Skip to main content

Research of Remote Sensing Image Compression Technology Based on Compressed Sensing

  • Conference paper
  • First Online:
Advances in Image and Graphics Technologies (IGTA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 525))

Included in the following conference series:

  • 1244 Accesses

Abstract

Compressed Sensing (CS) theory is a new method of signal acquisition and processing proposed in recent years. With small amount of sampling data recovering original data to precisely reconstruct sparse signal or compression signal, the theory breaks though the restriction of Nyquist sampling theorem. CS can avoid enormous sampling data waste but also reduce the complexity of image coding. This paper reviews the basic theory of CS and its three key points, including signal sparse representation, design of measurement matrix and reconstruction algorithms. Then, the application of CS in the field of remote sensing image compression technology is studied. Using MATLAB software, we do a series of CS emulation experiments compared with the traditional compression methods. The results show that the proposed method has a good performance on the remote sensing image compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donoho, D.L.: Compressed sensing. IEEE Trans-actions On Information Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Donoho, D.L., Tsaig, Y.: Extensions of compressed sensing. Signal Processing 86(3), 533–548 (2006)

    Article  MATH  Google Scholar 

  3. Candès, E.J.: Compressive sampling. In: Proceedings of the 2006 International Congress of Mathematics. Madrid, Spain: the European Mathematical Society, vol. 3, pp. 1433–1452 (2006)

    Google Scholar 

  4. Candès, E.J., Romberg, J.K.: T. Tao.: Robust uncertainty principles: Exact signal re-construction from highly incomplete frequency information. IEEE Transactions On Information Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  5. Candès, E.J., Tao, T.: Near optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions On Information Theory 52(12), 5406–5425 (2006)

    Article  MATH  Google Scholar 

  6. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 59(8), 1207–1223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sc. Paris 346(9–10), 589–592 (2008)

    Article  MATH  Google Scholar 

  8. Candès, E.J., Romberg, J.K.: Sparsity and incoherence in compressive sampling. Inverse Problems 23(3), 969–985 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Candès, E.J., Romberg, J.K.: Quantitative robust uncertainty principles and optimally sparse decompositions. Foundations of Computing Math 6(2), 227–254 (2006)

    Article  MATH  Google Scholar 

  10. Tropp, J.A., Laska, J.N., Duarte, M.F., et al.: Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals. IEEE Transactions On Information Theory 56(1), 94–105 (2012)

    MathSciNet  Google Scholar 

  11. Jixin, L., Quansen, S.: Multi-scale Fractal Compressed Sensing Remote Sensing Imaging. Acta Geodaetica et Cartographica Sinica 42(6), 846–885 (2013)

    Google Scholar 

  12. Li-cheng, J., Shu –yuan, Y., Fang, L., Biao, H.: Development and Prospect of Compressive Sensing. Acta Electronic Sinica 39(7) (2011)

    Google Scholar 

  13. Jiapeng, C.: The Research and Implementation of Image Compression Technology Based ON Compressed Sensing. Harbin Institute of Technology (2013)

    Google Scholar 

  14. Wenze, S., Zhihui, W.: Advances and perspectives on compressed sensing theory. Journal of Image and Graphics 39(7), 1–12 (2012)

    Google Scholar 

  15. Mallat, G.S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transactionson Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  16. Guang-ming, S., Dan-hua, L., Da-hua, G., Zhe, L., Jie, L., Liang-jun, W.: Advances in Theory and Application of Compressed Sensing. Acta Electronic Sinica 37(5) (2009)

    Google Scholar 

  17. Candès, E.J., Wakin, M.: An introduction to compressive sampling. IEEE Signal Processing Magazine 21–30 (2008)

    Google Scholar 

  18. Baraniuk, R.G.: Compressive sensing. IEEE Signal Processing Magazine 24(4), 118–124 (2007)

    Article  Google Scholar 

  19. Shu-Tao, L., Dan, W.: A Survey on Compressive Sensing. Acta Automatica Sinica 35(11) (2009)

    Google Scholar 

  20. Shaobing, C., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  21. Malioutov, D.M., Cetin, M., Willsky, A.S.: Homotopy continuation for sparse signal representation. In: IEEE Inter National Conference on Acoustics, Speech, and Signal Processing, pp. 733–736. IEEE Press, Philadelphia (2005)

    Google Scholar 

  22. Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing 1(4), 606–617 (2007)

    Article  Google Scholar 

  23. Figueiredo, M.A.T., Nowak, R.D.: S. J. Wright.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing 1(4), 586–597 (2007)

    Article  Google Scholar 

  24. Mallat, S.G., Zhang, Z.F.: Matching pursuit with time-frequency dictionaries. IEEE Trans. on Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  25. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory 53(12), 4655–4666 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Comp. Math 9(3), 317–334 (2000)

    Article  MathSciNet  Google Scholar 

  27. Donoho, D.L., Tsaig, Y., Drori, I., et al.: Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit. In Department of Statistics, Stan ford University, Stanford: Technical Report 2006 – 02 (2006)

    Google Scholar 

  28. Needell, D., Tropp, J.: Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Applied and Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Do, T., Lu, G., Nguyen, N., et al.: Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In: Proceedings of 42nd Asilomar Conference on Signals, System and Computers, pp. 581–587. IEEE Computer Society, Pacific Grove (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, T., Deng, S. (2015). Research of Remote Sensing Image Compression Technology Based on Compressed Sensing. In: Tan, T., Ruan, Q., Wang, S., Ma, H., Di, K. (eds) Advances in Image and Graphics Technologies. IGTA 2015. Communications in Computer and Information Science, vol 525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47791-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47791-5_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47790-8

  • Online ISBN: 978-3-662-47791-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics