U, z))ED2(X|Z = z, z)

> g(ED2(U, z))ED1(X|Z = z, z), (35)

where the inequality follows from D2 > D1 > 0. The assumptions (a) and (b) imply |ED1(U, z)− ED2(U, z)| 6
δ for every z. From property (c) in Lemma 4 it follows that

g(ED2(U, z)) > g(ED1(U, z))(1− `δ/2)

for every z. Combining the last two estimates we get

Pr (Predictor(z,D2, `) = X|Z = z) > (1− `δ/2) · g(ED1(U, z))ED1(X|Z = z, z)

= (1− `δ/2) · Pr (Predictor(z,D1) = X|Z = z) (36)

Taking the average over z ← Z completes the proof.

21

Lemma 6. Let D : {0, 1}n → [0, 1] be any function computable in time s, let λ ∈ (0, 1) and
t ∈ [0, 1] be a number such that Emax(D(U) − t, 0) = λ. There exists a probabilistic algorithm
FindThreshold(D, λ, δ,N) that runs in time O (log(1/δ)N · time(D)) and with probability at least
1− 2 log(12/δ)e−Nδ

2/3 outputs a number t′ such that Emax(D(U)− t′, 0) ∈ [λ, λ+ δ]. In particular,
t′ 6 t.

of Lemma. The idea is pretty simple: given t′ we approximate values Emax(D(U)−t′, 0) by sampling
and by comparing the result with λ, we can find the right value of t′ using binary search. This
corresponds to finding a blue line on Fig. 4 such that the green area above is sufficiently close to λ.

Function FindThreshold(D, λ, δ,N)
Input : D : {0, 1}n → [0, 1], λ ∈ (0, 1), parameters δ,N
Output: t′ such that Emax(D(U)− t′, 0) ∈ [λ, λ+ δ]

1 t− ← −1, t+ ← 1
2 repeat
3 t′ ← (t− + t+)/2
4 x1, . . . , xN ← U /* fresh values every time */
5 λ′ ← N−1

∑N
j=1 max (D(xj)− t′, 0) /* λ′ ≈ Emax(D(U)− ti, 0) */

6 if λ′ > λ+ 2δ
3 then

7 t− ← t′

8 else if λ′ < λ+ δ
3 then

9 t+ ← t′

10 else
11 return t′

12 end
13 until t+ − t− 6 δ

12

14 if t′ < −1 + δ
12 then

15 t′ ← −1
16 return t′

The function h(t′) = Emax(D(U) − t′, 0) is clearly non-increasing with respect to t′ and changes
from 1+ED(U) at t′ = −1 to 0 for t = 1. Moreover, it is strictly decreasing in a small neighborhood
of t′ = t and for all t′ < t. Indeed, since λ > 0 there is at least one x such that D(x) > t. Taking
t′ < t′′ 6 minx:D(x)>tD(x) we see that h(t′) − h(t′′) > 2−n(t′′ − t′) > 0. Hence, t′ > t implies
Emax(D(U) − t′, 0) < Emax(D(U) − t, 0) = λ. This proves the second part of the statement.
Denote by λ′i, t

′
i, t
−
i , t

+
i the values assigned in round i to λ′, t′, t−, t+ respectively. Observe that by

the Chernoff Bound17 and the union bound over at most log(12/δ) rounds of the execution, with
probability p = 1− 2 log(12/δ) exp(−Nδ2/3) we have |λ′i − h(ti)| < δ

12 for every round i. Note that
with the same probability the algorithm satisfies the invariant property: if there is t0 ∈ [t−i , t

+
i]

such that h(t0) ∈
[
λ+ 5δ

12 , λ+ 7δ
12

]
and the algorithm jumps to round i + 1 then t0 ∈

[
t−i+1, t

+
i+1

]
.

Suppose that h(t0) ∈
[
λ+ 5δ

12 , λ+ 7δ
12

]
for some t0 ∈ [−1, 1]. Now we have two possibilities: either

17We use the following version: let X1, . . . , XN be [0, 1]-valued independent random variables, let X =
∑N

i=1 Xi

and µ = EX. Then Pr (|X − µ| > δµ) < 2 exp(−µδ2/3)

22

we terminate with ti such that λi ∈
[
λ+ δ

3 , λ+ 2δ
3

]
which means h(ti) ∈

[
λ+ 3δ

12 , λ+ 7δ
12

]
and we

are done, or we will eventually find such t0 up to an error δ
12 . Since |h(t2)−h(t1)| 6 |t2− t1| for any

t1, t2, the returned number t′ satisfies h(t0) − δ
12 6 h(t′) 6 h(t0) + δ

12 , in particular it satisfies the
desired inequality. It remains to consider the case when either h(t) < λ+ 5δ

12 for all t or h(t) > λ+ 7δ
12 .

Since h(1) = 0 the second is clearly impossible. In the first case we have h(t) 6 h(−1) < λ + 5δ
12 ,

which means that in every round i we have t−i = −1 and either we terminate with ti such that
λ′i ∈

[
λ+ δ

3 , λ+ 2δ
3

]
which means h(ti) ∈

[
λ+ 3δ

12 , λ+ 7δ
12

]
and we are done, or in every round i we

do the assignment t+i+1 = ti which yields ti = −1+2−i+1 and the main loop halts with ti < −1+ δ
12 .

The algorithm outputs then −1 which satisfies the desired inequality, because of the assumption
h(−1) < λ+ 5δ

12 and the trivial inequality h(−1) > 1 > λ.

Let D′ be as in Lemma 3. Let t′(z) = FindThreshold(D, λ, δ,N), defineD′′(x, z) = max(D(U, z)−
t′(z), 0). Denote by Pr[bad] the probability that ED′′(U, z) 6∈ [λ, λ + δ] (i.e. probability of failure
of the algorithm FindThreshold). If the event bad doesn’t occur then D′′ > D′ and ED′′(U, z) 6
ED′(U, z) + δ. Applying the last two claims we obtain

Pr
[
Predictor(z,D′′, `)

]
> 2−k

(
1 + 2k−nε

)
·
(

1− `δ

2

)
Pr[¬bad] (37)

By the elementary inequality (1 + s)(1 − s/4)2 > 1 valid for s ∈ [0, 1], for this probability to be
bigger than 2−k it is enough to require

`δ/2 6 2k−nε/4 (38)

2 log(12/δ) exp(−Nδ2)/3) 6 2k−nε/4 (39)

The solution for the first inequality is δ = O(22(k−n)ε2) which implies δ � ε. The second one gives us
N = Ω

(
(1/δ)2(log log(1/δ) + n− k + log(1/ε)

)
which can be simplified toN = Ω

(
(1/δ)2(log(1/δ)

)
.

The total running time is (up to a constant factor) the time needed for invoking O (` ·N log(1/δ)) =
O
(
(2∆/ε)5 log2

(
2∆/ε

))
times of the distinguisher D .

D Proof of Lemma 2

Proof. Consider the following linear optimization program

maximize
Px,z ,az

∑
x,z

D(x, z)P (x, z)

subject to −Px,z 6 0, (x, z) ∈ {0, 1}n × {0, 1}m∑
x

Px,z −PZ(z) = 0, z ∈ {0, 1}m

Px,z − az 6 0, z ∈ {0, 1}m∑
z

az − 2−k 6 0

(40)

This problem is equivalent to (20) if we define PY,Z(x, z) = P (x, z) and replace the condition∑
z maxxPY,Z(x, z) 6 2−k, which is equivalent to H̃∞(Y |Z) > k, by the existence of numbers

az > maxxPY,Z(x, z) such that
∑

z az 6 2−k. The solutions of (40) can be characterized as follows:

23

Claim 6. The numbers (Px,z)x,z, (az)z are optimal for (40) if and only if there exist numbers
λ1(x, z) > 0, λ2(z) ∈ R, λ3(x, z) > 0, λ4 > 0 such that

(a) D(x, z) = −λ1(x, z) + λ2(z) + λ3(x, z) and 0 = −
∑

x λ
3(x, z) + λ4

(b) We have λ1(x, z) = 0 if Px,z > 0, λ3(x, z) = 0 if Px,z < az, λ4 = 0 if
∑

z az < 2−k.

of Claim. This is a straightforward application of KKT conditions.

It remains to apply and simplify the last characterization. Let (P ∗x,z)x,z, (a
∗
z)z be optimal for (40),

where P ∗(x, z) = PY ∗,Z(x, z), and λ1(x, z), λ2(z), λ3(x, z), λ4(x) be corresponding multipliers given
by the last claim. Define t(z) = λ2(z) and λ = λ4. Observe that for every z we have a∗z >
max
x

P(x, z) > 2−nPZ(z) > 0 and thus for every (x, z) we have

λ1(x, z) · λ3(x, z) = 0 (41)

If P ∗(x, z) = 0 then P ∗(x, z) < a∗(z) and λ3(x, z) = 0, hence D(x, z) 6 t(z) which proves (c). If
P ∗(x, z) = maxx′ P

∗(x, z) then P ∗(x, z) < 0 and λ1(x, z) = 0 which proves (d). Finally observe
that (41) implies

max(D(x, z)− t(z), 0) = max(−λ1(x, z) + λ3(x, z), 0) = λ3(x, z)

Hence, the assumption
∑

x λ
3(x, z) = λ4 = λ proves (a).

Suppose now that the characterization given in the Lemma is satisfied. Define P ∗(x, z) =
PY,Z(x, z) and az = maxz PY ∗,Z(x, z), let λ3(x, z) = max(D(x, z)− t(z), 0), λ1(x, z) = max(t(z)−
D(x, z), 0) and λ4 = λ. We will show that these numbers satisfy the conditions described in the
last claim. By definition we have −λ1(x, z) + λ2(z) + λ3(x, z) = D(x, z), by the assumptions we
get

∑
x λ

3(x, z) = λ = λ4. This proves part (a). Now we verify the conditions in (b). Note
that D(x, z) < t(z) is possible only if PY ∗|Z=z(x) = 0 and D(x, z) > t(z) is possible only if
PY ∗|Z=z(x) = maxx′ PY ∗|Z=z(x

′). Therefore, if PY,Z(x, z) > 0 then we must have D(x, z) > t(z)
which means that λ1(x, z) = 0. Similarly if PY,Z(x, z) < maxz PY ∗,Z(x, z) then D(x, z) 6 t(z) and
λ3(x, z) = 0. Finally, since we assume H̃∞(Y ∗|Z) = k we have

∑
z az = 2−k and thus there is no

additional restrictions on λ4.

E Proof of Corollary1

of Corollary. Let ymax(z) = maxx′ PY |Z=z(x
′). Consider the function

f δz (x) =


ymax(z) + δ, D′(x, z) > t(z)

1−#{x: D′(x.z)>t(z)}·(ymax+δ)
#{x: D′(x,z)=t(z)} , D′(x, z) = t(z)

0, D′(x, z) < t(z)

(42)

This function defines a distribution that satisfies

f δz (x) 6 max
x′

f δz (x′) ∀x : D′(x, z) 6 t(z) (43)

24

if and only if δ satisfies

1

{x : D′(x.z) > t(z)}
6 ymax(z) + δ 6

1

{x : D′(x.z) > t(z)}
(44)

In particular these conditions are satisfied for δ = 0. Suppose now that there are zi and xi for
i = 1, 2 such that 0 < PY ∗|Z=zi(xi) < max

x′
PY ∗|Z=z(x

′). Define δ by

δ = min

(
ymax(z1)− 1

{x : D′(x, z1) > t(z1)}
,

1

{x : D′(x, z2) > t(z2)}
− ymax(z2)

)
By Lemma 2 we immediately obtain that δ > 0. It follows easily from the definition of δ that
the number −δ satisfies (44) with z = z1 and that δ satisfies (44) for z = z2. We can see now
that if we replace the distribution Y ∗|Z = z1 by f−δz1 and the distribution Y ∗|Z = z2 by f δz2 then
we obtain the distribution Y ′|Z satisfying conditions in Lemma 2 and H̃∞(Y ′|Z) = k. Finally,
observe that δ = 1

#{x:D′(x,z2)>t(z2)} − ymax(z2) means that the distribution Y ′|Z = z2 is uniform on
{x : D′(x.z2) > t(z2)}. In turn, if δ = ymax(z1)− 1

#{x:D′(x,z1)>t(z1)} then the distribution Y ′|Z = z1

is uniform on {x : D′(x, z1) > t(z1)}.

F Proof of Claim 5, Lemma 3

Proof. We check that lims→0 h(s) = a` and thus the function h is continuous on the interval [0, 1].
This means that h attains its minimum at some point s = s0. There is nothing to prove if s0 ∈ {0, 1}.
Suppose that s0 ∈ (0, 1). Then we must have ∂h

∂s

∣∣
s=s0

= 0. The first derivative of the function h is
given by the following formula

∂h

∂s
=
s`(a+ s)(1− s)`−1 + a

(
(1− s)` − 1

)
s2

=
−a+ (1− s)`−1 (a(1− s) + (a+ s)`s)

s2
(45)

Therefore for s = s0 we obtain (1− s0)`−1 = a
a(1−s0)+(a+s0)`s0

and hence

h(s0) = (1− (1− s0) · (1− s0)`−1)
(
1 + as−1

0

)
=

(a+ s0)2`

a(1− s0) + (a+ s0)`s0
(46)

Note that the last expression is increasing with respect to ` and that from the assumption we have
` > 1+a

a+s0
. Using this we obtain

h(s0) >
(a+ s0)(1 + a)

a(1− s0) + (1 + a)s0
= 1 + a (47)

which completes the proof.

The lemma follows now immediately by combining (33) and the last claim.

25

G Proof of Lemma 4

of Lemma. It is easy to see that limd→0+ g(d) = `. We have

∂g(d)

∂d
=

(1− d)`−1(d(`− 1) + 1)− 1

d2
(48)

Using the inequality 1− d 6 e−d we obtain

∂g(d)

∂d
6

e−d(`−1) (d(`− 1) + 1)− 1

d2
6 0

Where the second inequality follows from the inequality es > 1 + s applied for s = d(` − 1). This
proves (a). The second derivative is given by

∂2g(d)

∂d2
= −

(1− d)`−2
(
2 + 2d(`− 2) + d2((`− 2)2 + `− 2)

)
− 2

d3
(49)

Using 1−d 6 e−d and applying the inequality es > 1+s+ 1
2s

2, which holds for s > 0, for s = d(`−1)
we obtain

∂2g(d)

∂d2
= −

(1− d)`−2
(
2 + 2d(`− 2) + d2((`− 2)2 + `− 2)

)
− 2

d3

> −
(1− d)`−1

(
2 + 2d(`− 1) + d2(`− 1)2

)
− 2

d3

> −
e−d(`−1)

(
2 + 2d(`− 1) + d2(`− 1)2

)
− 2

d3

> −2− 2

d3
= 0, (50)

which proves (b). Finally, note that by convexity we have

g(d2)− g(d1) > (d2 − d1) · ∂g(d)

∂d

∣∣∣∣
d=d1

. (51)

Since g(d) > 0 and ∂ ln g(d)
∂d = ∂g(d)

∂d /g(d) we can rewrite this as

g(d2)− g(d1)

g(d1)
> (d2 − d1) · ∂ ln g(d)

∂d

∣∣∣∣
d=d1

. (52)

Note that the function d → ln g(d) is convex, as the composition of the convex function g(·) and
the convex increasing function ln(·). Therefore,

∂ ln g(d)

∂d
>
∂ ln g(d)

∂d

∣∣∣∣
d=0

= −`− 1

2
(53)

Combining the last two inequalities yields

g(d2)− g(d1)

g(d1)
> − `

2
· (d2 − d1), d2 − d1 > 0. (54)

which completes the proof of (c).

26

	1 Introduction
	1.0.1 On the dependency on 2k in Theorem 1.
	1.0.2 List vs. normal Unpredictability.
	1.0.3 GL vs. Condensing.

	2 Entropy Notions
	2.0.4 Metric vs. HILL.

	3 Known Results on Provably Secure Key-Derivation
	3.1 Key-Derivation from Min-Entropy
	3.2 Key-Derivation from Computational Entropy

	4 Condensing Unpredictability
	5 High Unpredictability implies Metric Entropy
	References
	A Figures
	B Proof of Theorem 1
	C Proof of Theorem 2
	D Proof of Lemma 2
	E Proof of Corollary1
	F Proof of Claim 5, Lemma 3
	G Proof of Lemma 4

