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Abstract. Let p be an unknown probability distribution on [n] :=
{1, 2, . . . n} that we can access via two kinds of queries: A SAMP query
takes no input and returns x ∈ [n] with probability p[x]; a PMF query
takes as input x ∈ [n] and returns the value p[x]. We consider the task
of estimating the entropy of p to within ±∆ (with high probability). For
the usual Shannon entropy H(p), we show that Ω(log2 n/∆2) queries are
necessary, matching a recent upper bound of Canonne and Rubinfeld.
For the Rényi entropy Hα(p), where α > 1, we show that Θ(n1−1/α/2∆)
queries are necessary and sufficient. This complements recent work of
Acharya et al. in the SAMP-only model that showed O(n1−1/α) queries

suffice when α is an integer, but Ω̃(n) queries are necessary when α is
a noninteger. All of our lower bounds also easily extend to the model
where CDF queries (given x, return

∑
y≤x p[y]) are allowed.

1 Introduction

The field of statistics is to a large extent concerned with questions of the following
sort: How many samples from an unknown probability distribution p are needed
in order to accurately estimate various properties of the distribution? These sorts
of questions have also been studied more recently within the theoretical computer
science framework of property testing. In this framework, one typically makes no
assumptions about p other than that it is a discrete distribution supported on,
say, [n] := {1, 2, . . . , n}. There is a vast literature on testing and estimating
properties of unknown distributions; for a survey with pointers to the literature,
see Rubinfeld [Rub12] and Canonne [Can15].

One of the most important properties of a probability distribution p is its
Shannon entropy, H(p) =

∑
x p[x] log 1

p[x] .
3 Shannon entropy is a measure of

the “amount of randomness” in p. In this work we will be concerned with the
associated task of estimating the entropy of an unknown p within a confidence

? Work performed while the author was at the Boğaziçi University Computer Engi-
neering Department, supported by Marie Curie International Incoming Fellowship
project number 626373.

3 In this paper, log denotes log2.
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interval of ±∆ with probability at least 1 − δ. (Typically ∆ = 1 and δ = 1/3.)
We also remark that if p is a distribution on [n]× [n] representing the joint pmf
of random variables X and Y , then H(p) is related to the mutual information
I(X;Y ) of X and Y via H(X) +H(Y )−H(X,Y ). Thus additively estimat-
ing mutual information easily reduces to additively estimating entropy. For an
extended survey and results on the fundamental task of estimating entropy, see
Paninski [Pan03]; this survey includes justification of discretization, as well as
discussion of applications to neuroscience (e.g., estimating the information ca-
pacity of a synapse).

It is known that in the basic “samples-only model” — in which the only ac-
cess to p is via independent samples — estimation of entropy is a very expensive
task. From the works [Pan03, Pan04, Val11, VV11b, VV11a] we know that esti-
mating H(p) to within ±1 with confidence 2/3 requires roughly a linear number
of samples; more precisely, Θ(n/ log n) samples are necessary (and sufficient).
Unfortunately, for many applications this quantity is too large. E.g., for prac-
tical biological experiments it may be infeasible to obtain that many samples;
or, for the enormous data sets now available in computer science applications, it
may simply take too long to process Θ̃(n) samples.

To combat this difficulty, researchers have considered an extension to the
samples-only model, called the “Generation+Evaluation” model in [KMR+94]
and the “combined model” in [BDKR05]. We will refer to it as the SAMP+PMF
model because it allows the estimation algorithm two kinds of “queries” to the
unknown distribution p: a SAMP query, which takes no input and returns x ∈ [n]
with probability p[x]; and a PMF query, which takes as input x ∈ [n] and returns
the value p[x]. As we will see, in this model entropy can be accurately estimated
with just polylog(n) queries, dramatically smaller than the Ω(n/ log n) queries
needed in the samples-only model.

Regarding the relevance of the SAMP+PMF model, an example scenario in
which it might occur is the Google n-gram database; the frequency of each n-
gram is published, and it is easy to obtain a random n-gram from the underlying
text corpus. Another motivation for SAMP+PMF access comes from the stream-
ing model of computation [AMS99], where entropy estimation has been well
studied [GMV06, LSO+06, CDM06, BG06, CCM07, HNO08]. The SAMP+PMF
testing model and the streaming model are closely related. Roughly speaking,
any q-query estimation algorithm in the SAMP+PMF model can be converted to
a q · polylog(n)-space streaming algorithm with one or two passes (with precise
details depending on the model for how the items in the stream are ordered).
More motivation and results for the SAMP+PMF model can be found in Canonne
and Rubinfeld [CR14].

1.1 Our Results, and Comparison with Prior Work

The first works [BDKR05, GMV06] on entropy estimation in the SAMP+PMF
model were concerned with multiplicative estimates of H(p). Together they show
relatively tight bounds for this problem: estimating (with high probability) H(p)
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to within a multiplicative factor of 1 + γ requires

between Ω

(
log n

max(γ, γ2)

)
· 1

H(p)
and O

(
log n

γ2

)
· 1

H(p)
(1)

queries. Unfortunately, these bounds depend quantitatively on the entropy H(p)
itself; the number of queries necessarily scales as 1/H(p). Further, whereas ad-
ditive estimation of entropy can be used to obtain additive estimates of mutual
information, multiplicative estimates are insufficient for this purpose. Thus in
this paper we consider only the problem of additive approximation.

For this problem, Canonne and Rubinfeld [CR14] recently observed that
O(log2 n) SAMP+PMF queries are sufficient to estimate H(p) to ±1 with high
probability, and Ω(log n) queries are necessary. The first main result in this work
is an improved, optimal lower bound:

First main theorem. In the SAMP+PMF model, Ω(log2 n) queries are neces-
sary to estimate (with high probability) the Shannon entropy H(p) of an unknown
distribution p on [n] to within ±1.

Remark 1. Our lower bound and the lower bound from (1) hold even under the
promise that H(p) = Θ(log n). The lower bound in (1) yields a lower bound for
our additive approximation problem by taking γ = 1

logn , but only a nonoptimal

one: Ω(log n).

More generally, Canonne and Rubinfeld showed that O( log2 n
∆2 ) queries suffice

for estimating Shannon entropy to within ±∆.4 Note that this result is trivial
once ∆ ≤ logn√

n
because of course the entire distribution p can be determined

precisely with n PMF queries. In fact, our first main theorem is stated to give a
matching lower bound for essentially the full range of ∆: for any 1

n.4999 ≤ ∆ ≤
log n we show that Ω( log2 n

∆2 ) queries are necessary in the SAMP+PMF model.

Our second main theorem is concerned with estimation of the Rényi entropy
Hα(p) for various parameters 0 ≤ α ≤ ∞. Here

Hα(p) =
1

1− α
log

(∑
x

p[x]α

)
,

interpreted in the limit when α = 0, 1,∞. The meaning for p is as follows: when
α = 0 it’s the (log of the) support size; when α = 1 it’s the usual Shannon
entropy; when α = ∞ it’s the min-entropy; when α = 2 it’s the (negative-log
of the) collision probability; and for general integer α ≥ 2 it’s related to higher-
order collision probabilities.

A recent work of Acharya, Orlitsky, Suresh, and Tyagi [AOST15] showed
that for estimating Hα(p) in the samples-only model to within ±1, Θ(n1−1/α)

4 They actually state O( log2(n/∆)

∆2 ), but this is the same as O( log2 n
∆2 ) because the range

of interest is 1√
n
≤ ∆ ≤ logn.
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samples are necessary and sufficient when α is an integer greater than 1, and
Ω̃(n) queries are necessary when α is a noninteger greater than 1. Our second
main result is a tight characterization of the number of SAMP+PMF queries
necessary and sufficient for estimating Hα(p) for all α > 1. It turns out that
PMF queries do not help in estimating these more general Rényi entropies for
integer α, whereas they are helpful for noninteger α.

Second main theorem. Let α > 1 be a real number. In the SAMP+PMF model,
Θ(n1−1/α/2∆) queries are necessary and sufficient to estimate (with high prob-
ability) the Rényi entropy Hα(p) of an unknown distribution p on [n] to within
±∆.

Finally, we mention that our two lower bounds easily go through even when
the more liberal “CDF” queries introduced in [CR14] are allowed. These queries
take as input x ∈ [n] and return the value

∑
y≤x p[y].5 We will also show that the

Canonne–Rubinfeld SAMP+PMF lower bound of Ω(1/ε2) for estimating support
size to within ±εn can be extended to the more general SAMP+CDF model.

2 Lower Bound for Estimating Shannon Entropy

Theorem 2. In the SAMP+PMF model, Ω
(

log2 n
∆2

)
queries are necessary to

estimate (with high probability) the Shannon entropy H(p) of an unknown dis-
tribution p on [n] to within ±∆, where 1

n.4999 ≤ ∆ ≤ log n.

Proof. We will show that a hypothetical SAMP+PMF algorithm E that can
estimate the entropy of an unknown distribution on [n] to within ±∆ using

o
(

log2 n
∆2

)
queries would contradict the well-known fact that Ω(1/λ2) coin tosses

are necessary to determine whether a given coin is fair, or comes up heads with
probability 1/2 + λ.

The idea is to use the given coin to realize the probability distribution that
E will work on. Let n be the smallest one millionth power of a natural number

that satisfies 3·106∆
logn ≤ λ. Partition the domain [n] into M = n.999999 consecutive

blocks I1, . . . , IM , each containing K = n
M = n.000001 elements. Each block will

be labeled either as a tails or a heads block. The internal distribution of each
heads block is uniform, i.e. each element has probability mass 1

MK = 1
n . In each

tails block, the first element has probability mass 1
n.999999 , while the rest of the

elements have probability mass 0. Note that the total probability mass of each
block is K · 1

MK = 1
M = 1

n.999999 , regardless of its label.
We will now describe a costly method of constructing a probability distribu-

tion p of this kind, using a coin that comes up heads with probability d:
- Throw the coin M times to obtain the outcomes X1, . . . ,XM ,
- Set the label of block Im to Xm, for all m ∈ [M ].

5 Note that a PMF query can be simulated by two CDF queries.
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Let X be the number of heads blocks in p. Then µ = E [X] = Md. Let
X = X

M denote the proportion of heads blocks in p. Then we can calculate the
entropy H[p] by calculating the individual entropies of the blocks. For a heads
block, the entropy is K · 1

MK · log(MK) = 1
M log n. The entropy of a tails block

is 1
n.999999 log(n.999999) = .999999

M log n. Since there are MX heads blocks and

M(1−X) tails blocks, the total entropy becomes H[p] = MX · 1
M log n+M(1−

X) · .999999M log n = X log n+ .999999(1−X) log n = (.999999+ .000001X) log n.

Note that this function is monotone with respect to X.
Define two families of distributions P1 and P2 constructed by the above

process, taking d to be p1 = 1
2 and p2 = 1

2 +λ, respectively. Let p1 ( respectively
p2) be a probability distribution randomly chosen from P1 (respectively P2).

Proposition 3. p1 has entropy at most .9999995 log n+∆ with high probability.

Proof. We prove this by using a Chernoff bound on the number of heads blocks
in the distribution.

Pr
[
X ≥

(
p1 + 106∆

logn

)
M
]
≤ exp

(
−

4·1012∆2

log2 n

2 + 2·106∆
logn

M

2

)
≤ exp

(
− 1012 · n.999999/n.999998

log2 n(1 + 106)

)
= o(1).

The last term indicates that the proportion of the heads blocks X <
(
p1 +

106∆
logn

)
with high probability. Thus with high probability H[p1] = (.999999 +

.000001X) log n < .9999995 log n+∆. ut

Proposition 4. p2 has entropy at least .9999995 log n+2∆ with high probability.

Proof. We find a similar bound by;

Pr
[
X ≤

(
p2 − 106∆

logn

)
M
]
≤ exp

(
−

1012∆2

p22 log2 n

2
p2M

)
≤ exp

(
− n.000001

log2 n

)
= o(1).

The last term indicates that the proportion of the heads blocks X >
(
p2 −

106∆
logn

)
with high probability. Thus with high probability H[p2] = (.999999 +

.000001X) log n > .9999995 log n + .000001(λ − 106∆
logn ) log n ≥ .9999995 log n +

.000001( 2·106∆
logn ) log n = .9999995 log n+ 2∆. ut

Since the entropies of p1 and p2 are sufficiently far apart from each other, our
hypothetical estimator E can be used to determine whether the underlying coin
has probability p1 or p2 associated with it. To arrive at the contradiction we want,
we must ensure that the coin is not thrown too many times during this process.
This is achieved by constructing the distribution “on-the-fly” [CR14] during the
execution of E , throwing the coin only when it is required to determine the label
of a previously undefined block:
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When E makes a SAMP query, we choose a block Im uniformly at random
(since each block has probability mass 1

M ), and then flip the coin for Im to
decide its label if it is yet undetermined. We then draw a sample i ∼ dm from
Im, where dm is the normalized distribution of the mth block.

When E makes a PMF query on i ∈ [n], we flip the coin to determine the
label of the associated block Im if it is yet undetermined. We then return the
probability mass of i.

By this procedure, the queries of E about the probability distribution p
(known to be either p1 or p2) can be answered by using at most one coin flip

per query, i.e. o
(

log2 n
∆2

)
times in total.

Since we selected n so that 1/λ2 = Θ( log2 n
∆2 ), this would mean that it is

possible to distinguish between the two coins using only o(1/λ2) throws, which is
a contradiction, letting us conclude that no algorithm can estimate the Shannon
entropy H(p) of an unknown distribution p on [n] to within ±∆ with high

probability making o
(

log2 n
∆2

)
queries. ut

We now give a similar lower bound for the SAMP+CDF model.

Corollary 5. In the SAMP+CDF model, any algorithm estimating (with high
probability) the Shannon entropy H(p) of an unknown distribution p on [n] to

within ±∆ must make Ω
(

log2 n
∆2

)
queries.

Proof. The construction is identical to the one in the proof of Theorem 2, except
that we now have to describe how the CDF queries of the estimation algorithm
must be answered using the coin:

When E makes a CDF query on i ∈ [n], we flip the coin to determine the
label of the associated block Im if this is necessary. We then return the sum
of the total probability mass of the blocks preceding Im (which is m−1

M , since
each block has a total probability mass of 1

M regardless of its label) and the
probability masses of the elements from the beginning of Im up to and including
i itself. At most one coin flip per CDF query is therefore sufficient. ut

3 Estimating Rényi Entropy

We start by demonstrating a lower bound.

Theorem 6. For any α > 1, Ω

(
n1−1/α

2∆

)
SAMP+PMF queries are necessary

to estimate (with high probability) the Rényi entropy Hα(p) of an unknown dis-
tribution p on [n] to within ±∆.

Proof. We will first prove the theorem for rational α, and show that it remains
valid for irrationals at the end.

The proof has the same structure as that of Theorem 2. One difference is that
we reduce from the problem of distinguishing a maximally biased coin that never
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comes up tails from a less biased one (instead of the problem of distinguishing
a fair coin from a biased one).

Suppose that we are given a coin whose probability of coming up heads is
promised to be either p1 = 1 or p2 = 1 − λ for a specified number λ, and we
must determine which is the case. It is easy to show that this task requires
at least Ω(1/λ) coin throws. We will show that this fact is contradicted if one

assumes that there exist natural numbers s and t, where α =
s

t
> 1, such that

it is possible to estimate (with high probability) the Rényi entropy Hα(p) of an
unknown distribution p on [n] to within ±∆ using an algorithm, say R, that

makes only o(
n1−1/α

2∆
) SAMP+PMF queries.

Let n be the smallest number of the form
(
d2∆ej

)s
that satisfies 5·d2∆e

n1−1/α ≤ λ,

where j is some natural number. Partition [n] into M = n1−1/α

d2∆e consecutive

blocks I1, I2, . . . IM , each of size K = d2∆e · n1/α. As in the proof of Theorem 2,
a probability distribution p can be realized by throwing a given coin M times to
obtain the outcomes X1, . . . ,XM , and setting the label of block Im to Xm, for
all m ∈ [M ], where each member of each heads block again has probability mass

1/n. The first member of each tails block has probability mass d2∆e
n1−1/α , and the

remaining members have probability mass 0. We again have that each block has

total probability mass K
n = d2∆en1/α

n = 1
M regardless of its label, so this process

always results in a legal probability distribution.
If the coin is maximally biased, then p becomes the uniform distribution,

and Hα(p) = log n. We will examine the probability of the same distribution
being obtained using the less biased coin. Let P2 be the family of distributions
constructed by the process described above, using a coin with probability p2 of
coming up heads. Let p2 be a probability distribution randomly chosen from P2.

The probability of the undesired case where p2 is the uniform distribution is

Pr [p2 = U([n])] = pM2 ≤
(

1− 5 · d2∆e
n1−1/α

)M
≤ e−

5·d2∆e
n1−1/α

M
= e−5 ≤ 1

1000
.

That is, with probability ≥ .999, p2 has at least one element with probability

mass d2
∆en

1
α

n . Let X be the number of heads outcomes and B and W denote

the number of elements with probability mass 1
n and d2

∆en
1
α

n , respectively. It is
not difficult to see that B = K ·X and W = M −X. We just showed that
X < M with high probability.

Then the Rényi entropy of the constructed distribution p2 ∈ P2 is, with high
probability:

Hα (p2) =
1

1− α
log

(
K ·X/n+ (M −X) d2∆eα

nα−1

)
≤ log n− 1

α− 1
log
(
d2∆eα

)
≤ log n−∆.
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Because Hα(U([n])) −Hα (p2) ≥ ∆, R has to be able to distinguish U([n])
and p2 with high probability.

We can then perform a simulation ofR involving an “on-the-fly” construction
of distribution p exactly as described in the proof of Theorem 2. As discussed
in Section 2, this process requires no more coin throws than the number of
SAMP+PMF queries made by R, allowing us to determine the type of the coin

using only o(
n1−1/α

2∆
), that is, o(1/λ) tosses with high probability, a contradic-

tion.
Having thus proven the statement for rational α, it is straightforward to cover

the case of irrational α: Note that Hα(p) is a continuous function of α for fixed
p. Given any p and ε, for any irrational number αi greater than 1, there exists
a rational αr which is so close to αi such that Hαi(p)−Hαr (p) < ε. An efficient
entropy estimation method for some irrational value of α would therefore imply
the existence of an equally efficient method for some rational value, contradicting
the result obtained above. ut

These results are generalized to the SAMP+CDF model in the same way as
in Section 2:

Corollary 7. For any α > 1, Ω

(
n1−1/α

2∆

)
SAMP+PMF or SAMP+CDF queries

are necessary to estimate (with high probability) the Rényi entropy Hα(p) of an
unknown distribution p on [n] to within ±∆.

We now show that PMF queries are useful for the estimation of Hα for non-
integer α.

Lemma 8. For any rational number α > 1, there exists an algorithm estimating
(with high probability) the Rényi entropy Hα(p) of an unknown distribution p

on [n] to within ±∆ with O

(
n1−1/α

2∆

)
SAMP+PMF queries.

Proof. Defining the αth moment of p as

Mα(p) =
n∑
i=1

(p [i])
α

,

the Rényi entropy can be written as

Hα(p) = 1
1−α logMα(p).

Observe that estimating Hα(p) to an additive accuracy of ±∆ is equivalent
to estimating Mα(p) to a multiplicative accuracy of 2±∆(1−α). Therefore we
construct an estimator for Mα(p).

Let M =
⌈100n1−1/α

2∆

⌉
, and let X1, . . . ,XM be i.i.d. random variables

drawn from p. Define Yi = (p [Xi])
α−1

, where p [Xi] can be calculated us-

ing a PMF query on Xi for 1 ≤ i ≤M . Note that E [Yi] =
n∑
j=1

p [j] (p [j])
α−1

=
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n∑
j=1

(p [j])
α

= Mα(p). Then 1
M

M∑
i=1

Yi is an unbiased estimator of Mα(p), be-

cause E

[
1
M

M∑
i=1

Yi

]
= 1

M

M∑
i=1

E [Yi] = Mα(p). Moreover, Var (Yi) = E
[
Yi

2
]
−

E2 [Yi] =
n∑
j=1

p [j] (p [j])
2α−2−E2[Yi] =M2α−1(p)−M2

α(p). Since the Yi’s are

also i.i.d. random variables, Var

(
1
M

M∑
i=1

Yi

)
= 1

M2

M∑
i=1

Var (Yi) = M
M2 Var (Y ) =

1
M

(
M2α−1 (p)−M2

α (p)
)
.

We use the following fact from [AOST15] to find an upper bound for the
variance of our empirical estimator.

Fact 9 ([AOST15], Lemma 1) For α > 1 and 0 ≤ β ≤ α
Mα+β (p) ≤ n(α−1)(α−β)/αM2

α (p) .

By taking β = α− 1, we get

σ2 = Var

(
1

M

M∑
i=1

Yi

)
≤ 1

M
M2

α (p)
(
n1−1/α − 1

)
≤M2

α (p)
2∆

100
.

By Chebyshev’s inequality we have

Pr

[∣∣∣ 1

M

M∑
i=1

Yi −Mα (p)
∣∣∣ ≥ 10σ

]
≤ 1

100
⇒

Pr

[∣∣∣ 1

M

M∑
i=1

Yi −Mα (p)
∣∣∣ ≤Mα (p) 2∆

]
≥ .99

Thus we can estimateMα (p) to a desired multiplicative accuracy withO

(
n1−1/α

2∆

)
queries, which ends the proof. ut

Applying the generalization to irrational α discussed in the proof of Theorem 6
to Lemma 8, the results proven in this section up to now can be summarized in
the following theorem.

Theorem 10. Let α > 1 be a real number. In both the SAMP+PMF and the
SAMP+CDF models, Θ(n1−1/α/2∆) queries are necessary and sufficient to esti-
mate (with high probability) the Rényi entropy Hα(p) of an unknown distribution
p on [n] to within ±∆.

Finally, we show a similar upper bound for α < 1.

Lemma 11. Let α < 1 and 1 > ε > 0 be rational numbers. There exists an algo-
rithm estimating (with high probability) the Rényi entropy Hα(p) of an unknown

distribution p on [n] to within ±∆ with O

(
nε

2∆

)
SAMP+PMF queries.

Proof. See Appendix A. ut
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4 Lower Bound for Estimating Support Size

For any probability distribution p, H0 (p) = log (supp (p)), where supp (p) de-
notes the support size of p. Canonne and Rubinfeld [CR14] have shown that
Ω(1/ε2) SAMP+PMF queries are necessary for estimating supp (p) to within
±εn where [n] is the domain of p. We modify their proof to establish the same
lower bound for this task in the SAMP+CDF model.

Theorem 12. Ω

(
1

ε2

)
SAMP+CDF queries are necessary to estimate (with

high probability) the support size of an unknown distribution p on domain [n] to
within ±εn.

Proof. Assume that there exists a program S which can accomplish the task
specified in the theorem statement with only o

(
1
ε2

)
queries. Let us show how S

can be used to determine whether a given a coin is fair, or comes up heads is
with probability p2 = 1

2 + λ.

Set ε = λ
6 , and let n be the smallest even number satisfying n ≥ 10/ε2.

Partition the domain [n] intoM = n
2 blocks I1, . . . , IM where Im = {2m− 1, 2m}

for all m ∈ [M ]. The construction of a probability distribution p based on coin
flips is as follows:
- Throw the coin M times, with outcomes X1, . . . ,XM ,
- for m ∈ [M ], set p[2m − 1] = 2

n and p[2m] = 0 if Xm is heads, and set
p[2m− 1] = p[2m] = 1

n if Xm is tails.
Note that by construction p[2m− 1] + p[2m] = 2

n for all m ∈ [M ].

Let P1 and P2 be the families of distributions constructed by the above
process, using the fair and biased coin, respectively. Let p1 ( respectively p2) be
a probability distribution randomly chosen from P1 ( respectively P2). Then

E [supp (p1)] = n−M 1

2
= n

(
1− 1/2

2

)
=

3

4
n

E [supp (p2)] = n−Mp2 = n
(

1− p2
2

)
= n

(
3

4
− λ

2

)
=

(
3

4
− 3ε

)
n

and via additive Chernoff bound,

Pr

[
supp (p1) ≤ 3

4
n− ε

2
n

]
≤ e− ε

2n
2 ≤ e−5 < 1

1000

Pr

[
supp (p2) ≥ 3

4
n− 5ε

2
n

]
≤ e− ε

2n
2 ≤ e−5 < 1

1000

In other words, with high probability the resulting distributions will satisfy
supp (p1) − supp (p2) > 2εn, distant enough for S to distinguish between two
families.

As in our previous proofs, we could use S (if only it existed) to distinguish be-
tween the two possible coin types by using the coin for an on-the-fly construction
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of p. As before, SAMP and CDF queries are answered by picking a block ran-
domly, throwing the coin if the type of this block has not been fixed before, and
returning the answer depending on the type of the block. Since o

(
1
ε2

)
=o
(

1
λ2

)
coin tosses would suffice for this task, we have reached a contradiction. ut

5 Concluding Remarks

Tsallis entropy, defined as [Tsa87]

Sα(p) = k
α−1

(
1−

n∑
i=1

(p [i])
α

)
,

where α ∈ IR, and k is the Boltzmann constant, is a generalization of Boltzmann-
Gibbs entropy. Harvey et al. [HNO08] gave an algorithm to estimate Tsallis
entropy, and used it to estimate Shannon entropy in the most general streaming
model. Recalling the link shown in Lemma 8 between the tasks of estimating
Rényi entropy Hα(p) and the αth moment Mα(p), the results we obtained for
Rényi entropy can be extended easily to Tsallis entropy:

Remark 13. Let α > 1 be a real number. In both the SAMP+PMF and the
SAMP+CDF models, Θ(n1−1/α/2∆) queries are necessary and sufficient to esti-
mate (with high probability) the Tsallis entropy Sα(p) of an unknown distribu-
tion p on [n] to within ±∆.

One problem left open by our work is that of optimal lower bounds for esti-
mating the Rényi entropy Hα(p) in the SAMP+PMF model for α < 1. The

work [AOST15] showed that in the model where only SAMP are allowed, Ω̃(n1/α)
queries are necessary when 0 < α < 1. It is interesting to ask whether the bound
in Lemma 11 is optimal.

Acknowledgments We thank Clément Canonne for his assistance with our
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Appendix A

Proof (of Lemma 11). By definition

0 ≤ Hα(p) ≤ log n.

Then

1 ≤Mα(p) ≤ n1−α, α < 1 and n1−α ≤Mα(p) ≤ 1, α > 1 . (2)

Define θ =
1

1− ε
. Because θ > 1 we use the empirical estimator constructed

in Lemma 8, which has the property that

Pr

[∣∣∣ 1

M

M∑
i=1

Yi −Mθ (p)
∣∣∣ ≤Mθ (p) 2∆

]
≥ .99 .

By using (2), it is easy to see that with probability at least .99,∣∣ 1
M

M∑
i=1

Yi −Mθ(p)
∣∣ ≤Mα(p)2∆.

Then ∣∣∣ 1

M

M∑
i=1

Yi −Mα(p)
∣∣∣ ≤ ∣∣∣ 1

M

M∑
i=1

Yi −Mθ(p)
∣∣∣+
∣∣∣Mθ(p)−Mα(p)

∣∣∣
≤Mα(p)(2∆ + 1) with high probability.

Thus, we can estimate Hα (p) to a desired additive accuracy of ∆ with O

(
nε

2∆

)
queries. ut


