
Finding the Median (Obliviously) with Bounded Space

Paul Beame∗ Vincent Liew† Mihai Pǎtraşcu‡

May 4, 2015

Abstract

We prove that any oblivious algorithm using space S to find the median of a list of n integers
from {1, . . . , 2n} requires time Ω(n log logS n). This bound also applies to the problem of determining
whether the median is odd or even. It is nearly optimal since Chan, following Munro and Raman, has
shown that there is a (randomized) selection algorithm using only s registers, each of which can store an
input value orO(log n)-bit counter, that makes onlyO(log logs n) passes over the input. The bound also
implies a size lower bound for read-once branching programs computing the low order bit of the median
and implies the analog of P 6= NP ∩ coNP for length o(n log log n) oblivious branching programs.

1 Introduction

The problem of selection or, more specifically, finding the median of a list of values is one of the most
basic computational problems. Indeed, the classic deterministic linear-time median-finding algorithm of
[9], as well as the more practical expected linear-time randomized algorithm QuickSelect are among the
most widely taught algorithms.

Though these algorithms are asymptotically optimal with respect to time, they require substantial ma-
nipulation and re-ordering of the input during their execution. Hence, they require the ability to write into
a linear number of memory cells. (These algorithms can be implemented with only O(1) memory locations
in addition to the input if they are allowed to overwrite the input memory.) In many situations, however, the
input is stored separately and cannot be overwritten unless it is brought into working memory. The number
of bits S of working memory that an algorithm with read-only input uses is its space. This naturally leads
to the question of the tradeoffs between the time T and space S required to find the median, or for selection
more generally.

Munro and Paterson [18] gave multipass algorithms that yield deterministic time-space tradeoff up-
per bounds for selection for small space algorithms and showed that the number of passes p must be
Ω(logs n) where S = s log2 n. Building on this work, Frederickson [14] extended the range of space
bounds to nearly linear space, deriving a multipass algorithm achieving a time-space tradeoff of the form
T = O(n log∗ n + n logs n). In the case of randomly ordered inputs, Munro and Raman [19] showed that
on average an even better upper bound of p = O(log logs n) passes and hence T = O(n log logs n) is
possible. Chakrabarti, Jayram, and Pǎtraşcu [12] showed that this is asymptotically optimal for multipass
∗University of Washington. Research supported by NSF grants CCF-1217099 and CCF-0916400
†University of Washington. Research supported by NSF grant CCF-1217099
‡Much of this work was done with Mihai in 2009 and 2010 when the lower bounds for oblivious algorithms were obtained. This

paper is dedicated to his memory.

1

ar
X

iv
:1

50
5.

00
09

0v
1

 [
cs

.C
C

]
 1

 M
ay

 2
01

5

computations on randomly ordered input streams. Their analysis also applied to algorithms that perform
arbitrary operations during their execution.

Chan [13] showed how to extend the ideas of Munro and Raman [19] to yield a randomized median-
finding algorithm achieving the same time-space tradeoff upper bound as in the average case that they
analyze. The resulting algorithm, like all of those discussed so far, only accesses its input using comparisons.
Chan coupled this algorithm with a corresponding time-space tradeoff lower bound of T = Ω(n log logS n)
for randomized comparison branching programs, which implies the same lower bound for the randomized
comparison RAM model. This is the first lower bound for selection allowing more than multipass access
to the input; the input access can be input-dependent but the algorithm must base all its decisions on the
input order. Though a small gap remains because S 6= s, the main question left open by [13] is that of
finding time-space tradeoff lower bounds for median-finding algorithms that are not restricted to the use of
comparisons.

Comparison-based versus general algorithms Though comparison-based algorithms for selection may be
natural, when the input consists of an array of O(log n)-bit integers, as one often assumes, there are natural
alternatives to comparisons such as hashing that might potentially yield more efficient algorithms. Though
comparison-based algorithms match the known time-space tradeoff lower bounds in efficiency for sorting
when time T is Ω(n log n) [10, 4, 21], they are powerless in the regime when T is o(n log n). Moreover, if
one considers the closely related problem of element distinctness, determining whether or not the input has
duplicates, the known time-space tradeoff lower bound of T = Ω(n2−o(1)/S) for (randomized) comparison
branching programs [22] can be beaten for S up to n1−o(1) by an algorithm using hashing [5] that achieves
T = Õ(n3/2/S1/2)1. Therefore, the restriction to comparison-based algorithms can be a significant limita-
tion on efficiency.

Our results We prove a tight T = Ω(n log logS n) lower bound for median-finding using arbitrary oblivious
algorithms. Oblivious algorithms are those that can access the data in any order, not just in a fixed number
of sweeps across the input, but that order cannot be data dependent. Our lower bound applies even for the
decision problem of computing MEDIANBIT, the low order bit of the median, when the input consists of n
integers chosen from {1, . . . , 2n}. This bound substantially generalizes the lower bound of [12] for mul-
tipass median-finding algorithms. Though our lower bound does not apply when there is input-dependent
access to the input, it allows one to hash the input data values into working storage, and to organize and
manipulate working storage in arbitrary ways.

The median can be computed by a simple nondeterministic oblivious read-once branching program of
polynomial size that guesses and verifies which input integer is the median. When expressed in terms of
size for time-bounded oblivious branching programs our lower bound therefore shows that for every time
bound T that is o(n log logn), MEDIANBIT and its complement have nondeterministic oblivious branch-
ing programs of polynomial size but MEDIANBIT requires super-polynomial size deterministic oblivious
branching programs, hence separating the analogs of P from NP ∩ coNP.

We derive our lower bound using a reduction from a new communication complexity lower bound for
two players to find the low order bit of median of their joint set of input integers in a bounded number of
rounds. The use of communication complexity lower bounds in the “best partition” model to derive lower
bounds for oblivious algorithms is not new, but the necessity of bounded rounds is. We derive our bound via a
round-preserving reduction from oblivious computation to best-partition communication complexity [20, 2].
This reduction is asymptotically less efficient than the reductions of [3, 11] but the latter do not preserve
the number of rounds, which is essential here since there is a very efficient O(log n)-bit communication

1We use Õ and Ω̃ notations to hide logarithmic factors.

2

protocol using an unbounded number of rounds [17]. Moreover, the loss in efficiency does not prevent us
from achieving asymptotically optimal lower bounds.

We further show that the fact that the median function is symmetric in its inputs implies that our oblivious
branching program lower bound also applies to the case of non-oblivious read-once branching programs.
Ideally, we would like to extend our non-oblivious results to larger time bounds. However, we show that
extending our lower bound even to read-twice branching programs in the non-oblivious case would require
fundamentally new lower bound techniques. The hardness of the median problem is essentially that of
a decision problem: Though the median problem has Θ(log n) bits of output, the high order bits of the
median are very easy to compute; it is really the low order bit, MEDIANBIT, that is the hardest to produce and
encapsulates all of the difficulty of the problem. Moreover, all current methods for time-space tradeoff lower
bounds for decision problems on general branching programs, and indeed for read-k branching programs
for k > 1, also apply to nondeterministic algorithms computing either the function or its complement and
hence cannot apply to the median because it is easy for such algorithms.

2 Preliminaries

Let D and R be finite sets. We first define branching programs that compute functions f : Dn → R: A
D-way branching program is a connected directed acyclic multigraph with special nodes: the source node
and possibly many sink nodes, a sequence of n input values and one output. Each non-sink node is labeled
with an input index and every edge is labeled with a symbol from D, which corresponds to the value of the
input indexed at the originating node; there is precisely one out-edge from each non-sink node labeled by
each element of D. We assume that each sink node is labeled by an element of R. The time T required by a
branching program is the length of the longest path from the source to a sink and the space S is log2 of the
number of nodes in the branching program. A branching program is leveled iff all the paths from the source
to any given node in the program are of the same length; a branching program can be leveled by adding at
most log2 T to its space.

A branching programB computes a function fB : Dn → R by starting at the source and then proceeding
along the nodes of the graph by querying the input locations associated with each node and following the
corresponding edges until it reaches a sink node; the label of the sink node is the output of the function.

A branching program is oblivious iff on every path from the source node to a sink node, the sequence of
input indices is precisely the same. It is (syntactic) read-k iff no input index appears more than k times on
any path from the source to a sink.

Branching programs can easily simulate any sequential model of computation using the same time and
space bounds. In particular branching programs using time T and space S can simulate random-access
machine (RAM) algorithms using time T measured in the number of input locations queried and space
S measured in the number of bits of read/write storage required. The same applies to the simulation of
randomized RAM algorithms by randomized branching programs.

We also find it useful to discuss nondeterministic branching programs for (non-Boolean) functions,
which simulate nondeterministic RAM algorithms for function computation. These have the property that
multiple outedges from a single node can have the same label and outedges for some labels may not be
present. Every input must have at least one path that leads to a sink and all paths followed by an input
vector that lead to a sink must lead to the same one, whose label is the output value of the program. This is
different from the usual version for decision problems in which one only considers accepting paths and infers
the output value for those that are not accepting. When we consider Boolean functions we will typically
assume the usual version based on accepting paths only.

3

We consider bounded-round versions of deterministic and randomized two-party communication com-
plexity in which two players Alice and Bob receive x ∈ X and y ∈ Y and cooperate to compute a function
f : X × Y → Z . A round in a protocol is a maximal segment of communication in which the player who
speaks does not change. For a distribution D on X ×Y , we say that a 2-party deterministic communication
protocol computes f with error at most ε < 1/2 under D iff the probability over D that the output of the
protocol on input (x, y) ∼ D is equal to f(x, y) is at least 1 − ε. As usual, via Yao’s lemma, for any such
distribution D, the minimum number of bits communicated by any deterministic protocol that computes f
with error at most ε is a lower bound on the number of bits communicated by any (public coin) randomized
protocol that computes f with error at most ε.

We say that a 2-party deterministic communication protocol has parameters [P, ε;m1,m2, . . .] for f
over a distribution D if:
• the first player to speak is P ∈ {A,B};
• it has error ε < 1

2 under input distribution D;
• the players alternate turns, sending messages of m1,m2, . . . bits, respectively.

For probability distributions P and Q on a domain U , the statistical distance between P and Q, is
||P − Q|| = maxA⊆U |P (A) − Q(A)|, which is 1/2 of the L1 distance between P and Q. Let log denote
log2 unless otherwise specified. i Let H(X) be the binary entropy of random variable X , H(X|Y) =
Ey∼YH(X|Y=y), and let I(X;Y |Z) be the mutual information between random variables X and Y con-
ditioned on random variable Z. We have I(X;Y |Z) ≤ H(X|Z) ≤ H(X).

3 Round Elimination

Let f : X × Y → {0, 1} and consider a distribution D on X × Y . We define the 2-player communication
problem f [k] as follows: Alice receives x ∈ X k, while Bob receives y ∈ Yk and j ∈ [k]; together they want
to find f(xj , yj). Also, given D we define an input distribution D[k] for f [k] by choosing each (xi, yi) pair
independently from D, and independently choosing j uniformly from [k].

The following lemma is a variant of standard techniques and was suggested to us by Anup Rao; its proof
is in the appendix for completeness.

Lemma 1. Assume that there exists a 2-party deterministic protocol for f [k] with parameters
[A, ε;m1,m2,m3, . . .

]
over D[k] where m1 = δ2k/(8 ln 2). Then there exists a 2-party deterministic pro-

tocol for f with parameters
[
B, ε+ δ;m2,m3, . . .

]
over D.

The intuition for this lemma is that, since f [k] has k independent copies of the function f and Alice’s
first message has length at most m1 which is only a small fraction of k, there must be some copy of f on
whichB learns very little information. This is so much less than one bit thatB could forego this information
in computing f and still only lose δ in his probability of correctness. The quadratic difference between the
number of bits of information per copy, δ2/(8 ln 2), and the probability difference, δ, comes from Pinsker’s
inequality which relates information and statistical distance.

4 The Bounded-Round Communication Complexity of
(the Least-Significant Bit of) the Median

We consider the complexity of the following communication game. Given a set A of n elements from [2n]
partitioned equally between Alice and Bob, determine the least significant bit of the median of A. (Since n

4

Figure 1: Recursive construction of the pairing for the hard instances.

must be even in order for A to be partitioned evenly, we take the median to be n/2-th largest element of A.)
We consider the number of rounds of communication required when the length of each message is at most
m for any m ≥ log n.

A Hard Distribution on Median Instances

For our hard instances we first define a pairing of the elements of [2n] that depends on the value of m. The
set A will include precisely one element from each pair. For the input to the communication problem, we
randomly partition the pairs equally between the two players which will therefore also automatically equally
partition the set A. We then show how to randomly choose one element from each pair to include in A.

In the construction, we define the pairing of [2n] recursively; the parameters of each recursive pairing
will depend on the initial value n0 of n. Let k = k(m,n0) = m log2 n0. If

√
n < k log3 n0 then the

elements of [1, 2n] are simply paired consecutively. If
√
n ≥ k log3 n0 then the pairing of [2n] consists of a

“core” of γ =
√
n/ log2 n0 pairs, plus n− γ “shell” pairs on [1, n− γ]∪ [n+ 1 + γ, 2n]. In the shell, i and

2n+1−i are paired. The core pairs are obtained by embedding k recursive instances (using the same values
of m and n0) of n′ = γ

k pairs each on consecutive sets of 2γ
k elements, and placing them back-to-back in the

value range [n − γ + 1, n + γ], see Figure 1. The size of the problem at each level of recursion decreases
from n to n′ = γ/k =

√
n/(m log4 n0). In determining the median, the only relevant information about the

shell elements is how many are below n; let this number be n
2 − x. If x ∈ [1, γ], the median of the entire

array A will be the x-th order statistic of the core.
If furthermore, x = γ

k (j − 1
2) for an integer j, the median of A will be exactly the median of the j-th

embedded subproblem. In our distribution of hard instances, we will ensure that x has this nice form.
Formally, the distribution Dnm,n0

of the hard instances A of size n on [2n] is the following. Generate

k recursive instances on Dγ/km,n0 and place shifted versions of them back-to-back inside the core. Choose
j ∈ [k] uniformly at random. Choose n

2 −
γ
k (j− 1

2) uniformly random shell elements in [1, n−γ] to include
in A; for every i ∈ [1, n−γ]\A, we have 2n+1− i ∈ A. This will ensure that the median of A is precisely
the median of the j-th recursive instance inside the core.

Initially we have n = n0 and the recursion only continues when γ =
√
n/ log2 n0 ≥ k log n0, so in the

base case we have at least log n0 elements. In this case, the i-th element is chosen randomly and uniformly
from the paired elements 2i− 1 and 2i and so the least significant bit of the median is uniformly chosen in
{0, 1}.

The size of the problem after t levels of recursion remains at least n1/2t

0 /(m log4 n0)2−1/2t−1
and our

definition gives at least t levels provided that this size n1/2t

0 /(m log4 n0)2−1/2t−1 ≥ log n0; i.e., n0 ≥
m2t+1−2 log9·2t−2 n0. We will show that after one message for each level of recursion, the answer is still
not determined.

The general idea of the lower bound is that each round of communication, which consists of at most
m bits and is much smaller than the branching factor k, will give almost no information about a typical

5

recursive subproblem in the core.
We use the round elimination lemma to make this precise, and with it derive the following theorem:

Theorem 2. If, for A chosen according to Dnm,n and partitioned randomly, Alice and Bob determine the
least significant bit of the median of A with bounded error ε < 1/2 using t messages of at most m ≥ log n

bits each, then m2t+1−2 > n/ log9·2t−2 n, which implies that t ≥ log logm n− c for some constant c.

The Partition Between the Players

To ensure that neither player has enough information to skip a level of the recursion, we insist that the shell
for each subproblem be nicely partitioned between the two players. For any given shell there is a set of
n′ > m2/2 ≥ 0.5 log2 n0 shell pairs. Since a player receives a random 1/2 of all pairs, by Hoeffding’s
inequality, with probability 2−Ω(n′), which is n−Ω(logn0)

0 , at least n
′

3 pairs go to each player. We can use this
to say that with high probability at least 1/3 of all shell elements at a level go to each player at every level
of the recursion: This follows easily because over all levels of the recursive pairing, there are only a total of
o(
√
n0) different shells associated with subproblems and each one fails only with probability n−Ω(logn0)

0 .
From now on, fix a partition satisfying the above requirement at all recursion nodes. We will prove a

lower bound for any partition satisfying this property. Since we are discarding o(1) of possible partitions,
the error of the protocol may increase by o(1), which is negligible.

The Induction

Our proof of Theorem 2 will work by induction, using the following message elimination lemma:

Lemma 3. Assume that there is a protocol for the median on instances of size n, with error ε on Dnm,n0

for
√
n ≥ k log n0 = m log3 n0, using t messages of size at most m starting with Alice. Then, there is a

protocol for a subproblem of size γ/k, with error ε + O(1
logn0

) on Dγ/km,n0 , using t − 1 messages of size at
most m starting with Bob.

We use Lemma 3 to prove Theorem 2 by inductively eliminating all messages. Let n0 = n. At each
application we remove one message to get an error increase of O(1

logn0
). If the number of rounds is less

than the number of levels of recursion, i.e., m2t+1−2 ≤ n/ log9·2t−2 n, then the MEDIANBIT value of
the subproblem will still be a uniformly random bit on the remaining input, but the protocol will have no
communication and the error will have increased to at most ε + O(t

logn) < 1/2 since t is O(log logm n),
which is a contradiction.

To prove Lemma 3 we want to apply Lemma 1 using the k subproblems in the core, but the assumption
of Lemma 1 requires that (1) Alice does not know anything about which subproblem j ∈ [k] is chosen by
Bob, and (2) that subproblem j is chosen uniformly at random. The choice of subproblem j is determined
by the shell elements at this level.

Denote Alice’s shell elements by xs, and Bob’s shell elements by ys. Let Alice’s part of the core
subproblems be x1, . . . , xk, and Bob’s part be y1, . . . , yk. Note that the choice of the relevant subproblem j
is some function of (xs, ys), and the median of the whole array is the median of xj ∪ yj .

The proof of Lemma 3 proceeds in two stages:

Fixing xs. We first fix the value of xs so that the choice of subproblem does not depend on Alice’s input
and, moreover, so that the probabilities for different values of j over Bob’s input ys will not be very different
from each other because they are still near the middle binomial coefficients.

6

By the niceness of the partition of the pairs, we know that the number of Alice’s shell pairs is |xs| ∈[
1
3(n− γ), 2

3(n− γ)
]
. Let a be the number of elements in xs that are below n. We want to fix xs such that

the error does not increase too much, and |a− |x
s|

2 | ≤
√
n · log n0:

No matter which value of j ∈ [k] is chosen in the input distribution, the shell elements chosen to be
below n consist of a random subset of xs ∪ ys of a fixed size that is between n/2− γ and n/2 + γ; i.e., of
fractional size pj between 1

2−
γ
n and 1

2 + γ
n . By Hoeffding’s inequality, the probability that the actual number

a of these elements that land in xs deviates from |xs|/2 by more than (t+ γ
n)|xs| is at most 2e−2t2|xs|. Since

(n − γ)/3 ≤ |xs| ≤ 2(n − γ)/3, the probability that this deviates from |xs|/2 by more than
√
n log n0 is

at most n−O(logn0)
0 . We discard all values of xs that lead to a outside this range. Now fix xs to be the value

that minimizes the conditional error.

Making j uniform. Once xs is fixed, j is a function only of ys. Thus, we are close to the setup of
Lemma 1: Alice receives x1, . . . , xk, Bob receives y1, . . . , yk and j ∈ [k], and they want to compute a
function f(xj , yj). The only problem is that the lemma requires a uniform distribution of j, whereas our
distribution is no longer uniform (having fixed xs). However, we will argue that it is not far from uniform.

For each fixed j0 ∈ [k], if a shell elements from Alice’s part are below n, then Bob must have n
2 − a−

γ
k (j0 − 1

2) shell elements below n. Therefore, Pr[j = j0] is proportional to
(

|ys|
n
2 − a−

γ
k (j0 − 1

2)

)
. More

precisely Pr[j = j0] is this binomial coefficient divided by the sum of the coefficients for all j0. Thus, to
understand how close j is to uniform, we must understand the the dependence of these binomial coefficients
on j0.

Let ∆ = a − |xs|/2. This satisfies |∆| ≤
√
n log n0. Since |ys| = n − |xs| ≥ n−γ

3 > n/4 we have(|ys|
n
2
−a− γ

k
(j0− 1

2
)

)
=
(|ys|
|ys|/2−∆−δj0

)
where 0 < δj0 < γ. Assume wlog that ∆ ≥ 0. The ratio between

different binomial coefficients is at most the ratio(
n/4

n/8−∆

)
/

(
n/4

n/8−∆− γ

)
=

(n/8 + ∆ + γ) · · · (n/8 + ∆ + 1)

(n/8−∆) · · · (n/8−∆− γ + 1)

≤
(

1 +
10(2∆ + γ)

n

)γ
which is 1 +O(∆γ

n) = 1 +O(1
logn0

) given the values of ∆ and γ.
Therefore we have shown that the statistical distance between the induced distribution on j and the

uniform distribution isO(1
logn0

). We can thus consider the following alternative distribution for the problem:
pick j uniformly at random, and manufacture ys conditioned on this j. The error on the new distribution
increases by at most O(1

logn0
).

Now we can apply the round elimination lemma, Lemma 1. As k ≥ m log2 n0, the lemma will increase
the error by O(1

logn0
).

5 Oblivious Branching Programs and the Median

The following result is essentially due to Okol’nishnikova [20], who used it with slightly different param-
eters for read-k branching programs, and was independently derived by Ajtai [2] in the context of general
branching programs.

7

Proposition 4. Let s be a sequence of of kn elements from [n]. If s is divided into r = 4k2 segments
s1, . . . , sr, each of length n/(4k), then there is an assignment of 2k segments sj to a set LA and all re-
maining segments sj to LB so that the number nA (nB) of elements of [n] whose only appearances are in
segments in LA (respectively, LB) satisfy nA ≥ n/(2

(
4k2

2k

)
) and nB ≥ n/2.

Proof. There is a subset V of at least n/2 elements of [n] that occur at most 2k times in s and hence appear
in at most 2k segments of s. Choose the 2k sets sj to include in LA uniformly at random. For a given
i ∈ V , i will contribute to nA if and only if all of the the at most 2k segments that contain its occurrences
are chosen for LA. This occurs with probability at least 1/

(
r

2k

)
; hence the expected number of elements in

V that only occur in segments of LA is at least |V |/
(
r

2k

)
. Therefore we can select a fixed assignment that

contains has at least this number. Since the total length of segments in LA is at most 2kn/(4k) ≤ n/2, at
least n/2 elements of [n] only occur in segments in LB .

Lemma 5. Suppose that there is a 2n-way oblivious branching program of size 2S running in time T = kn
that computes MEDIANBIT for n distinct inputs from [2n]. Then there is deterministic 2-party communica-
tion protocol using at most 4k messages of S bits each plus a final 1-bit message to compute MEDIANBIT

for N = dn/
(

4k2

2k

)
e distinct inputs from [2N] that are divided evenly between the two players.

Proof. Let s be the length T sequence of indices of inputs queried by the oblivious branching program.
Let k = T/n, r = 4k2, and N = dn/

(
r

2k

)
e. Fix the assignment of segments to LA and LB given by

Proposition 4. Arbitrarily select a subset IA of N/2 of the nA indices that only appear in LA and give those
inputs to player A. Similarly, select a subset IB of N/2 of the nB indices that only appear in LB and give
those inputs to player B. Let Q be the remaining set of n−N input indices.

Fix any input assignment to the indices in Q that assigns (n − N)/2 distinct values from [n − N] to
half the elements of Q and the same number of distinct values from [n + N + 1, 2n] to the other half of
the elements of Q. After fixing this partial assignment we restrict the remaining inputs to have values in the
segment [n−N + 1, n+N] of length 2N .

The communication protocol is derived as follows: Alice (resp. Bob) interprets her N/2 inputs from
[2N] as assignments from [2n] to the elements of IA (resp. IB) by adding n − N to each value. Alice
will simulate the branching program executing the segments in LA and Bob will simulate the branching
program executing the segments in LB . A player will continue the simulation until the next segment is held
by the other player, at which point that player communicates the name of the node in the branching program
reached at the end of its layer. Since LA has only 2k segments, there are at most 4k alternations between
players as well as the final output bit which gives the total communication. By construction, the median
of the whole problem is the median of the N elements and the final answer for MEDIANBIT on [2N] is
computed by XOR-ing the result with the low order bit of n−N .

Theorem 6. Any oblivious branching program computing MEDIANBIT for n inputs from [2n] in time T ≤
kn requires size at least 2Ω̃(n1/24k+2

); in particular, if it uses space S, any oblivious branching program
requires time T ≥ 0.25n log logS n− c n for some constant c.

Proof. Since T/n ≤ k, applying Lemma 5 we derive a 2-party communication protocol sending t = 4k+ 1

messages of at most S ≥ log n bits each to compute MEDIANBIT on N ≥ n/
(

4k2

2k

)
≥ n/(2ek)2k inputs

from [2N]. By Theorem 2, S > N1/(2t+1−2)/ log(9·2t−2)/(2t+1−2)N > N1/(24k+2−2)/ log71/15N since
t ≥ 4 and hence S ≥ n1/(24k+2−2)/ log5 n. The size of the branching program is 2S where S is its space.
Moreover, taking logarithms base S and then base 2 we have 4k ≥ log logS n− c′ for some constant c′.

8

Analog of P 6= NP ∩ coNP for time-bounded oblivious BPs

Corollary 7. Any oblivious branching program of length T ≤ kn computing the low order bit of the median

requires size at least 2Ω̃(n1/24k+2
); in particular, this size is super-polynomial when T is o(n log logn).

On the other hand, the median can be computed by a nondeterministic oblivious read-once branching
program using only O(log n) space.

Lemma 8. There is a nondeterministic oblivious read-once branching program of sizeO(n4) that computes
the median on n integers from [2n].

Proof. The branching program guesses the value of the median in [2n] and keeps track of the number of
elements that it has seen both less than the median and equal to the median in order to check that the value is
correct. Other than the source and sink nodes there is one node of the branching program for each (i,m, `, e)
for m ∈ [2n], i ∈ [n] such that 0 ≤ ` + e ≤ min(i, (n + 1)/2 + 1). The source node which queries x1 is
the only node to have multiple outedges with the same value label. It has (2n)2 outedges, 2n for each value,
one corresponding to each of the median value guesses. If at a node (i,m, `, e), the values i, `, e together
with the value j of xi+1 are inconsistent with m being the median then the outedge for j is not present.

In particular, in contrast to Corollary 7, Lemma 8 implies that MEDIANBIT can be computed in poly-
nomial size by length n nondeterministic and co-nondeterministic oblivious branching programs, hence we
have shown the analog of P 6= NP ∩ coNP for oblivious branching programs of length o(n log log n).

6 Beyond Oblivious Branching Programs

We first observe that our lower bounds for the median problem extend to the case of read-once branching
programs by using the fact that such programs for the median can also be assumed to be oblivious without
loss of generality. (Oblivious read-once branching programs are also known as ordered binary decision
diagrams (OBDDs).)

Lemma 9. If f : Dn → R is a symmetric function of its inputs then for every read-once branching B
computing f there is an oblivious read-once branching program, of precisely the same size as B, that
computes f .

Proof. With each node v in a read-once branching program, we can associate a set Iv ⊆ [n] of input indices
that are read along paths from the source node to v. We make B into an oblivious branching program
by replacing the index at node v by |Iv| + 1. This yields an oblivious read-once branching program (not
necessarily leveled) that reads its inputs in the order x1, x2, . . . , xn along every path (possibly skipping
over some inputs on the path). Since f is a symmetric function, a path of length t ≤ n in B queries t
different input locations and the value of the function on the partial inputs is the same because the function
is symmetric and the values in those t input locations are the same.

We immediately obtain the following corollary.

Corollary 10. For any ε < 1/2, any read-once branching program computing MEDIANBIT for n integers
from [2n] requires size 2n

Ω(1)
.

9

In particular this means that MEDIANBIT is another example, after those in [16], of a problem showing
the analogue of P 6= NP ∩ coNP for read-once branching programs. However, proving the analogous prop-
erty even for read-twice branching programs remains open and will require a fundamentally new technique
for deriving branching program lower bounds.

The approach in all lower bounds for general branching programs (or even for read-k branching pro-
grams) computing decision problems [11, 20, 7, 2, 1, 6, 8] applies equally well to nondeterministic com-
putation. (For example, the fact that the technique also works for nondeterministic computation is made
explicit in [11].) Though this technique has been used to separate nondeterministic from deterministic com-
putation [2] computing a Boolean function f , it is achieved by proving a nondeterministic lower bound for
computing f . Since the nondeterministic oblivious read-once branching program computing the median has
T = n and S = O(log n), the core of the median’s hardness, MEDIANBIT, and its complement do not
have non-trivial lower bounds; hence current time-space tradeoff lower bound techniques are powerless for
computing the median.

We conjecture that the lower bound T = Ω(n log logS n) holds for finding the median using general
non-oblivious algorithms as well as oblivious and comparison algorithms.

Acknowledgements

We thank Anup Rao for suggesting the improved form of Lemma 1 that we include here.

References

[1] M. Ajtai. A non-linear time lower bound for boolean branching programs. In Proceedings 40th Annual
Symposium on Foundations of Computer Science, pages 60–70, New York,NY, October 1999. IEEE.

[2] M. Ajtai. Determinism versus non-determinism for linear time RAMs with memory restrictions. Jour-
nal of Computer and System Sciences, 65(1):2–37, August 2002.

[3] Noga Alon and Wolfgang Maass. Meanders and their applications in lower bounds arguments. Journal
of Computer and System Sciences, 37:118–129, 1988.

[4] P. Beame. A general sequential time-space tradeoff for finding unique elements. SIAM Journal on
Computing, 20(2):270–277, 1991.

[5] P. Beame, R. Clifford, and W. Machmouchi. Element distinctness, frequency moments, and sliding
windows. In Proceedings of the 54th Annual Symposium on Foundations of Computer Science, pages
290–299, Berkeley, CA, October 2013. IEEE.

[6] P. Beame, M. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds for randomized computa-
tion of decision problems. Journal of the ACM, 50(2):154–195, 2003.

[7] Paul Beame, T. S. Jayram, and Michael Saks. Time-space tradeoffs for branching programs. Journal
of Computer and System Sciences, 63(4):542–572, December 2001.

[8] Paul Beame and Erik Vee. Time-space tradeoffs, multiparty communication complexity, and nearest-
neighbor problems. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Com-
puting, pages 688–697, Montreal, Quebec, Canada, May 2002.

10

[9] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, R. L. Rivest, and Robert E. Tarjan. Time bounds
for selection. Journal of Computer and System Sciences, 7(4):448–461, 1972.

[10] Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a general sequential model
of computation. SIAM Journal on Computing, 11(2):287–297, May 1982.

[11] Allan Borodin, A. A. Razborov, and Roman Smolensky. On lower bounds for read-k times branching
programs. Computational Complexity, 3:1–18, October 1993.

[12] A. Chakrabarti, T. S. Jayram, and M. Patrascu. Tight lower bounds for selection in randomly ordered
streams. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 720–729, San Francisco, CA, January 2008. Society for Industrial and Applied Mathematics.

[13] T. M. Chan. Comparison-based time-space lower bounds for selection. ACM Transactions on Algo-
rithms, 6(2):26:1–16, 2010.

[14] Greg N. Frederickson. Upper bounds for time-space trade-offs in sorting and selection. Journal of
Computer and System Sciences, 34(1):19–26, 1987.

[15] T. Holenstein. Parallel repetition: Simplification and the no-signaling case. Theory of Computing,
5(1):141–172, 2009.

[16] S. Jukna, A. A. Razborov, P. Savický, and I. Wegener. On P versus NP∩ co-NP for decision trees and
read-once branching programs. Computational Complexity, 8(4):357–370, 1999.

[17] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, Cambridge,
England ; New York, 1997.

[18] J. Ian Munro and Michael S. Paterson. Selection and sorting with limited storage. Theoretical Com-
puter Science, 12:315–323, 1980.

[19] J. Ian Munro and Venkatesh Raman. Selection from read-only memory and sorting with minimum data
movement. Theoretical Computer Science, 165(2):311–323, 1996.

[20] E. Okol’nishnikova. On lower bounds for branching programs. Siberian Advances in Mathematics,
3(1):152–166, 1993.

[21] J. Pagter and T. Rauhe. Optimal time-space trade-offs for sorting. In Proceedings 39th Annual Sym-
posium on Foundations of Computer Science, pages 264–268, Palo Alto, CA, November 1998. IEEE.

[22] A. C.-C. Yao. Near-optimal time-space tradeoff for element distinctness. SIAM Journal on Computing,
23(5):966–975, 1994.

11

A Proof of Lemma 1

The proof is inspired by that of the parallel repetition theorem. For (x, y) chosen according to D, we first
design a public coin protocol in which the players randomly choose i ∈ [k], and with small probability of
error jointly choose a random vector W−i of values consisting of exactly one of xj or yj for each j 6= i and
a random message M for Alice consistent with those inputs whose distribution is close to that of Alice’s
first message. The players then independently use the public coins to randomly complete their inputs to be
consistent with D on each coordinate (and in Alice’s case consistent with the message agreed upon). The
resulting protocol will have expected error at most ε+ δ. We then fix the public coins (and hence all inputs
other than (x, y)) to create the claimed deterministic protocol.

LetXi and Yi for i ∈ [k] denote the random variables associated with the components of the distribution
Dk. Let M denote the random variable for Alice’s first message. Define the random variable Wi that is Xi

with probability 1/2 and Yi with probability 1/2. Let W denote the random variable W1 . . .Wk and W−i

denote the variable W with Wi removed. Then

m1 ≥ H(M)

≥ I(M ;X1Y1 . . . XkYk|W) by definition

≥
k∑
i=1

I(M ;XiYi|W)

since the XiYi are conditionally independent given W

=

k∑
i=1

I(M ;XiYi|WiW
−i)

=

k∑
i=1

I(M ;XiYi|XiW
−i) + I(M ;XiYi|YiW−i)

2
by definition of Wi

=
k∑
i=1

I(M ;Yi|XiW
−i) + I(M ;Xi|YiW−i)

2

=
k∑
i=1

I(MW−i;Yi|Xi)− I(W−i;Yi|Xi) + I(MW−i;Xi|Yi)− I(W−i;Xi|Yi)
2

by the chain rule

=
k∑
i=1

I(MW−i;Yi|Xi) + I(MW−i;Xi|Yi)
2

since W−i is independent of XiYi.

Since m1 ≤ δ2k/(8 ln 2), it follows that Ei∈[k](I(MW−i;Yi|Xi) + I(MW−i;Xi|Yi)) ≤ δ2/(4 ln 2).
We use this to derive that in expectation over random choices of i, and (x, y) chosen fromD, the distributions
MW−i|Xi=x and MW−i|Yi=y are both statistically close to the distribution MW−i|Xi=x, Yi=y. We
now use the following proposition which follows from Pinsker’s inequality.

Proposition 11. Let P and Q be probability distributions.
Then Eq∼Q||P − (P |Q=q)||2 ≤ ln 2

2 I(P ;Q).

12

It follows that

E(x,y)∼D||(MW−i|Xi=x)− (MW−i|Xi=x, Yi=y)||2

= ExEy:(x,y)∼D|X=x||(MW−i|Xi=x)− (MW−i|Xi=x, Yi=y)||2

≤ ln 2

2
ExI(MW−i;Yi|Xi=x) by Proposition 11

=
ln 2

2
I(MW−i;Yi|Xi) by definition.

The analogous bound shows that the expected square of the statistical distance between the distributions
MW−i|Yi=y and MW−i|Xi=x, Yi=y is at most ln 2

2 I(MW−i;Xi|Yi).
Therefore in expectation over choices of (x, y) and i, the sum of the squares of the statistical dis-

tances between the distributions MW−i|Xi=x and MW−i|Xi=x, Yi=y and between MW−i|Yi=y and
MW−i|Xi=x, Yi=y is at most δ2/8. Write εx,y,i,X = ||(MW−i|Xi=x) − (MW−i|Xi=x, Yi=y)|| and
εx,y,i,Y = ||(MW−i|Yi=y)− (MW−i|Xi=x, Yi=y)||. In particular we have

E(x,y)∼DEi∈[k](ε
2
x,y,i,X + ε2x,y,i,Y)

≤ ln 2

2
E(x,y)∼DEi∈[k](I(MY −1;Xi|Yi) + I(MW−i;Yi|Xi))

≤ δ2/8.

and hence
E(x,y)∼DEi∈[k](εx,y,i,X + εx,y,i,Y) ≤ δ/2.

We now apply Holenstein’s Lemma [15] to say that given x, y and i, except for a failure probability of
at most 2(εx,y,i,X + εx,y,i,Y), Alice and Bob without any communication can use the shared random string
to agree on a sample (m,w−i) from MW−i|Xi=x, Yi=y. Therefore the expected failure probability is at
most δ.

Once Alice and Bob have selected (m,w−i), Alice uses private randomness to sample the remainder of
her input fromX1 . . . Xk|M=m,W−i=w−i, Xi=x. Bob independently uses private randomness to sample
the remainder of his input from

Y1 . . . Yk|M=m,W−i=w−i, Yi=y

= Y1 . . . Yk|W−i=w−i, Yi=y

which only depends on Dk.
Then Alice and Bob simulate the remainder of the protocol starting with the second message overall; i.e.,

Bob’s first message. The difference in the distribution from D[k] on the result is at most δ so the expected
error is at most ε+ δ.

13

	1 Introduction
	2 Preliminaries
	3 Round Elimination
	4 The Bounded-Round Communication Complexity of (the Least-Significant Bit of) the Median
	5 Oblivious Branching Programs and the Median
	6 Beyond Oblivious Branching Programs
	A Proof of Lemma ??

