
A Dichotomy Result for Ramsey Quantifiers?

Ronald de Haan1 and Jakub Szymanik2

1 Algorithms and Complexity Group, Vienna University of Technology
dehaan.ronald@gmail.com

2 Institute for Logic, Language and Computation, University of Amsterdam
jakub.szymanik@gmail.com

Abstract. Ramsey quantifiers are a natural object of study not only
for logic and computer science, but also for formal semantics of natu-
ral language. Restricting attention to finite models leads to the natural
question whether all Ramsey quantifiers are either polynomial-time com-
putable or NP-hard, and whether we can give a natural characterization
of the polynomial-time computable quantifiers. In this paper, we first
show that there exist intermediate Ramsey quantifiers and then we prove
a dichotomy result for a large and natural class of Ramsey quantifiers,
based on a reasonable and widely-believed complexity assumption. We
show that the polynomial-time computable quantifiers in this class are
exactly the constant-log-bounded Ramsey quantifiers.

1 Motivations

Traditionally, definability questions have been a mathematical core of natural
language semantics. For example, over the years in generalized quantifier the-
ory efforts have been directed to classify quantifier constructions with respect to
their expressive power (see [1] for an extensive overview). Another already clas-
sical feature of the theory is searching for linguistic and later computer-science
applications. That is one of the reasons to often investigate quantifiers over finite
models. This leads naturally to questions about computational complexity. In
[2, 3] it has been observed that some natural language sentences, when assuming
their branching interpretation, are NP-complete. Sevenster has also proved a
dichotomy theorem for independent-friendly quantifier prefixes that can capture
branching quantification, namely they are either decidable in LOGSPACE or
NP-hard [4]. Following this line of research, Szymanik [6, 5] searched for more
natural classes of intractable generalized quantifiers. He found out that some
reciprocal sentences with quantified antecedents under the strong interpretation
(see [7]) define NP-complete classes of finite models.3 He has also noted that
all known examples of semantic intractability have a common source: they all

? The first author was supported by the European Research Council (ERC), project
239962, and the Austrian Science Fund (FWF), project P26200. The second author
was supported by Veni grant NWO 639.021.232.

3 These results have interestingly also found empirical interpretations, see [8, 9].



2 Ronald de Haan and Jakub Szymanik

express Ramsey-like properties [6]. Hence, he asked for a dichotomy theorem for
Ramsey quantifiers.

In this technical paper we first show that there exist intermediate Ramsey
quantifiers and then we display a dichotomy result for a large class of Ramsey
quantifiers, based on a reasonable and widely-believed complexity assumption.
Namely, we show that the Ramseyification of polynomial-time and constant-
log-bounded monadic quantifiers result in polynomial time computable Ram-
sey quantifiers while assuming the Exponential Time Hypothesis. The notion of
constant-log-boundedness is a version of the boundedness condition known from
finite-model theory literature [10], where the bound on the upper side is replaced
by c log n. As the property of boundedness plays an important role in definability
theory of polyadic quantifiers [11], we conclude by asking whether the new notion
of constant-log-boundedness gives rise to some interesting descriptive results.

2 Preliminaries

2.1 Generalized Quantifiers

Generalized quantifiers might be defined as classes of models (see e.g. [1]). The
formal definition is as follows:
Definition 1 ([12]). Let t = (n1, . . . , nk) be a k-tuple of positive integers.
A generalized quantifier of type t is a class Q of models of a vocabulary
τt = {R1, . . . , Rk}, such that Ri is ni-ary for 1 ≤ i ≤ k, and Q is closed under
isomorphisms, i.e. if M and M′ are isomorphic, then

(M ∈ Q ⇐⇒ M′ ∈ Q).

Finite models can be encoded as finite strings over some vocabulary, hence, we
can easily fit the notions into the descriptive complexity paradigm (see e.g. [13]):

Definition 2. By the complexity of a quantifier Q we mean the computational
complexity of the corresponding class of finite models, that is, the complexity of
deciding whether a given finite model belongs to this class.

For some interesting early results on the computational complexity of various
forms of quantification, see [14].

2.2 Computational Complexity

Problems in NP that are neither in P nor NP-complete are called NP-
intermediate, and the class of such problems is called NPI. Ladner [15] proved
the following seminal result:

Theorem 1. If P 6= NP, then NPI is not empty.

Assuming P 6= NP, Ladner constructed an artificial NPI problem. Schae-
fer [16] proved a dichotomy theorem for Boolean constraint satisfaction, thereby
providing conditions under which classes of Boolean constraint satisfaction prob-
lems can not be in NPI. It remains an interesting open question whether there
are some natural problems in NPI [17].



A Dichotomy Result for Ramsey Quantifiers 3

The Exponential Time Hypothesis The Exponential Time Hypothesis
(ETH) says that 3-SAT (or any of several related NP-complete problems) can-
not be solved in subexponential time in the worst case [18]. The ETH implies
that P 6= NP. It also provides a way to obtain lower bounds on the running time
of algorithms solving certain fundamental computational problems [19].

Definition 3 (Definition 3.22 and Lemma 3.23 in [20]). Let f, g : ω → ω
be computable functions. Then f ∈ o(g) (also denoted f(n) ∈ o(g(n))) if there is
a computable function h such that for all ` ≥ 1 and n ≥ h(`), we have:

f(n) ≤ g(n)

`
.

Alternatively, the following definition is equivalent. We have that f ∈ o(g) if
there exists n0 ∈ ω and a computable function ι : ω → ω that is nondecreasing
and unbounded such that for all n ≥ n0, it holds that f(n) ≤ g(n)

ι(n) .

Intuitively, if a function f(n) is o(g(n)), it means that g(n) grows faster
than f(n), when the values for n get large enough.

Exponential Time Hypothesis:
3-SAT cannot be solved in time 2o(n), where n denotes the number of
variables in the input formula.

The following result, that we use to prove the existence of intermediate Ramsey
quantifiers is an example of a lower bound based on the ETH. For the problem
k-clique, the input is a simple graph G = (V,E) and a positive integer k. The
questions is whether G contains a clique of size k.

Theorem 2 ([21]). Assuming the ETH, there is no f(k)mo(k) time algorithm
for k-clique, where m is the input size and where f is a computable function.

3 Ramsey Quantifiers

3.1 Ramsey Theory and Quantifiers

Informally speaking the Finite Ramsey Theorem [22] states the following:

The Finite Ramsey Theorem — general schema When coloring a
sufficiently large complete finite graph, one will find a large homogeneous subset,
i.e., a complete subgraph with all edges of the same color, of arbitrary large finite
cardinality.

For suitable explications of what “large set” means we obtain various Ramsey
properties. For example, “large set” may mean a “set of cardinality at least f(n)”,
where f is a function from natural numbers to natural numbers on a universe
with n elements (see e.g. [11]). We will adopt this interpretation and study
the computational complexity of the Ramsey quantifiers determined by various
functions f . Note that in our setting of finite models with one binary relation Q,
that we will describe below, Ramsey quantifiers are essentially equivalent to the
problem of determining whether a graph has a clique of a certain size.



4 Ronald de Haan and Jakub Szymanik

3.2 Basic Proportional Ramsey Quantifiers

Let us start with a precise definition of “large relative to the universe”.

Definition 4. For any rational number q between 0 and 1 we say that the set
A ⊆ U is q-large relative to U if and only if

card(A)

card(U)
≥ q.

In this sense q determines the basic proportional Ramsey quantifier Rq of type
(2).

Definition 5. Let M = (M,S) be a relational model with universe M and a
binary relation S. We say that M ∈ Rq iff there is a q-large (relative to M)
A ⊆M such that for all a, b ∈ A, M |= S(a, b).

Theorem 3 ([5]). For every rational number q, such that 0 < q < 1, the cor-
responding Ramsey quantifier Rq is NP-complete.

3.3 Tractable Ramsey Quantifiers

We have shown some examples of NP-complete Ramsey quantifiers. In this sec-
tion we will describe a class of Ramsey quantifiers computable in polynomial
time. Let us start with considering an arbitrary function f : ω −→ ω.

Definition 6. We say that a set A ⊆ U is f -large relatively to U iff

card(A) ≥ f(card(U)).

Then we define Ramsey quantifiers of type (1, 2) corresponding to the notion
of “f -large”.

Definition 7. We define Rf as the class of relational models M = (M,S), with
universe M and a binary relation S, such that there is an f -large set A ⊆ M
such that for each a, b ∈ A, M |= S(a, b).

Notice that the above definition is very general and covers all previously
defined Ramsey quantifiers. For example, we can reformulate Theorem 3 in the
following way:

Corollary 1. Let f(n) = drne, for some rational number r such that 0 < r < 1.
Then the quantifier Rf defines a NP-complete class of finite models.

Let us put some further restrictions on the class of functions we are interested
in. First of all, as we will consider f -large subsets of the universe we can assume
that for all n ∈ ω, f(n) ≤ n+1. In that setting the quantifier Rf says about a set
A that it has at least f(n) elements, where n is the cardinality of the universe.
We allow the function to be equal to n + 1 just for technical reasons as in this
case the corresponding quantifier has to be always false.

Our crucial notion goes back to paper [10] of Väänänen:



A Dichotomy Result for Ramsey Quantifiers 5

Definition 8. We say that a function f is bounded if

∃m∀n[f(n) < m ∨ n−m < f(n)].

Otherwise, f is unbounded.

Theorem 4 ([5]). If f is polynomial-time computable and bounded, then the
Ramsey quantifier Rf is polynomial-time computable.

Proof (sketch). Letm be the integer such that for all n it holds that either f(n) <
m or n−m < f(n). This means that for every model M = (M,Q) with |M | = n,
to decide if M ∈ Rf , we only need to consider those subsets A ⊆ M for which
holds |A| < m or |A| > n−m. Since m is a constant, these are only polynomially
many.

3.4 Intermediate Ramsey Quantifiers

We have shown that proportional Ramsey quantifiers define NP-complete classes
of finite models. On the other hand, we also observed that bounded Ramsey
quantifiers are polynomial-time computable.

The first question we might ask is whether for all functions f the Ramsey
quantifier Rf is either polynomial-time computable or NP-complete. We observe
that this cannot be the case if we make some standard complexity-theoretic
assumptions.

Intermediate Ramsey Quantifiers

Theorem 5. Let f(n) = dlog ne. The quantifier Rf is neither polynomial-time
computable nor NP-complete, unless the ETH fails.

Proof. Firstly assume that Rf is NP-complete. This means that there is a
polynomial-time reduction R from 3-SAT to Rf (that takes as input an in-
stance of 3-SAT with n variables and produces an equivalent instance of Rf

with nd elements, for some constant d). There is a straightforward brute force
search algorithm A that solves Rf in time O(nf(n)) = O(ndlogne). Composing R
and A then leads to an algorithm that solves 3-SAT in time O((nd)dlogn

de) =

O(nd
2 logn) = O(2d

2(logn)2), for some constant d, which runs in subexponential
time. Therefore, the ETH fails.

On the other hand, it is known that if the problem of deciding whether a given
graph with n vertices has a clique of size ≥ log n (equivalently Rf , for f(n) =
dlog ne) is solvable in polynomial time, then the ETH fails [23, Theorem 3.4].

In other words, assuming ETH, there exists Ramsey quantifiers whose model
checking problem is an example of an NP-intermediate problem in computational
complexity, i.e., it is a problem that is in NP but is neither polynomial-time
computable nor NP-complete [15].



6 Ronald de Haan and Jakub Szymanik

The remaining open question is whether there exists a natural class of func-
tions such that under some reasonable complexity assumptions (e.g., ETH) the
polynomial-time Ramsey quantifiers are exactly the bounded Ramsey quanti-
fiers. In other words:

Problem 1. Is it the case that for every function f from some ‘natural’ class
we have a dichotomy theorem, i.e., Rf is either polynomial-time computable or
NP-complete?

3.5 Intractable Ramsey Quantifiers

In this section, we show for a large natural class of natural functions f that Rf

is not polynomial-time computable, unless the ETH fails.

Restrictions on the Class of Functions One way in which we assume the
functions f to be natural is that the value f(n) is computable in time polynomial
in n. From now on, we will assume that this property holds for all functions f
that we consider. This assumption corresponds to restricting the attention to
polynomial-time computable monadic generalized quantifiers which seems rea-
sonable from a natural language perspective [5].

In fact, for any function f that is not polynomial-time computable, the prob-
lem Rf clearly cannot be computable in polynomial time either.

Observation 6 Let f : ω −→ ω be a function that is not polynomial-time com-
putable. Then Rf is not polynomial-time computable.

Proof. Let f be non polynomial-time computable function and assume for con-
tradiction that Rf is polynomial-time computable. Take M = (U,E) with
|U | = n. Find the smallest complete A ⊆ U that will make M ∈ Rf . Clearly
that can be done in polynomial time but then f(n) = |A| would be also com-
putable in polynomial time.

Considering this observation, in the remainder of the paper we will only
consider functions f that are polynomial-time computable.

Assumption 7 The functions f that we consider are polynomial-time com-
putable, i.e., for every n ∈ ω, the value f(n) is computable in time polynomial
in n.

Intractability Based on the ETH In this section, we set out to prove the
technical results that will give us the dichotomy result for Rf , for the class of
polynomial-time computable functions f . We start with considering the following
class of sublinear functions.

Definition 9 (Sublinear functions). Let f : ω −→ ω be a nondecreasing
function. We say that f is sublinear if f(n) is o(n), i.e., if there exists some
computable function s(n) that is nondecreasing and unbounded, and some n0 ∈ ω,
such that for all n ∈ ω with n ≥ n0 it holds that f(n) ≤ n

s(n) .



A Dichotomy Result for Ramsey Quantifiers 7

In order to illustrate this concept, we give a few examples of sublinear func-
tions.

Example 1. Consider the function f1(n) = dlog ne. This function is sublinear,
which is witnessed by s(n) = n/dlog ne. Additionally, any function f(n) that
satisfies that f(n) ≤ dlog ne, for all n ∈ ω, is also sublinear. Next, the func-
tion f2(n) = d

√
ne is also sublinear, which is witnessed by s(n) =

√
n/2.

As a final example, consider the function f3(n) = dn/ log ne. Clearly, by tak-
ing s(n) = log n/2, we get that f3(n) ≤ n/s(n). Therefore, f3 is also sublinear.

Lemma 1. Let f : ω → ω be a nondecreasing function that is o(n), and let b ∈ ω
be a positive integer. Moreover, let G = (V,E) be an instance of Rf . In polynomial
time, we can produce some b′ ≥ b and we can transform G into an equivalent
instance G′ = (V ′, E′) of Rf with n′ vertices such that f(n′) ≤ b′.

Proof (sketch). If f(n) ≤ b, we can let G′ = G. Therefore, assume that f(n) > b.
We will increase n and b, by adding a polynomial number of ‘dummy’ vertices
that are connected to all other vertices (and increasing b by an equal amount).
It is straightforward to see that such a transformation results in an equiva-
lent instance. Since s is nondecreasing and unbounded, we know there exists
some n0 ∈ ω such that for all n ≥ n0 it holds that s(n) ≥ 2. Now, we define the
function δ(n) = n+n0. Clearly, δ is polynomial-time computable. We show that
for all n, b ∈ ω it holds that f(n+ δ(n)) ≤ b+ δ(n):

f(n+ δ(n)) = f(2n+ n0) ≤ 2n+n0

s(2n+n0)
≤ 2n+n0

2 = n+ n0

2

≤ n+ n0 ≤ b+ n+ n0 = b+ δ(n).

Now, let b′ = b+δ(n). Then, if we add δ(n)many vertices to G that are connected
to all other vertices, we get an instance G′ with n′ vertices such that f(n′) ≤ b′.

Proposition 1. Let f : ω → ω be a nondecreasing unbounded function that
is o(n). Then Rf is not solvable in polynomial time, unless the ETH fails.

Proof. In order to prove our result, we will assume that Rf is solvable in poly-
nomial time, and then show that the ETH fails. In particular, we will show that
k-clique is solvable in time f ′(k)mo(k), which implies the failure of the ETH
by Theorem 2.

Firstly, we will define a function f−1 as follows. We let:

f−1(h) = min{ q : f(q) ≥ h }.

Since f is an unbounded nondecreasing function, we get that f−1 is an un-
bounded nondecreasing function as well.

We give an algorithm that solves k-clique in the required amount of time.
Let (G, k) be an instance of k-clique, where G = (V,E) is a graph with n
vertices. Let m denote the size of G (in bits). Intuitively, we will add exactly
the right number of ‘dummy’ vertices to G, resulting in a graph G′ = (V ′, E′),



8 Ronald de Haan and Jakub Szymanik

to make sure that f(n′) = k where n′ = |V ′| (while ensuring that G has a k-
clique if and only if G′ has a k-clique). To be more precise, we will construct a
number k′ such that f(n′) = k′ and such that G has a k-clique if and only if G′
has a k′-clique. Consider the number q = f−1(k), and define ` = f(q) − k. By
definition of f−1, we know that f(f−1(k)) ≥ k, and thus that ` ≥ 0. We may
assume without loss of generality that ` ≤ q − n and thus that 0 ≤ ` ≤ q − n.
If this were not the case, we could invoke Lemma 1 (by taking b = q − n) to
increase q to a number q′ (and update ` to `′ accordingly) such that q′ − n ≥
q − n ≥ f(q′) ≥ f(q′)− k = `′.

We now construct G′ from G by adding q− n many new vertices, where ` of
them are connected in G′ to all existing vertices in G, and the remaining new
vertices are not connected to any other vertex. We then get that n′ = q, and we
let k′ = f(n′) = f(q). It is now straightforward to verify that G has a k-clique
if and only if G′ has a k′-clique, and that the size of G′ is at most f−1(k)mc for
some constant c.

Now that we constructed G′, we can use our polynomial-time algorithm to
check whether G′ ∈ Rf , which is the case if and only if (G, k) ∈ k-clique. This
takes an amount of time that is polynomial in the size m′ of G′. Since m′ ≤
f−1(k)mc for some constant c, the combined algorithm of producing G′ and
deciding whether G′ ∈ Rf takes time f ′(k)(m)c

′
for some function f ′ and

some constant c′. From this we can conclude that k-clique is solvable in
time f ′(k)mc′ = f ′(k)mo(k). Therefore, by Theorem 2, the ETH fails.

We point out that the result of Proposition 1 actually already follows from
a known result [24, Theorem 5.7]. For the sake of clarity, we included a self-
contained proof of this statement anyway.

The class of sublinear functions as considered in the result of Proposition 1,
also contains those functions f such that f(n) ≤ nε, for some constant ε such
that 0 < ε < 1.

Corollary 2. Let f : ω −→ ω be a unbounded, computable function such that
for all n ∈ ω, f(n) ≤ nε for some constant rational number ε such that 0 < ε < 1.
Then Rf is not polynomial-time computable, unless the ETH fails.

Proof. Since f(n) ≤ nε, we know that f(n) ≤ n/n1−ε. Then, because s(n) =
n1−ε is a nondecreasing, unbounded computable function, we can apply Propo-
sition 1 to obtain the intractability of Rf .

Next, we turn to another class of polynomial-time computable functions f
for which Rf is not polynomial-time computable unless the ETH fails.

Proposition 2. Let f : ω −→ ω be a polynomial-time computable function
such that, for sufficiently large n, it holds that f(n) ≤ n− log n · s(n), for some
nondecreasing and unbounded computable function s. Then Rf is not polynomial-
time solvable, unless the ETH fails.



A Dichotomy Result for Ramsey Quantifiers 9

Proof. We show that a polynomial time algorithm to decide Rf can be used
to show that deciding whether a given simple graph (with n vertices) con-
tains a clique of a given size m can be solved in subexponential time, i.e., in
time 2o(n)poly(|G|). This, in turn, implies the failure of the ETH [18].

Let G = (V,E) be a simple graph with n vertices. Moreover, let m be a
positive integer. We will add a certain number, `, of vertices to this graph,
to obtain a new graph G′. We will do this in such a way that almost all of
these new vertices (`′ of them) are connected to all other vertices. Moreover,
we will make sure that m+ ` ≥ f(n+ `). Then we can choose `′ in such a way
thatm+`′ = f(n+`). This allows us to use the polynomial time algorithm for Rf

to decide whether G contains a clique of size m, since any clique of size m + `′

in G′ corresponds to a clique of size m in G.
We define the nondecreasing, unbounded function t (representing the ‘inverse’

of s(n) log n) as follows. Let t(n) = max{h : s(h) log h ≤ n }. Since s(n) log n
grows strictly faster than log n, we get that t(n) is subexponential, i.e., t(n)
is 2o(n). Then, in order to ensure that m+` ≥ n+`−s(n+`) log(n+`), we need
that s(n + `) log(n + `) ≥ n −m, and thus that n + ` ≥ t(n −m). This allows
us to choose ` = t(n −m) − n = 2o(n) − n. Therefore, our reduction to Rf runs
in subexponential-time. Consequently, if we were to compose this reduction and
the (hypothetical) polynomial time algorithm Rf , we could decide whether G has
a clique of size m in subexponential time, and thus the ETH fails.

On the other hand, there are functions f that are not bounded, but for
which Rf is polynomial-time computable. Consider the function f(n) = n −
cdlog ne, where c is some fixed constant. Clearly, this function f is not bounded
(in the sense of Definition 8). We show that for functions of this kind, the Ramsey
quantifier Rf is polynomial-time computable.

Proposition 3. Let c ∈ ω be a constant, and let f : ω −→ ω be any polynomial-
time computable function such that, for sufficiently large n, f(n) ≥ n− cdlog ne.
Then Rf is polynomial-time computable.

Proof. Firstly, we consider the problem of, given a simple graph G = (V,E)
with n vertices, and an integer k, deciding whether G contains a clique of size
at least n − k. We know that this problem can be solved in time 2k · poly(n)
[20, Proposition 4.4]. In other words, deciding whether a graph with n vertices
contains a clique of size ` can be done in time 2n−` · poly(n). We will use this
result to show polynomial-time computability of Rf .

Let M be a structure with a universe M containing n elements, and
let Rfxy ϕ(x, y) be an Rf -quantified formula. We construct the graph G = (V,E)
as follows. We let V = M , and for each a, b ∈ M we let E contain an edge
between a and b if and only if M |= ϕ(a, b). Clearly, G can be constructed in
polynomial time.

Moreover, G has a clique of size f(n) if and only if M |= Rfxy ϕ(x, y).
Therefore, it suffices to decide whether G has a clique of size f(n). We know
that f(n) ≥ n − cdlog ne. As mentioned above, we know we can decide this



10 Ronald de Haan and Jakub Szymanik

in time 2n−f(n) · poly(n). Because n − f(n) ≤ cdlog ne, we get that 2n−f(n) ≤
2cdlogne ≤ (2n)c. Thus, we can solve the problem in polynomial time.

Combining Theorem 4, Observation 6 and Propositions 1, 2 and 3, we get
the following dichotomy result. In order to state this result, we define a notion
of boundedness that differs from the one in Definition 8.

Definition 10 (Constant-log-boundedness). Let f : ω −→ ω be a com-
putable function. We say that f is constant-log-bounded if one of the following
holds:

– for all n ∈ ω, f(n) is bounded by a constant, i.e., there is some m ∈ ω such
that for all n ∈ ω it holds that f(n) ≤ m; or

– for all n ∈ ω, f(n) differs from n by at most c log n, where c is some constant,
i.e., there is some c ∈ ω such that for all n ∈ ω it holds that f(n) ≥ n−c log n.

Theorem 8. Let f : ω −→ ω be a computable function. Then, assuming the
ETH, Rf is polynomial-time computable if and only if f is polynomial-time com-
putable and constant-log-bounded.

4 Conclusions and Outlook

We investigated the computational complexity of Ramsey quantifiers. We
pointed out some natural tractable (i.e., bounded) and intractable (e.g., propor-
tional) Ramsey quantifiers. These results motivate the search for a dichotomy
theorem for Ramsey quantifiers. As a next step, assuming the ETH, we showed
that there exist intermediate Ramsey quantifiers (that is, Ramsey quantifiers
that are neither polynomial-time computable nor NP-hard). This led to the ques-
tion whether there exists a natural class of functions, and a notion of bounded-
ness, for which (under reasonable complexity assumptions) the polynomial-time
Ramsey quantifiers are exactly the bounded Ramsey quantifiers. We showed that
this is indeed the case. Our main result states that assuming the ETH, a Ram-
sey quantifier is polynomial-time computable if and only if it corresponds to a
polynomial-time computable and constant-log-bounded function.

Let us conclude with the following more logical question. The classical prop-
erty of boundedness plays a crucial role in the definability of polyadic gener-
alized quantifiers. Hella, Väänänen, and Westerståhl in [11] have shown that
the Ramseyfication of Q is definable in FO(Q) if and only if Q is bounded.
Moreover, in a similar way, defining “joint boundedness” for pairs of quantifiers
Qf and Qg one can notice that Br(Qf ,Qg) is definable in FO(Qf ,Qg) [11] and,
therefore, polynomial-time computable for polynomial functions f and g. In this
paper we substitute the boundedness definition with the notion of constant-
log-boundedness, where the bound on the upper side is replaced by c log n. A
natural direction for future research is whether this change leads to interesting
descriptive results.



A Dichotomy Result for Ramsey Quantifiers 11

References

1. Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Clarendon Press,
Oxford (2006)

2. Mostowski, M., Wojtyniak, D.: Computational complexity of the semantics of some
natural language constructions. Annals of Pure and Applied Logic 127(1-3) (2004)
219–227

3. Sevenster, M.: Branches of Imperfect Information: Logic, Games, and Computa-
tion. PhD thesis, University of Amsterdam (2006)

4. Sevenster, M.: Dichotomy result for independence-friendly prefixes of generalized
quantifiers. The Journal of Symbolic Logic 79(4) (2014) 1224–1246

5. Szymanik, J.: Computational complexity of polyadic lifts of generalized quantifiers
in natural language. Linguistics and Philosophy 33 (2010) 215–250

6. Szymanik, J.: Quantifiers in TIME and SPACE. Computational Complexity of
Generalized Quantifiers in Natural Language. PhD thesis, University of Amster-
dam, Amsterdam (2009)

7. Dalrymple, M., Kanazawa, M., Kim, Y., Mchombo, S., Peters, S.: Reciprocal
expressions and the concept of reciprocity. Linguistics and Philosophy 21 (1998)
159–210

8. Schlotterbeck, F., Bott, O.: Easy solutions for a hard problem? The computational
complexity of reciprocals with quantificational antecedents. Journal of Logic, Lan-
guage and Information 22(4) (2013) 363–390

9. Thorne, C., Szymanik, J.: Semantic complexity of quantifiers and their distribution
in corpora. In: Proceedings of the International Conference on Computational
Semantics. (2015)

10. Väänänen, J.: Unary quantifiers on finite models. Journal of Logic, Language and
Information 6(3) (1997) 275–304

11. Hella, L., Väänänen, J., Westerståhl, D.: Definability of polyadic lifts of generalized
quantifiers. Journal of Logic, Language and Information 6(3) (1997) 305–335

12. Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32
(1966) 186–195

13. Immerman, N.: Descriptive Complexity. Texts in Computer Science. Springer,
New York, NY (1998)

14. Blass, A., Gurevich, Y.: Henkin quantifiers and complete problems. Annals of Pure
and Applied Logic 32 (1986) 1–16

15. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1)
(1975) 155–171

16. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing. STOC ’78, New York,
NY, USA, ACM (1978) 216–226

17. Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema,
Y., Weinstein, S.: Finite Model Theory and Its Applications. Texts in Theoretical
Computer Science. An EATCS Series. Springer (2007)

18. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer
and System Sciences 62(2) (2001) 367–375

19. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bulletin of the EATCS 105 (2011) 41–72

20. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
21. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I.A., Xia, G.: Tight

lower bounds for certain parameterized np-hard problems. Information and Com-
putation 201(2) (2005) 216 – 231



12 Ronald de Haan and Jakub Szymanik

22. Ramsey, F.: On a problem of formal logic. In: Proceedings of the London Mathe-
matical Society. Volume 30 of 2. (1929) 338–384

23. Cai, L., Juedes, D., Kanj, I.: The inapproximability of non-NP-hard optimization
problems. Theoretical Computer Science 289(1) (2002) 553 – 571

24. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences 72(8) (2006)
1346–1367


