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Abstract

If S and T are infinite sequences over a finite alphabet, then the lower and upper mutual

dimensions mdim(S : T ) and Mdim(S : T ) are the upper and lower densities of the algorithmic
information that is shared by S and T . In this paper we investigate the relationships between
mutual dimension and coupled randomness, which is the algorithmic randomness of two sequences
R1 and R2 with respect to probability measures that may be dependent on one another. For a
restricted but interesting class of coupled probability measures we prove an explicit formula for
the mutual dimensions mdim(R1 : R2) and Mdim(R1 : R2), and we show that the condition
Mdim(R1 : R2) = 0 is necessary but not sufficient for R1 and R2 to be independently random.

We also identify conditions under which Billingsley generalizations of the mutual dimensions
mdim(S : T ) and Mdim(S : T ) can be meaningfully defined; we show that under these condi-
tions these generalized mutual dimensions have the “correct” relationships with the Billingsley
generalizations of dim(S), Dim(S), dim(T ), and Dim(T ) that were developed and applied by
Lutz and Mayordomo; and we prove a divergence formula for the values of these generalized
mutual dimensions.

1 Introduction

Algorithmic information theory combines tools from the theory of computing and classical Shannon
information theory to create new methods for quantifying information in an expanding variety of
contexts. Two notable and related strengths of this approach that were evident from the beginning
[11] are its abilities to quantify the information in and to assess the randomness of individual data
objects.
Some useful mathematical objects, such as real numbers and execution traces of nonterminating

processes, are intrinsically infinitary. The randomness of such objects was successfully defined very
early [18] but it was only at the turn of the present century [15, 14] that ideas of Hausdorff were
reshaped in order to define effective fractal dimensions, which quantify the densities of algorithmic
information in such infinitary objects. Effective fractal dimensions, of which there are now many,
and their relations with randomness are now a significant part of algorithmic information theory
[6].
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Many scientific challenges require us to quantify not only the information in an individual object,
but also the information shared by two objects. The mutual information I(X;Y ) of classical
Shannon information theory does something along these lines, but for two probability spaces of
objects rather than for two individual objects [5]. The algorithmic mutual information I(x : y),
defined in terms of Kolmogorov complexity [13], quantifies the information shared by two individual
finite objects x and y.
The present authors recently developed the mutual dimensions mdim(x : y) and Mdim(x : y) in

order to quantify the density of algorithmic information shared by two infinitary objects x and y
[4]. The objects x and y of interest in [4] are points in Euclidean spaces Rn and their images under
computable functions, so the fine-scale geometry of Rn plays a major role there.
In this paper we investigate mutual dimensions further, with objectives that are more conventional

in algorithmic information theory. Specifically, we focus on the lower and upper mutual dimensions
mdim(S : T ) and Mdim(S : T ) between two sequences S, T ∈ Σ∞, where Σ is a finite alphabet. (If
Σ = {0, 1}, then we write C for the Cantor space Σ∞.) The definitions of these mutual dimensions,
which are somewhat simpler in Σ∞ than in Rn, are implicit in [4] and explicit in section 2 below.
Our main objective here is to investigate the relationships between mutual dimension and coupled

randomness, which is the algorithmic randomness of two sequences R1 and R2 with respect to
probability measures that may be dependent on one another. In section 3 below we formulate
coupled randomness precisely, and we prove our main theorem, Theorem 3.8, which gives an explicit
formula for mdim(R1 : R2) and Mdim(R1 : R2) in a restricted but interesting class of coupled
probability measures. This theorem can be regarded as a “mutual version” of Theorem 7.7 of [14],
which in turn is an algorithmic extension of a classical theorem of Eggleston [7, 2]. We also show
in section 3 that Mdim(R1 : R2) = 0 is a necessary, but not sufficient condition for two random
sequences R1 and R2 to be independently random.
In 1960 Billingsley investigated generalizations of Hausdorff dimension in which the dimension

itself is defined “through the lens of” a given probability measure [1, 3]. Lutz and Mayordomo
developed the effective Billingsley dimensions dimν(S) and Dimν(S), where ν is a probability
measure on Σ∞, and these have been useful in the algorithmic information theory of self-similar
fractals [17, 8].
In section 4 we investigate “Billingsley generalizations” mdimν(S : T ) and Mdimν(S : T ) of

mdim(S : T ) and Mdim(S : T ), where ν is a probability measure on Σ∞ × Σ∞. These turn out
to make sense only when S and T are mutually normalizable, which means that the normalizations
implicit in the fact that these dimensions are densities of shared information are the same for S as
for T . We prove that, when mutual normalizability is satisfied, the Billingsley mutual dimensions
mdimν(S : T ) and Mdimν(S : T ) are well behaved. We also identify a sufficient condition for
mutual normalizability, make some preliminary observations on when it holds, and prove a diver-
gence formula, analogous to a theorem of [16], for computing the values of the Billingsley mutual
dimensions in many cases.

2 Mutual Dimension in Cantor Spaces

In [4] the authors defined and investigated the mutual dimension between points in Euclidean space.
The purpose of this section is to develop a similar framework for the mutual dimension between
sequences.
Let Σ = {0, 1, . . . k − 1} be our alphabet and Σ∞ denote the set of all k-ary sequences over Σ.
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For S, T ∈ Σ∞, the notation (S, T ) represents the sequence in (Σ×Σ)∞ obtained after pairing each
symbol in S with the symbol in T located at the same position. For S ∈ Σ∞, let

αS =

∞
∑

i=0

S[i]k−(i+1) ∈ [0, 1]. (2.1)

Informally, we say that αS is the real representation of S. Note that, in this section, we often use
the notation S ↾ r to mean the first r ∈ N symbols of a sequence S.
We begin by reviewing some definitions and theorems of algorithmic information theory. All

Turing machines are assumed to be self-delimiting.

Definition. The conditional Kolmogorov complexity of u ∈ Σ∗ given w ∈ Σ∗ with respect to a
Turing machine M is

KM (u |w) = min{|π|
∣

∣ π ∈ {0, 1}∗ and M(π,w) = u}.
We define the Kolmogorov complexity of u ∈ Σ∗ with respect to a Turing machine M by KM (u) =
KM (u |λ), where λ is the empty string.

Definition. A Turing machine M ′ is optimal if, for all Turing machines M , there exists a constant
c ∈ {0, 1}∗ such that

KM ′(u) ≤ KM (u) + c,

for all u ∈ {0, 1}∗.
The following theorem is an important observation in algorithmic information theory.

Theorem 2.1 (Optimality). Every universal Turing machine is optimal.

For the duration of this paper, we let U be some fixed universal Turing machine.

Definition. The conditional Kolmogorov complexity of u ∈ Σ∗ given w ∈ Σ∗ is

K(u |w) = KU (u |w).
The Kolmogorov complexity of a string u ∈ Σ∗ is K(u) = K(u |λ). For a detailed overview of

Kolmogorov complexity and its properties, see [13].
The following definition of the Kolmogorov complexity of sets of strings is also useful.

Definition (Shen and Vereshchagin [24]). The Kolmogorov complexity of a set S ⊆ Σ∗ is

K(S) = min{K(u) |u ∈ S}.
Definition. The lower and upper dimensions of S ∈ Σ∞ are

dim(S) = lim inf
u→S

K(u)

|u| log |Σ|

and

Dim(S) = lim sup
u→S

K(u)

|u| log |Σ| ,

respectively.
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We now proceed to prove several lemmas which describe how the dimensions of sequences and the
dimensions of points in Euclidean space correspond to one another.
Keeping in mind that tuples of rationals in Qn can be easily encoded as a string in Σ∗, we use the

following definition of the Kolmogorov complexity of points in Euclidean space.

Definition. The Kolmogorov complexity of x ∈ Rn at precision r ∈ N is

Kr(x) = K(B2−r(x) ∩Qn).

We recall a useful corollary from [4] that is used in the proof of Lemma 2.3.

Corollary 2.2. For all x ∈ Rn and r, s ∈ N,

Kr+s(x) ≤ Kr(x) + o(r).

Lemma 2.3. There is a constant c ∈ N such that, for all S, T ∈ Σ∞ and r ∈ N,

K((S, T ) ↾ r) = Kr(αS , αT ) + o(r).

Proof. First we show that Kr(αS , αT ) ≤ K((S, T ) ↾ r) + o(r).
Observe that

∣

∣(αS , αT )− (αS↾r, αT ↾r)
∣

∣

=

∣

∣

∣

∣

( ∞
∑

i=0

S[i]k−(i+1),

∞
∑

i=0

T [i]k−(i+1)

)

−
( r−1
∑

i=0

S[i]k−(i+1),

r−1
∑

i=0

S[i]k−(i+1)

)∣

∣

∣

∣

=

∣

∣

∣

∣

( ∞
∑

i=r

S[i]k−(i+1),
∞
∑

i=r

T [i]k−(i+1)

)
∣

∣

∣

∣

≤
∣

∣

∣

∣

( ∞
∑

i=r

S[i]2−(i+1),

∞
∑

i=r

T [i]2−(i+1)

)
∣

∣

∣

∣

= |(2−r, 2−r)|
≤ 21−r,

which implies the inequality

Kr−1(αS , αT ) ≤ K(αS↾r, αT ↾r). (2.2)

Let M be a Turing machine such that, if U(π) = (u0, w0)(u1, w1) · · · (un−1, wn−1) ∈ (Σ ×Σ)∗,

M(π) =

( n−1
∑

i=0

ui · k−(i+1),
n−1
∑

i=0

wi · k−(i+1)

)

. (2.3)

Let cM be an optimality constant forM and π ∈ {0, 1}∗ be a minimum-length program for (S, T ) ↾ r.
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By optimality and (2.3),

K(αS↾r, αT ↾r) ≤ KM (αS↾r, αT ↾r)

≤ |π|+ cM (2.4)

= K((S, T ) ↾ r) + cM .

Therefore, by Corollary 2.2, (2.2), and (2.4),

Kr(αS , αT ) ≤ Kr−1(αS , αT ) + o(r)

≤ K(αS↾r, αT ↾r) + o(r)

≤ K((S, T ) ↾ r) + o(r).

Next we prove thatK((S, T ) ↾ r) ≤ Kr(αS , αT )+O(1). We consider the case where S = x(k−1)∞,
T 6= y(k − 1)∞, and x ∈ {0, 1}∗ and y ∈ {0, 1}∗ are either empty or end with a symbol other than
(k− 1), i.e., S has a tail that is an infinite sequence of the largest symbol in Σ and T does not. Let
M ′ be a Turing machine such that, if U(π) = 〈q, p〉 for any two rationals q, p ∈ [0, 1],

M ′(π) = (u0, w0)(u1, w1) · · · (ur−1, wr−1) ∈ (Σ × Σ)∗, (2.5)

where M ′ operates by running π on U to obtain (q, p) and searching for strings u = u0u1 · · · ur−1

and w = w0w1 · · ·wr−1 such that

q =

|x|−1
∑

i=0

uik
−(i+1) + (k − 1)k−(|x|+1), u|x|−1 < (k − 1), and ui = (k − 1) for i ≥ |x|, (2.6)

and
wi · k−(i+1) ≤ p− (w0 · k−1 + w1 · k−2 + · · ·+ wi−1 · k−i) < (wi + 1) · k−(i+1) (2.7)

for 0 ≤ i < r.
Let cM ′ be an optimality constant for M ′ and m, t ∈ N such that m, t ≤ kr − 1 and

(αS , αT ) ∈ [m · k−r, (m+ 1) · k−r)× [t · k−r, (t+ 1) · k−r). (2.8)

Let
(q, p) ∈ Bk−r(αS , αT ) ∩ [m · k−r, (m+ 1) · k−r)× [t · k−r, (t+ 1) · k−r) ∩Q2, (2.9)

and let π be a minimum-length program for (q, p). First we show that ui = S[i] for all 0 ≤ i < r.
We do not need to consider the case where i ≥ |x| because (2.6) assures us that ui = S[i]. Thus we
will always assume that i < |x|. If u0 6= S[0], then, by (2.6),

q /∈ [S[0] · k−1, (S[0] + 1) · k−1).

By (2.8), this implies that

q /∈ [m · k−r, (m+ 1) · k−r),

which contradicts (2.9). Now assume that un = S[n] for all n ≤ i < r − 1. If ui+1 6= S[i+ 1], then,
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by (2.6),

q /∈
[ i
∑

n=0

S[n] · k−(i+1) + S[i+ 1] · k−(i+2),
i

∑

n=0

S[n] · k−(i+1) + (S[i+ 1] + 1) · k−(i+2)

)

.

By (2.8), this implies that

q /∈ [m · k−r, (m+ 1) · k−r),

which contradicts (2.9). Therefore, ui = S[i] for all 0 ≤ i < r. A similar argument shows that
wi = T [i], so we conclude that M ′(q, p) = (S, T ) ↾ r.
By optimality, (2.5), and (2.9),

K((S, T ) ↾ r) ≤ KM ′((S, T ) ↾ r) + cM ′

≤ |π|+ cM ′

= K(q, p) + cM ′

= K(B2−r(αS , αT ) ∩ [0, 1]2) + cM ′

≤ Kr(αS , αT ) +O(1),

where the last inequality holds simply because we can design a Turing machine to transform any
point from outside the unit square to its edge. All other cases for S and T can be proved in a
similar manner.

Lemma 2.4. There is a constant c ∈ N such that, for all S ∈ Σ∞ and r ∈ N,

K(S ↾ r) = Kr(αS) + c.

Proof. Let 0∞ represent the sequence containing all 0’s. It is clear that there exist constants
c1, c2 ∈ N such that

K(S ↾ r) = K((S, 0∞) ↾ r) + c1

and
Kr(αS , 0) = Kr(αS) + c2.

Therefore, by the above inequalities and Lemma 2.3,

K(S ↾ r) = K((S, 0∞) ↾ r) + c1

= K(αS , 0) + o(r) + c1

= Kr(αS) + o(r) + c1 + c2

= Kr(αS) + o(r).

Definition. For any point x ∈ Rn, the lower and upper dimensions of x are

dim(x) = lim inf
r→∞

Kr(x)

r
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and

Dim(x) = lim sup
r→∞

Kr(x)

r
,

respectively.

The next two corollaries describe principles that relate the dimensions of sequences to the di-
mensions of the sequences’ real representations. The first follows from Lemma 2.3 and the second
follows from Lemma 2.4.

Corollary 2.5. For all S, T ∈ Σ∞,

dim(S, T ) = dim(αS , αT ) and Dim(S, T ) = Dim(αS , αT ).

Corollary 2.6. For any sequence S ∈ Σ∞,

dim(S) = dim(αS).

Lemma 2.7. There is a constant c ∈ N such that, for all x, y ∈ {0, 1}∗,

K(y |x) ≤ K(y | 〈x,K(x)〉) +K(K(x)) + c.

Proof. Let M be a Turing machine such that, if U(π1) = K(x) and U(π2, 〈x,K(x)〉) = y,

M(π1π2, x) = y.

Let cM ∈ N be an optimality constant ofM . Assume the hypothesis, and let π1 be a minimum-length
program for K(x) and π2 be a minimum-length program for y given x and K(x). By optimality,

K(y |x) ≤ KM (y |x) + cM

≤ |π1π2|+ cM

= K(y | 〈x,K(x)〉) +K(K(x)) + c,

where c = cM .

Lemma 2.8. For all x ∈ {0, 1}∗, K(K(x)) = o(|x|) as |x| → ∞.

Proof. There exist constants c1, c2 ∈ N such that

K(K(x)) ≤ logK(x) + c1

≤ log (|x|+ c2) + c1

= o(|x|).

as |x| → ∞.

The following lemma is well-known and can be found in [13].

Lemma 2.9. There is a constant c ∈ N such that, for all x, y ∈ {0, 1}∗,

K(x, y) = K(x) +K(y |x,K(x)) + c.

7



The following is a corollary of Lemma 2.9.

Corollary 2.10. There is a constant c ∈ N such that, for all x, y ∈ {0, 1}∗,

K(x, y) ≤ K(x) +K(y |x) + c.

Lemma 2.11. For all x, y ∈ {0, 1}∗,

K(y |x) +K(x) ≤ K(x, y) + o(|x|) as |x| → ∞.

Proof. By Lemma 2.7, there is a constant c1 ∈ N such that

K(y |x) ≤ K(y | 〈x,K(x)〉) +K(K(x)) + c1.

This implies that

K(y |x) +K(x) ≤ K(y | 〈x,K(x)〉) +K(K(x)) +K(x) + c1.

By Lemma 2.9, there is a constant c2 ∈ N such that

K(y |x) +K(x) ≤ K(x, y) +K(K(x)) + c1 + c2.

Therefore, by Lemma 2.8,
K(y |x) +K(x) ≤ K(x, y) + o(|x|).

as |x| → ∞.

The rest of this section is about mutual information and mutual dimension. We now provide the
definitions of the mutual information between strings as defined in [13] and the mutual dimension
between sequences.

Definition. The (algorithmic) mutual information between u ∈ Σ∗ and w ∈ Σ∗ is

I(u : w) = K(w)−K(w |u).

Definition. The lower and upper mutual dimensions between S ∈ Σ∞ and T ∈ Σ∞ are

mdim(S : T ) = lim inf
(u,w)→(S,T )

I(u : w)

|u| log |Σ|

and

Mdim(S : T ) = lim sup
(u,w)→(S,T )

I(u : w)

|u| log |Σ| ,

respectively.

(We insist that |u| = |w| in the above limits.) The mutual dimension between two sequences is
regarded as the density of algorithmic mutual information between them.

8



Lemma 2.12. For all strings x, y ∈ {0, 1}∗,

I(x : y) = K(x) +K(y)−K(x, y) + o(|x|).

Proof. By definition of mutual information and Lemma 2.11,

I(x : y) = K(y)−K(y |x)
≥ K(x) +K(y)−K(x, y) + o(|x|).

as |x| → ∞. Also, by Corollary 2.10, there is a constant c ∈ N such that

I(x : y) = K(y)−K(y |x)
≤ K(x) +K(y)−K(x, y) + c

= K(x) +K(y)−K(x, y) + o(|x|).

as |x| → ∞.

The next two definitions were proposed and thoroughly investigated in [4].

Definition. The mutual information between x ∈ Rn and y ∈ Rm at precision r ∈ N is

Ir(x : y) = min{I(q : p) | q ∈ B2−r(x) ∩Qn and p ∈ B2−r(y) ∩Qm}.

Definition. The lower and upper mutual dimensions between x ∈ Rn and y ∈ Rm are

mdim(x : y) = lim inf
r→∞

Ir(x : y)

r

and

Mdim(x : y) = lim sup
r→∞

Ir(x : y)

r

Lemma 2.13. For all S, T ∈ Σ∞ and r ∈ N,

I(S ↾ r : T ↾ r) = Ir(αS : αT ) + o(r).

Proof. By Lemmas 2.4, 2.3, and 2.12,

I(S ↾ r : T ↾ r) = K(S ↾ r) +K(T ↾ r)−K((S, T ) ↾ r) + o(r)

= Kr(αS) +Kr(αT )−Kr(αS , αT ) + o(r)

= Ir(αS : αT ) + o(r).

as r → ∞.

The following corollary follows immediately from Lemma 2.13 and relates the mutual dimension
between sequences to the mutual dimension between the sequences’ real representations.

Corollary 2.14. For all S, T ∈ Σ∞,

mdim(S : T ) = mdim(αS : αT ) and MDim(S : T ) = Mdim(αS : αT ).

9



Our main result for this section shows that mutual dimension between sequences is well behaved.

Theorem 2.15. For all S, T ∈ Σ∞,

1. dim(S) + dim(T )−Dim(S, T ) ≤ mdim(S : T ) ≤ Dim(S) +Dim(T )−Dim(S, T ).

2. dim(S) + dim(T )− dim(S, T ) ≤ Mdim(S : T ) ≤ Dim(S) +Dim(T )− dim(S, T ).

3. mdim(S : T ) ≤ min{dim(S), dim(T )}; Mdim(S : T ) ≤ min{Dim(S),Dim(T )}.

4. 0 ≤ mdim(S : T ) ≤ Mdim(S : T ) ≤ 1.

5. mdim(S : T ) = mdim(T : S); Mdim(S : T ) = Mdim(T : S).

Proof. The theorem follows directly from the properties of mutual dimension between points in
Euclidean space found in [4] and the correspondences described in corollaries 2.5, 2.6, and 2.14.

3 Mutual Dimension and Coupled Randomness

In this section we investigate the mutual dimensions between coupled random sequences. Because
coupled randomness is new to algorithmic information theory, we first review the technical frame-
work for it. Let Σ be a finite alphabet. A (Borel) probability measure on the Cantor space Σ∞

of all infinite sequences over Σ is (conveniently represented by) a function ν : Σ∗ → [0, 1] with the
following two properties.

1. ν(λ) = 1, where λ is the empty string.

2. For every w ∈ Σ∗, ν(w) =
∑

a∈Σ

ν(wa).

Intuitively, here, ν(w) is the probability that w ⊑ S (w is a prefix of S) when S ∈ Σ∞ is “chosen
according to” the probability measure ν.
Most of this paper concerns a very special class of probability measures on Σ∞. For each n ∈ N,

let α(n) be a probability measure on Σ, i.e., α(n) : Σ → [0, 1], with

∑

a∈Σ

α(n)(a) = 1,

and let ~α = (α(0), α(1), . . .) be the sequence of these probability measures on Σ. Then the product

of ~α (or, emphatically distinguishing it from the products ν1 × ν2 below, the longitudinal product

of ~α) is the probability measure µ[~α] on Σ∞ defined by

µ[~α](w) =

|w|−1
∏

n=0

α(n)(w[n])

for all w ∈ Σ∗, where w[n] is the nth symbol in w. Intuitively, a sequence S ∈ Σ∞ is “chosen
according to” µ[~α] by performing the successive experiments α(0), α(1), . . . independently.
To extend probability to pairs of sequences, we regard Σ × Σ as an alphabet and rely on the

natural identification between Σ∞×Σ∞ and (Σ×Σ)∞. A probability measure on Σ∞×Σ∞ is thus

10



a function ν : (Σ × Σ)∗ → [0, 1]. It is convenient to write elements of (Σ × Σ)∗ as ordered pairs
(u, v), where u, v ∈ Σ∗ have the same length. With this notation, condition 2 above says that, for
every (u, v) ∈ (Σ ×Σ)∗,

ν(u, v) =
∑

a,b∈Σ

ν(ua, vb).

If ν is a probability measure on Σ∞×Σ∞, then the first and second marginal probability measures

of ν (briefly, the first and second marginals of ν) are the functions ν1, ν2 : Σ
∗ → [0, 1] defined by

ν1(u) =
∑

v∈Σ|u|

ν(u, v), ν2(v) =
∑

u∈Σ|v|

ν(u, v).

It is easy to verify that ν1 and ν2 are probability measures on Σ∗. The probability measure ν here
is often called a joint probability measure on Σ∞ × Σ∞, or a coupling of the probability measures
ν1 and ν2.
If ν1 and ν2 are probability measures on Σ∞, then the product probability measure ν1 × ν2 on

Σ∞ × Σ∞ is defined by
(ν1 × ν2)(u, v) = ν1(u)ν2(v)

for all u, v ∈ Σ∗ with |u| = |v|. It is well known and easy to see that ν1 × ν2 is, indeed a probability
measure on Σ∞ × Σ∞ and that the marginals of ν1 × ν2 are ν1 and ν2. Intuitively, ν1 × ν2 is the
coupling of ν1 and ν2 in which ν1 and ν2 are independent, or uncoupled.
We are most concerned here with coupled longitudinal product probability measures on Σ∞×Σ∞.

For each n ∈ N, let α(n) be a probability measure on Σ× Σ, i.e., α(n) : Σ× Σ → [0, 1], with

∑

a,b∈Σ

α(n)(a, b) = 1,

and let ~α = (α(0), α(1), . . .) be the sequence of these probability measures. Then the longitudinal
product µ[~α] is defined as above, but now treating Σ×Σ as the alphabet. It is easy to see that the

marginals of µ[~α] are µ[~α]1 = µ[ ~α1] and µ[~α]2 = µ[ ~α2], where each α
(n)
i is the marginal on Σ given

by

α
(n)
1 (a) =

∑

b∈Σ

α(n)(a, b), α
(n)
2 (b) =

∑

a∈Σ

α(n)(a, b).

The following class of examples is useful [20] and instructive.

Example 3.1. Let Σ = {0, 1}. For each n ∈ N, fix a real number ρn ∈ [−1, 1], and define the
probability measure α(n) on Σ × Σ by α(n)(0, 0) = α(n)(1, 1) = 1+ρn

4 and α(n)(0, 1) = α(n)(1, 0) =
1−ρn
4 . Then, writing α~ρ for ~α, the longitudinal product µ[α~ρ] is a probability measure on C×C. It

is routine to check that the marginals of µ[α~ρ] are

µ[α~ρ]1 = µ[α~ρ]2 = µ,

where µ(w) = 2−|w| is the uniform probability measure on C.

It is convenient here to use Schnorr’s martingale characterization [22, 21, 23, 13, 19, 6] of the
algorithmic randomness notion introduced by Martin-Löf [18]. If ν is a probability measure on Σ∞,
then a ν–martingale is a function d : Σ∗ → [0,∞) satisfying d(w)ν(w) =

∑

a∈Σ d(wa)ν(wa) for all

11



w ∈ Σ∗. A ν–martingale d succeeds on a sequence S ∈ Σ∞ if lim supw→S d(w) = ∞. A ν–martingale
d is constructive, or lower semicomputable, if there is a computable function d̂ : Σ∗×N → Q∩ [0,∞]
such that d̂(w, t) ≤ d̂(w, t + 1) holds for all w ∈ Σ∗ and t ∈ N, and limt→∞ d̂(w, t) = d(w) holds
for all w ∈ Σ∗. A sequence R ∈ Σ∞ is random with respect to a probability measure ν on Σ∗ if no
lower semicomputable ν–martingale succeeds on R.
If we once again treat Σ × Σ as an alphabet, then the above notions all extend naturally to

Σ∞ × Σ∞. Hence, when we speak of a coupled pair (R1, R2) of random sequences, we are referring
to a pair (R1, R2) ∈ Σ∞ × Σ∞ that is random with respect to some probability measure ν on
Σ∞ × Σ∞ that is explicit or implicit in the discussion. An extensively studied special case here
is that R1, R2 ∈ Σ∞ are defined to be independently random with respect to probability measures
ν1, ν2, respectively, on Σ∞ if (R1, R2) is random with respect to the product probability measure
ν1 × ν2 on Σ∞ × Σ∞.
When there is no possibility of confusion, we use such convenient abbreviations as “random with

respect to ~α” for “random with respect to µ[~α].”
A trivial transformation of Martin-Löf tests establishes the following well known fact.

Observation 3.2. If ν is a computable probability measure on Σ∞×Σ∞ and (R1, R2) ∈ Σ∞×Σ∞

is random with respect to ν, then R1 and R2 are random with respect to the marginals ν1 and ν2.

Example 3.3. If ~ρ is a computable sequence of reals ρn ∈ [−1, 1], α~ρ is as in Example 3.1, and
(R1, R2) ∈ C ×C is random with respect to α~ρ, then Observation 3.2 tells us that R1 and R2 are
random with respect to the uniform probability measure on C.

We recall basic definitions from Shannon information theory.

Definition. Let α be a probability measure on Σ. The Shannon entropy of α is

H(α) =
∑

a∈Σ

α(a) log
1

α(a)
.

Definition. Let α be probability measures on Σ × Σ. The Shannon mutual information between
α1 and α2 is

I(α1 : α2) =
∑

(a,b)∈Σ×Σ

α(a, b) log
α(a, b)

α1(a)α2(b)
.

Theorem 3.4 ([15]). If ~α is a computable sequence of probability measures α(n) on Σ that converge

to a probability measure α on Σ, then for every R ∈ Σ∞ that is random with respect to ~α,

dim(R) =
H(α)

log |Σ|

The following is a corollary to Theorem 3.4.

Corollary 3.5. If ~α is a computable sequence of probability measures α(n) on Σ that converge to

a probability measure α on Σ, then for every R ∈ Σ∞ that is random with respect to ~α and every

w ⊑ R,

K(w) = |w|H(α) + o(|w|).

12



Lemma 3.6. If ~α is a computable sequence of probability measures α(n) on Σ×Σ that converge to

a probability measure α on Σ×Σ, then for every coupled pair (R1, R2) ∈ Σ∞ ×Σ∞ that is random

with respect to ~α and (u,w) ⊑ (R1, R2),

I(u : w) = |u|I(α1 : α2) + o(|u|).

Proof. By Lemma 2.12,

I(u : w) = K(u) +K(w) −K(u,w) + o(|u|).

We then apply Observation 3.2 and Corollary 3.5 to obtain

I(u : w) = |u|(H(α1) +H(α2)−H(α)) + o(|u|)
= |u|I(α1 : α2) + o(|u|).

The following is a corollary to Lemma 3.6.

Corollary 3.7. If α is a computable, positive probability measure on Σ×Σ, then, for every sequence

(R1, R2) ∈ Σ∞ × Σ∞ that is random with respect to α and (u,w) ⊑ (R1, R2),

I(u : w) = |u|I(α1 : α2) + o(|u|).

In applications one often encounters longitudinal product measures µ[~α] in which the probability
measures α(n) are all the same (the i.i.d. case) or else converge to some limiting probability measure.
The following theorem says that, in such cases, the mutual dimensions of coupled pairs of random
sequences are easy to compute.

Theorem 3.8. If ~α is a computable sequence of probability measures α(n) on Σ×Σ that converge to

a probability measure α on Σ×Σ, then for every coupled pair (R1, R2) ∈ Σ∞ ×Σ∞ that is random

with respect to ~α,

mdim(R1 : R2) = Mdim(R1 : R2) =
I(α1 : α2)

log |Σ| .

Proof. By Lemma 3.6, we have

mdim(R1 : R2) = lim inf
(u,w)→(R1,R2)

I(u : w)

|u| log |Σ|

= lim inf
(u,w)→(R1,R2)

|u|I(α1 : α2) + o(|u|)
|u| log |Σ|

=
I(α1 : α2)

log |Σ|

A similar proof shows that Mdim(R1 : R2) = I(α1 : α2).

Example 3.9. Let Σ = {0, 1}, and let ~ρ be a computable sequence of reals ρn ∈ [−1, 1] that
converge to a limit ρ. Define the probability measure α on Σ × Σ by α(0, 0) = α(1, 1) = 1+ρ

4 and

α(0, 1) = α(1, 0) = 1−ρ
4 , and let α1 and α2 be the marginals of α. If α~ρ is as in Example 3.1, then

13



for every pair (R1, R2) ∈ Σ∞ × Σ∞ that is random with respect to α~ρ, Theorem 3.8 tells us that

mdim(R1 : R2) = Mdim(R1 : R2)

= I(α1 : α2)

= 1−H(
1 + ρ

2
).

In particular, if the limit ρ is 0, then

mdim(R1 : R2) = Mdim(R1 : R2) = 0.

Theorem 3.8 has the following easy consequence, which generalizes the last sentence of Example
3.9.

Corollary 3.10. If ~α is a computable sequence of probability measures α(n) on Σ×Σ that converge

to a product probability measure α1×α2 on Σ×Σ, then for every coupled pair (R1, R2) ∈ Σ∞×Σ∞

that is random with respect to ~α,

mdim(R1 : R2) = Mdim(R1 : R2) = 0.

Applying Corollary 3.10 to a constant sequence ~α in which each α(n) is a product probability
measure α1 × α2 on Σ×Σ gives the following.

Corollary 3.11. If α1 and α2 are computable probability measures on Σ, and if R1, R2 ∈ Σ∞ are

independently random with respect to α1, α2, respectively, then

mdim(R1 : R2) = Mdim(R1 : R2) = 0.

We conclude this section by showing that the converse of Corollary 3.11 does not hold. This can
be done via a direct construction, but it is more instructive to use a beautiful theorem of Kakutani,
van Lambalgen, and Vovk. The Hellinger distance between two probability measures α1 and α2 on
Σ is

H(α1, α2) =

√

∑

a∈Σ

(
√

α1(a)−
√

α2(a))
2.

(See [12], for example.) A sequence α = (α(0), α(1), . . .) of probability measures on Σ is strongly

positive if there is a real number δ > 0 such that, for all n ∈ N and a ∈ Σ, α(n)(a) ≥ δ. Kakutani
[10] proved the classical, measure-theoretic version of the following theorem, and van Lambalgen
[25, 26] and Vovk [27] extended it to algorithmic randomness.

Theorem 3.12. Let ~α and ~β be computable, strongly positive sequences of probability measures on

Σ.

1. If
∞
∑

n=0

H(α(n), β(n))2 < ∞,

then a sequence R ∈ Σ∞ is random with respect to ~α if and only if it is random with respect

to ~β.
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2. If
∞
∑

n=0

H(α(n), β(n))2 = ∞,

then no sequence is random with respect to both ~α and ~β.

Observation 3.13. Let Σ = {0, 1}. If ρ = [−1, 1] and probability measure α on Σ × Σ is defined

from ρ as in Example 3.9, then

H(α1 × α2, α)
2 = 2−

√

1 + ρ−
√

1− ρ.

Proof. Assume the hypothesis. Then

H(α1 × α2, α)
2 =

∑

a,b∈{0,1}

(
√

α1(a)α2(b)−
√

α(a, b))2

=
∑

a,b∈{0,1}

(

1

2
−

√

α(a, b)

)2

= 2

(

1

2
−
√

1 + ρ

4

)2

+ 2

(

1

2
−

√

1− ρ

4

)2

= 2−
√

1 + ρ−
√

1− ρ.

Corollary 3.14. Let Σ = {0, 1} and δ ∈ (0, 1). Let ~ρ be a computable sequence of real numbers

ρn ∈ [δ − 1, 1− δ], and let α~ρ be as in Example 3.1. If

∞
∑

n=0

ρ2n = ∞,

and if (R1, R2) ∈ Σ∞ × Σ∞ is random with respect to α~ρ, then R1 and R2 are not independently

random with respect to the uniform probability measure on C.

Proof. This follows immediately from Theorem 3.12, Observation 3.13, and the fact that

√
1 + x+

√
1− x = 2− x2

2
+ o(x2)

as x → 0.

Corollary 3.15. There exist sequences R1, R2 ∈ C that are random with respect to the uniform

probability measure on C and satisfy Mdim(R1 : R2) = 0, but are not independently random.

Proof. For each n ∈ N, let

ρn =
1√
n+ 2

.

Let ~ρ = (ρ0, ρ1, . . .), let α~ρ be as in Example 3.1, and let (R1, R2) ∈ Σ∞ × Σ∞ be random with
respect to α~ρ. Observation 3.2 tells us that R1 and R2 are random with respect to the marginals
of α~ρ, both of which are the uniform probability measure on C. Since ρn → 0 as n → ∞, the last
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sentence in Example 3.9 tells us (via Theorem 3.8) that Mdim(R1 : R2) = 0. Since

∞
∑

n=0

ρ2n =

∞
∑

n=0

1

n+ 2
= ∞,

Corollary 3.14 tells us that R1 and R2 are not independently random.

4 Billingsley Mutual Dimensions

We begin this section by reviewing the Billingsley generalization of constructive dimension, i.e.,
dimension with respect to strongly positive probability measures. A probability measure β on Σ∞

is strongly positive if there exists δ > 0 such that, for all w ∈ Σ∗ and a ∈ Σ, β(wa) > δβ(w).

Definition. The Shannon self-information of w ∈ Σ is

ℓβ(w) =

|w|−1
∑

i=0

log
1

β(w[i])
.

In [17], Lutz and Mayordomo defined (and usefully applied) constructive Billingsley dimension
in terms of gales and proved that it can be characterized using Kolmogorov complexity. Since
Kolmogorov complexity is more relevant in this discussion, we treat the following theorem as a
definition.

Definition (Lutz and Mayordomo [17]). The dimension of S ∈ Σ∞ with respect to a strongly
positive probability measure β on Σ∞ is

dimβ(S) = lim inf
w→S

K(w)

ℓβ(w)
.

In the above definition the denominator ℓβ(w) normalizes the dimension to be a real number in
[0, 1]. It seems natural to define the Billingsley generalization of mutual dimension in a similar

way by normalizing the algorithmic mutual information between u and w by log β(u,w)
β1(u)β2(w) (i.e.,

the self-mutual information or pointwise mutual information between u and w [9]) as (u,w) →
(S, T ). However, this results in bad behavior. For example, the mutual dimension between any two
sequences with respect to the uniform probability measure on Σ × Σ is always undefined. Other
thoughtful modifications to this natural definition results in sequences having negative or infinitely
large mutual dimension. The main problem here is that, given a particular probability measure, one
can construct certain sequences whose prefixes have extremely large positive or negative self-mutual
information. In order to avoid undesirable behavior, we restrict the definition of Billingsley mutual
dimension to sequences that are mutually normalizable.

Definition. Let β be a probability measure on Σ∞ ×Σ∞. Two sequences S, T ∈ Σ∞ are mutually

β–normalizable (in this order) if

lim
(u,w)→(S,T )

ℓβ1
(u)

ℓβ2
(w)

= 1.
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Definition. Let S, T ∈ Σ∞ be mutually β–normalizable. The upper and lower mutual dimensions

between S and T with respect to β are

mdimβ(S : T ) = lim inf
(u,w)→(S,T )

I(u : w)

ℓβ1
(u)

= lim inf
(u,w)→(S,T )

I(u : w)

ℓβ2
(w)

and

Mdimβ(S : T ) = lim sup
(u,w)→(S,T )

I(u : w)

ℓβ1
(u)

= lim sup
(u,w)→(S,T )

I(u : w)

ℓβ2
(w)

,

respectively.

The above definition has nice properties because β–normalizable sequences have prefixes with
asymptotically equivalent self-information. Given the basic properties of mutual information and
Shannon self-information, we can see that

0 ≤ mdimβ(S : T ) ≤ min{dimβ1(S), dimβ2(T )} ≤ 1.

Clearly, Mdimβ also has a similar property.

Definition. Let α and β be probability measure on Σ. The Kullback-Leibler divergence between α
and β is

D(α||β) =
∑

a∈Σ

α(a) log
α(a)

β(a)

The following lemma is useful when proving Lemma 4.3 and Theorem 4.2.

Lemma 4.1 (Frequency Divergence Lemma [16]). If α and β are positive probability measures on

Σ, then, for all S ∈ FREQα,

ℓβ(w) = (H(α) +D(α||β))|w| + o(|w|)

as w → S.

The rest of this paper is primarily concerned with probability measures on alphabets. Our first
result of this section is a mutual divergence formula for random, mutually β–normalizable sequences.
This can be thought of as a “mutual” version of a divergence formula in [16].

Theorem 4.2 (Mutual Divergence Formula). If α and β are computable, positive probability mea-

sures on Σ×Σ, then, for every (R1, R2) ∈ Σ∞ ×Σ∞ that is random with respect to α such that R1

and R2 are mutually β–normalizable,

mdimβ(R1 : R2)=Mdimβ(R1 : R2)=
I(α1 : α2)

H(α1) +D(α1||β1)
=

I(α1 : α2)

H(α2) +D(α2||β2)
.
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Proof. By Corollary 3.7 and the Frequency Divergence Lemma, we have

mdimβ(R1 : R2) = lim inf
(u,w)→(R1,R2)

I(u : w)

ℓβ1
(u)

= lim inf
(u,w)→(R1,R2)

|u|I(α1 : α2) + o(|u| log |Σ|)
(H(α1) +D(α1||β1))|u|+ o(|u|)

= lim inf
(u,w)→(R1,R2)

|u|(I(α1 : α2) + o(log |Σ|))
|u|((H(α1) +D(α1||β1)) + o(1))

=
I(α1 : α2)

H(α1) +D(α1||β1)
.

Similar arguments show that

mdimβ(R1 : R2) =
I(α1 : α2)

H(α2) +D(α2||β2)

and

Mdimβ(R1 : R2) =
I(α1 : α2)

H(α1) +D(α1||β1)
=

I(α1 : α2)

H(α2) +D(α2||β2)
.

We conclude this section by making some initial observations regarding when mutual normaliz-
ability can be achieved.

Definition. Let α1, α2, β1, β2 be probability measures over Σ. We say that α1 is (β1, β2)–equivalent
to α2 if

∑

a∈Σ

α1(a) log
1

β1(a)
=

∑

a∈Σ

α2(a) log
1

β2(a)
.

For a probability measure α on Σ, let FREQα be the set of sequences S ∈ Σ∞ satisfying
limn→∞ n−1|{i < n

∣

∣S[i] = a}| = α(a) for all a ∈ Σ.

Lemma 4.3. Let α1, α2, β1, β2 be probability measures on Σ. If α1 is (β1, β2)–equivalent to α2,

then, for all pairs (S, T ) ∈ FREQα1
× FREQα2

, S and T are mutually β–normalizable.

Proof. By the Frequency Divergence Lemma,

lim
(u,w)→(S,T )

ℓβ1
(u)

ℓβ2
(w)

= lim
n→∞

(H(α1) +D(α1||β1)) · n+ o(n)

(H(α2) +D(α2||β2)) · n+ o(n)

=
H(α1) +D(α1||β1)
H(α2) +D(α2||β2)

=

∑

a∈Σ

α1(a) log
1

β1(a)

∑

a∈Σ

α2(a) log
1

β2(a)

= 1,

where the last equality is due to α1 being (β1, β2)–equivalent to α2.
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Given probability measures β1 and β2 on Σ, we would like to know which sequences are mutually
β–normalizable. The following results help to answer this question for probability measures on and
sequences over {0, 1}.

Lemma 4.4. Let β1 and β2 be probability measures on {0, 1} such that exactly one of the following

conditions hold.

1. 0 < β2(0) < β1(1) < β1(0) < β2(1) < 1

2. 0 < β2(1) < β1(0) < β1(1) < β2(0) < 1

3. 0 < β2(0) < β1(0) < β1(1) < β2(1) < 1

4. 0 < β2(1) < β1(1) < β1(0) < β2(0) < 1

5. β1 = µ and β2 6= µ.

If f is defined by

f(x) =
x · log β1(1)

β1(0)
+ log β2(1)

β1(1)

log β2(1)
β2(0)

,

then

0 < f(x) < 1,

for all x ∈ [0, 1].

Proof. First, observe that f is linear and has a negative slope under conditions 1 and 2, a positive
slope under conditions 3 and 4, and zero slope under condition 5. We verify that, for all x ∈ [0, 1],
f(x) ∈ (0, 1) under each condition.
Under condition 1, we assume

β2(0) < β1(1) < β2(1),

which implies that

log
β2(0)

β2(1)
< log

β1(1)

β2(1)
< 0.

From the above inequality, we obtain

0 <
log β2(1)

β1(1)

log β2(1)
β2(0)

< 1.

Therefore, by the definition of f ,

0 < f(0) < 1. (4.1)

Under the same condition, we have
β1(0) < β2(1),

which implies that

log
β1(0)

β1(1)
< log

β2(1)

β1(1)
.
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From the above inequality, we obtain

log β1(0)
β1(1)

log β2(1)
β2(0)

<
log β2(1)

β1(1)

log β2(1)
β2(0)

,

whence

0 <
log β1(1)

β1(0)
+ log β2(1)

β1(1)

log β2(1)
β2(0)

.

Therefore, by the definition of f ,

0 < f(1). (4.2)

By (4.1), (4.2), and the negativity of the slope of f ,

0 < f(1) < f(0) < 1.

A similar argument shows that, if condition 2 holds, then 0 < f(1) < f(0) < 1.
Assuming condition 3, we can prove that, if β2(0) < β1(1) < β2(1), then

0 < f(0) < 1, (4.3)

using the argument given above. Under the same condition, we have

β2(0) < β1(0),

which implies that

log β1(1) − log β1(0) + log β2(1)− log β1(1) < log β2(1)− log β2(0).

From this inequality, we derive

log β1(1)
β1(0)

+ log β2(1)
β1(1)

log β2(1)
β2(0)

< 1.

Therefore, by the definition of f ,

f(1) < 1. (4.4)

By (4.3), (4.4), and the positivity of the slope of f ,

0 < f(0) < f(1) < 1.

A similar argument shows that, if condition 4 holds, then 0 < f(1) < f(0) < 1.
Under condition 5 and without loss of generality, assume that β1 = µ and β2(0) < 1/2 < β2(1),

which implies

0 < 1 + log β2(1) < log
β2(1)

β2(0)
.
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From the above inequality, we derive

0 <
log β2(1)

1/2

log β2(1)
β2(0)

< 1,

whence, by the definition of f ,
0 < f(x) < 1,

for all x ∈ [0, 1].

Theorem 4.5. Let β1 and β2 be probability measures on {0, 1} that satisfy exactly one of the

conditions from Lemma 4.4, and let α1 be an arbitrary probability measure on {0, 1}. Then α1 is

(β1, β2)–equivalent to exactly one unique probability measure α2, which is defined by

α2(0) =
α1(0) log

β1(1)
β1(0)

+ log β2(1)
β1(1)

log β2(1)
β2(0)

and α2(1) = 1− α2(0).

Proof. By Lemma 4.4, α2 is a valid probability measure. Observe that

α2(0) =
α1(0) log

β1(1)
β1(0)

+ log β2(1)
β1(1)

log β2(1)
β2(0)

if and only if

α1(0)

(

log
1

β1(0)
− log

1

β1(1)

)

+ log
1

β1(1)
= α2(0)

(

log
1

β2(0)
− log

1

β2(1)

)

+ log
1

β2(1)
.

The above equality holds if and only if

α1(0) log
1

β1(0)
+ α1(1) log

1

β1(1)
= α2(0) log

1

β2(0)
+ α2(1) log

1

β2(1)
,

which implies that α1 is (β1, β2)–equivalent to α2.

The following corollary follows from Theorem 4.5 and Lemma 4.3.

Corollary 4.6. Let β1, β2, α1, and α2 be as defined in Theorem 4.5. For all (S, T ) ∈ FREQα1
×

FREQα2
, S and T are mutually β–normalizable.

Acknowledgments. We thank an anonymous reviewer of [4] for posing the question answered by
Corollary 3.15. We also thank anonymous reviewers of this paper for useful comments, especially
including Observation 3.2.
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