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Abstract. Kernelization is a formalization of efficient preprocessing for NP-hard problems using
the framework of parameterized complexity. Among open problems in kernelization it has been
asked many times whether there are deterministic polynomial kernelizations for SUBSET SuM and
KNAPSACK when parameterized by the number n of items.

We answer both questions affirmatively by using an algorithm for compressing numbers due to
Frank and Tardos (Combinatorica 1987). This result had been first used by Marx and Végh (ICALP
2013) in the context of kernelization. We further illustrate its applicability by giving polynomial
kernels also for weighted versions of several well-studied parameterized problems. Furthermore,
when parameterized by the different item sizes we obtain a polynomial kernelization for SUBSET
SuM and an exponential kernelization for KNAPSACK. Finally, we also obtain kernelization results
for polynomial integer programs.

1 Introduction

The question of handling numerical values is of fundamental importance in computer science.
Typical issues are precision, numerical stability, and representation of numbers. In the present
work we study the effect that the presence of (possibly large) numbers has on weighted versions
of well-studied NP-hard problems. In other words, we are interested in the effect of large numbers
on the computational complexity of solving hard combinatorial problems. Concretely, we focus
on the effect that weights have on the preprocessing properties of the problems, and study
this question using the notion of kernelization from parameterized complexity. Very roughly,
kernelization studies whether there are problem parameters such that any instance of a given
NP-hard problem can be efficiently reduced to an equivalent instance of small size in terms of
the parameter. Intuitively, one may think of applying a set of correct simplification rules, but
additionally one has a proven size bound for instances to which no rule applies.

The issue of handling large weights in kernelization has been brought up again and again
as an important open problem in kernelization [2[ITI7J6]. For example, it is well-known that
for the task of finding a vertex cover of at most k vertices for a given unweighted graph G one
can efficiently compute an equivalent instance (G’,k’) such that G’ has at most 2k vertices.
Unfortunately, when the vertices of G are additionally equipped with positive rational weights
and the chosen vertex cover needs to obey some specified maximum weight W € Q then it was
long unknown how to encode (and shrink) the vertex weights to bitsize polynomial in k. In
this direction, Cheblik and Cheblikova [5] showed that an equivalent graph G’ with total vertex
weight at most 2w* can be obtained in polynomial time, whereby w* denotes the minimum
weight of a vertex cover of G. This, however, does not mean that the size of G’ is bounded,
unless one makes the additional assumption that the vertex weights are bounded from below;
consequently, their method only yields a kernel with that extra requirement of vertex weights
being bounded away from zero. In contrast, we do not make such an assumption.

Let us attempt to clarify the issue some more. The task of finding a polynomial kernelization
for a weighted problem usually comes down to two parts: (1) Deriving reduction rules that work
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correctly in the presence of weights. The goal, as for unweighted problems, is to reduce the
number of relevant objects, e.g., vertices, edges, sets, etc., to polynomial in the parameter. (2)
Shrinking or replacing the weights of remaining objects such that their encoding size becomes
(at worst) polynomial in the parameter. The former part usually benefits from existing literature
on kernels of unweighted problems, but regarding the latter only little progress was made.

For a pure weight reduction question let us consider the SUBSET SuM problem. Therein we
are given n numbers aq,...,a, € N and a target value b € N and we have to determine whether
some subset of the n numbers has sum exactly b. Clearly, reducing such an instance to size
polynomial in n hinges on the ability of handling large numbers a; and b. Let us recall that a
straightforward dynamic program solves SUBSET SUM in time O(nb), implying that large weights
are to be expected in hard instances. Harnik and Naor [I5] showed that taking all numbers
modulo a sufficiently large random prime p of magnitude about 22" produces an equivalent
instance with error probability exponentially small in n. (Note that the obtained instance is
with respect to arithmetic modulo p.) The total bitsize then becomes O(n?). Unfortunately,
this elegant approach fails for more complicated problems than SUBSET SUM.

Consider the SUBSET RANGE SuUM variant of SUBSET SUM where we are given not a single
target value b but instead a lower bound L and an upper bound U with the task of finding
a subset with sum in the interval {L,...,U}. Observe that taking the values a; modulo a
large random prime faces the problem of specifying the new target value(s), in particular if
U—L > p because then every remainder modulo p is possible for the solution. Nederlof et al. [22]
circumvented this issue by creating not one but in fact a polynomial number of small instances.
Intuitively, if a solution has value close to either L or U then the randomized approach will
work well (possibly making a separate instance for target values close to L or U). For solutions
sufficiently far from L or U there is no harm in losing a little precision and dividing all numbers
by 2; then the argument iterates. Overall, because the number of iterations is bounded by the
logarithm of the numbers (i.e., their encoding size), this creates a number of instances that is
polynomial in the input size, with each instance having size O(n?); if the initial input is “yes”
then at least one of the created instances is “yes”

To our knowledge, the mentioned results are the only positive results that are aimed directly
at the issue of handling large numbers in the context of kernelization. Apart from these, there
are of course results where the chosen parameter bounds the variety of feasible weights and
values, but this only applies to integer domains; e.g., it is easy to find a kernel for WEIGHTED
VERTEX COVER when all weights are positive integers and the parameter is the maximum total
weight k. On the negative side, there are a couple of lower bounds that rule out polynomial
kernelizations for various weighted and ILP problems, see, e.g., [3/19]. Note, however, that the
lower bounds appear to “abuse” large weights in order to build gadgets for lower bound proofs
that also include a super-polynomial number of objects as opposed to having just few objects
with weights of super-polynomial encoding size. In other words, the known lower bounds pertain
rather to the first step, i.e. finding reduction rules that work correctly in the presence of weights,
than to the inherent complexity of the numbers themselves. Accordingly, since 2010 the question
for a deterministic polynomial kernelization for SUBSET SUM or KNAPSACK with respect to the
number of items can be found among open problems in kernelization [2TTI7/6].

Recently, Marx and Végh [2I] gave a polynomial kernelization for a weighted connectivity
augmentation problem. As a crucial step, they use a technique of Frank and Tardos [12], orig-
inally aimed at obtaining strongly polynomial-time algorithms, to replace rational weights by
sufficiently small and equivalent integer weights. They observe and point out that this might be
a useful tool to handle in general the question of getting kernelizations for weighted versions of
parameterized problems. It turns out that, more strongly, Frank and Tardos’ result can also be
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used to settle the mentioned open problems regarding KNAPSACK and SUBSET SuM. We point
out that this is a somewhat circular statement since Frank and Tardos had set out to, amongst
others, improve existing algorithms for ILPs, which could be seen as wvery general weighted
problems.

Our work. We use the theorem of Frank and Tardos [12] to formally settle the open problems,
i.e., we obtain deterministic kernelizations for SUBSET SuM(n) and KNAPSACK(n), in Sect. Bl
Generally, in the spirit of Marx and Végh’s observation, this allows to get polynomial kernel-
izations whenever one is able to first reduce the number of objects, e.g., vertices or edges, to
polynomial in the parameter. The theorem can then be used to sufficiently shrink the weights
of all objects such that the total size becomes polynomial in the parameter.

Motivated by this, we consider weighted versions of several well-studied parameterized prob-
lems, e.g., d-HITTING SET, d-SET PACKING, and MAX CUT, and show how to reduce the number
of relevant structures to polynomial in the parameter. An application of Frank and Tardos’ re-
sult then implies polynomial kernelizations. We present our small kernels for weighted problems
in Sect. @l

Next, we consider the KNAPSACK problem and its special case SUBSET SuM, in Sect. [l
For SUBSET SUM instances with only k item sizes, we derive a kernel of size polynomial in k.
This way, we are improving the exponential-size kernel for this problem due to Fellows et
al. [10]. We also extend the work of Fellows et al. in another direction by showing that the more
general KNAPSACK problem is fixed-parameter tractable (i.e. has an exponential kernel) when
parameterized by the number k of item sizes, even for unbounded number of item values. On the
other hand, we provide quadratic kernel size lower bounds for general SUBSET SUM instances
assuming the Exponential Time Hypothesis [16].

Finally, as a possible tool for future kernelization results we show that the weight reduction
approach also carries over to polynomial ILPs so long as the maximum degree and the domains
of variables are sufficiently small, in Sect. 6l

2 Preliminaries

A parameterized problem is a language II C X* x N, where Y is a finite alphabet; the second
component k of instances (I, k) € X* x N is called the parameter. A problem IT C X* x N is fized-
parameter tractable if it admits a fized-parameter algorithm, which decides instances (I, k) of IT
in time f(k) - [I|°) for some computable function f. The class of fixed-parameter tractable
problems is denoted by FPT. Evidence that a problem II is unlikely to be fixed-parameter
tractable is that IT is W[t]-hard for some ¢t € N or W[P]-hard, where FPT C WJ[1] C W][2] C
... € WIP]. To prove hardness of II, one can give a parameterized reduction from a W[-]-hard
problem II' to IT that maps every instance I’ of II’ with parameter k¥’ to an instance I of IT
with parameter k < g(k’) for some computable function g such that I can be computed in time
K - 1I'1°M for some computable function f, and I is a “yes”-instance if and only if I’ is.
If f and g are polynomials, such a reduction is called a polynomial parameter transformation.
A problem IT that is NP-complete even if the parameter k is constant is said to be para-NP-
complete.

A kernelization for a parameterized problem I7 is an efficient algorithm that given any
instance (I, k) returns an instance (I’,k’) such that (I,k) € IT if and only if (I',k") € IT and
such that |I'| + k¥ < f(k) for some computable function f. The function f is called the size
of the kernelization, and we have a polynomial kernelization if f(k) is polynomially bounded
in k. It is known that a parameterized problem is fixed-parameter tractable if and only if it
is decidable and has a kernelization. Nevertheless, the kernels implied by this fact are usually



of superpolynomial size. (The size matches the f(k) from the run time, which for NP-hard
problems is usually exponential as typical parameters are upper bounded by the instance size.)
On the other hand, assuming FPT # W([1] no W[1]-hard problem has a kernelization. Further,
there are tools for ruling out polynomial kernels for some parameterized problems [8/1] under
an appropriate complexity assumption (namely that NP ¢ coNP/poly). Such lower bounds can
be transferred by the mentioned polynomial parameter transformations [4].

3 Settling Open Problems via the Frank-Tardos Theorem

3.1 Frank and Tardos’ theorem

Frank and Tardos [12] describe an algorithm which proves the following theorem.

Theorem 1 ([12]). There is an algorithm that, given a vector w € Q" and an integer N, in
polynomial time finds a vector w € Z" with H@Hw < 24 NT(r+2) sych that sign(w-b) = sign(w-b)
for all vectors b € Z" with Hle <N-1.

This theorem allows us to compress linear inequalities to an encoding length which is polyno-
mial in the number of variables. Frank and Tardos’ algorithm runs even in strongly polynomial
time. As a consequence, all kernelizations presented in this work also have a strongly polynomial
running time.

Example 1. There is an algorithm that, given a vector w € Q" and a rational W € Q, in
polynomial time finds a vector w € Z" with HEHOO = 200") and an integer W € Z with total

encoding length O(r*), such that w-x < W if and only if w-2 < W for every vector = € {0,1}".

Proof. Use Theorem [ on the vector (w, W) € Q"1 with N = r + 2 to obtain the resulting
vector (w, W). Now let b = (x, —1) € Z"*! and note that Hle < N —1. The inequality w-z < W
is false if and only if sign(w -z — W) = sign((w, W) - (z,—1)) = sign((w, W) - b) is equal to +1.
The same holds for w-z < W.

As each |w;| can be encoded with O(r3 + r2log N) = O(r®) bits, the whole vector w has
encoding length O(r?). 0

3.2 Polynomial Kernelization for Knapsack

A first easy application of Theorem [l is the kernelization of KNAPSACK with the number n of
different items as parameter.

KNAPSACK(n)
Input: An integer n € N, rationals W, P € Q, a weight vector w € Q", and a
profit vector p € Q™.
Parameter: n.
Question: Is there a vector x € {0,1}" with w-ax < W and p-x > P?

Theorem 2. KNAPSACK(n) admits a kernel of size O(n%). 0

As a consequence, also SUBSET SUM(n) admits a kernel of size O(n?).



4 Small Kernels for Weighted Parameterized Problems

The result of Frank and Tardos implies that we can easily handle large weights or numbers in
kernelization provided that the number of different objects is already sufficiently small (e.g.,
polynomial in the parameter). In the present section we show how to handle the first step, i.e.,
the reduction of the number of objects, in the presence of weights for a couple of standard
problems. Presumably the reduction in size of numbers is not useful for this first part since the
number of different values is still exponential.

4.1 Hitting Set and Set Packing

In this section we outline how to obtain polynomial kernelizations for WEIGHTED d-HITTING
SET and WEIGHTED d-SET PACKING. Since these problems generalize quite a few interesting
hitting/covering and packing problems, this extends the list of problems whose weighted versions
directly benefit from our results. The problems are formally defined as follows.

WEIGHTED d-HITTING SET(k)
Input: A set family F C (g), a function w: U — N, and k,W € N.
Parameter: k.
Question: Is there a set S C U of cardinality at most k and weight > qw(u) < W such
that S intersects every set in F7?

WEIGHTED d-SET PACKING(k)
Input: A set family F C (g), a function w: F — N, and k, W € N.
Parameter: k.
Question: Is there a family F* C F of exactly k disjoint sets of weight > r. w(F) > W?

Note that we treat d as a constant. We point out that the definition of WEIGHTED SET
PACKING (k) restricts attention to exactly k disjoint sets of weight at least W. If we were to
relax to at least k sets then the problem would be NP-hard already for k¥ = 0. On the other hand,
the kernelization that we present for WEIGHTED SET PACKING(k) holds also if we require F*
to be of cardinality at most k (and total weight at least W, as before).

Both kernelizations rely on the Sunflower Lemma of Erdds and Rado [9], same as their
unweighted counterparts. We recall the lemma.

Lemma 1 (Erdds and Rado [9]). Let F be a family of sets, each of size d, and let k € N. If
|F| > d'k?¢ then we can find in time O(|F|) a so-called k + 1-sunflower, consisting of k + 1 sets
Fi,...,Fy11 € F such that the pairwise intersection of any two F;, F; with i # j is the same
set C, called the core.

For WEIGHTED d-HITTING SET(k) we can apply the Sunflower Lemma directly, same as
for the unweighted case: Say we are given (U, F,w, k, W). If the size of F exceeds d!(k + 1)%
then we find a (k + 2)-sunflower Fy in F with core C. Any hitting set of cardinality at most k
must contain an element of C'. The same is true for k + 1-sunflowers so we may safely delete
any set F' € Fg since hitting the set C' C F' is enforced by the remaining k + l-sunflower.
Iterating this reduction rule yields 7' C F with |F'| = O(k?) and such that (U, F,w, k, W) and
(U, F',w, k, W) are equivalent.

Now, we can apply Theorem [Il. We can safely restrict U to the elements U’ present in sets of
the obtained set family ', and let w’ = w|y. By Theorem [ applied to weights w’ and target
weight W with N = k+2 and r = O(k%) we get replacement weights of magnitude bounded by



20(*) NOK*) and bit size O(k3?). Note that this preserves, in particular, whether the sum of
any k weights is at most the target weight W, by preserving the sign of w;, +...+w;, —W. The
total bitsize is dominated by the space for encoding the weight of all elements of the set U’.

Theorem 3. WEIGHTED d-HITTING SET(k) admits a kernelization to O(k?) sets and total
size bounded by O(k*?).

For WEIGHTED d-SET PACKING (k) a similar argument works.

Theorem 4. WEIGHTED d-SET PACKING (k) admits a kernelization to O(k?) sets and total
size bounded by O(k*?).

Proof. If the size of F exceeds d!(dk)? then we find a dk + l-sunflower F; in F with core C.
We argue that we can safely discard the set Fjy € F; of least weight according to w: F — N:
This could only fail if there is a solution that includes Fj, namely k disjoint sets Fy, ..., Fr_1
of total weight at least W. Notice that no set F1,..., Fi_1 can contain C, since C' C Fy. Since
|Fs| = dk + 1 there must be another set Fj, apart from Fjy, that has an empty intersection with
F1,...,F;_q, as the sets in Fy are disjoint apart from C and there are in total d(k —1) elements
in FY,..., Fp_1. It follows that Fi,..., F} is also a selection of k disjoint sets. Since Fy is the
lightest set in s we must have that the total weight of Fi,..., Fy is at least W.

Iterating this rule gives |F| = O(k?). Again, it suffices to preserve how the sum of any k
weights compares with W. Thus, we get the same bound of O(k3?) bits per element (of F, in
this case). 0

4.2 Max Cut

Let us derive a polynomial kernel for WEIGHTED MAXx CuT (W), which is defined as follows.

WEIGHTED MaAx Cut(W)
Input: A graph G, a function w: E — Q>1, and W € Q>;.
Parameter: [W.
Question: Is there a set C'C V(G) such that 3 c 5 w(e) = W7

Note that we chose the weight of the resulting cut as parameter, which is most natural for
this problem. The number k of edges in a solution is not a meaningful parameter: If we restricted
the cut to have at least k edges, the problem would again be already NP-hard for k£ = 0. If
we required at most k edges, we could, in this example for integral weights, multiply all edge
weights by n? and add arbitrary edges with weight 1 to our input graph. When setting the new
weight bound to n?- W + (g), we would not change the instance semantically but there may be
no feasible solution left with at most k£ edges.

The restriction to edge weights at least 1 is necessary as otherwise the problem becomes
intractable. This is because when allowing arbitrary positive rational weights, we can transform
instances of the NP-complete UNWEIGHTED MAX CUT problem (with all weights equal to 1
and parameter k, which is the number of edges in the cut) to instances of the WEIGHTED MAX
CuT problem on the same graph with edge weights all equal to 1/k and parameter W = 1.

Theorem 5. WEIGHTED MAX CUT(W) admits a kernel of size O(W*?).

Proof. Let T be the total weight of all edges. If T' > 2W, then the greedy algorithm yields a
cut of weight at least T//2 > W. Therefore, all instances with 7' > 2W can be reduced to a
constant-size positive instance. Otherwise, there are at most 2W edges in the input graph as
every edge has weight at least 1. Thus, we can use Theorem [I] to obtain an equivalent (integral)
instance of encoding length O(W4). O



4.3 Polynomial Kernelization for Bin Packing with Additive Error

BIN PACKING is another classical NP-hard problem involving numbers. Therein we are given n
positive integer numbers ay, ..., a, (the items), a bin size b € N, and an integer k; the question
is whether the integer numbers can be partitioned into at most k sets, the bins, each of sum
at most b. From a parameterized perspective the problem is highly intractable for its natural
parameter k, because for k = 2 it generalizes the (weakly) NP-hard PARTITION problem.

Jansen et al. [I7] proved that the parameterized complexity improves drastically if instead
of insisting on exact solutions the algorithm only has to provide a packing into k£ + 1 bins or
correctly state that k bins do not suffice. Concretely, it is shown that this problem variant is
fixed-parameter tractable with respect to k. The crucial effect of the relaxation is that small
items are of almost no importance: If they cannot be added greedily “on top” of a feasible
packing of big items into k£ 4+ 1 bins, then the instance trivially has no packing into k& bins due
to exceeding total weight kb. Revisiting this idea, with a slightly different threshold for being
a small item, we note that after checking for total weight being at most kb (else reporting that
there is no k-packing) we can safely discard all small items before proceeding. Crucially, this
cannot turn a no- into a yes-instance because the created k+ 1-packing could then also be lifted
to one for all items (contradicting the assumed no-instance). An application of Theorem [I] then
yields a polynomial kernelization because we can have only few large items.

ADDITIVE ONE BIN PACKING(k)
Input: Item sizes ay,...,a, € N, a bin size b € N, and k € N.
Parameter: k.
Task: Give a packing into at most k + 1 bins of size b, or correctly state that k bins
do not suffice.

Theorem 6. ADDITIVE ONE BIN PACKING (k) admits a polynomial kernelization to O(k?)
items and bit size O(k3).

Proof. Let an instance (aq,...,an,b, k) be given. If any item size a; exceeds b, or if the total
weight of items a; exceeds k-b, then we may safely answer that no packing into k bins is possible.
In all other cases the kernelization will return an instance whose answer will be correct for the
original instance: if it reports a (k + 1)-packing then the original instance has a (k + 1)-packing.
If it reports that no k-packing is possible then the same holds for the original instance.

Assume that the items a; are sorted decreasingly by value. Consider the subsequence, say,
k;:_l. If the instance restricted to these items permits a packing
into at most k4 1 bins, then we show that the items ayy1,...,a, can always be added, giving a
(k+ 1)-packing for the input instance: assume that a greedy packing of the small items into the
existing packing for ay,...,ay fails. This implies that some item, say a;, of size less than kLH
does not fit. But then all bins have less than k%‘rl remaining space. It follows that the total
packed weight, excluding a;, is more than

ai,-..,ay, of items of size at least

(k+1)-<b_k;:1> — (k4 1)b—b= kb .

This contradicts the fact that this part of the kernelization is only run if the total weight is at
most kb. Thus, a k+ 1-packing for aq, ..., ap implies a k+ 1-packing for the whole set aq, ..., a,.

Clearly, if the items aq,...,ap permit no packing into k bins then the same is true for the
whole set of items.



Observe now that ¢ cannot be too large: Indeed, since the total weight is at most kb (else
we returned “no” directly), there can be at most

kb

k+1
items of weight at least kLH. Thus, an application of the weight reduction tools yields a total
size of O(k3). 0

5 Kernel Bounds for Knapsack Problems

In this section we provide lower and upper bounds for kernel sizes for variants of the KNAPSACK
problem.

5.1 Exponential Kernel for Knapsack with Few Item Sizes

First, consider the SUBSET SUM problem restricted to instances with only k& distinct item
weights, which are not restricted in any other way (except for being non-negative integers).
Then the problem can be solved by a fixed-parameter algorithm for parameter k by a reduction
to integer linear programming in fixed dimension, and applying Lenstra’s algorithm [20] or one
of its improvements [18/12]. This was first observed by Fellows et al. [10].

We now generalize the results by Fellows et al. [10] to KNAPSACK with few item weights.
More precisely, we are given an instance I of the KNAPSACK problem consisting of n items that
have only k distinct item weights; however, the number of item values is unbounded. This means
in particular, that the “number of numbers” is not bounded as a function of the parameter,
making the results by Fellows et al. [10] inapplicable.

Theorem 7. The KNAPSACK problem with k distinct weights can be solved in time k25%+o(k) .
poly(|I]), where |I| denotes the encoding length of the instance.

Proof. Observe that when packing x; items of weight w;, it is optimal to pack the z; items
with largest value among all items of weight w;. Assume the items of weight w; are labeled as

jy), . ,jﬁfi) by non-increasing values. For each s € N, define f;(s) :=>_;_, v(jél)), where v(jéi))

denotes the value of item j éi). We can formulate the knapsack problem as the following program,

in which variable x; encodes how many items of weight w; are packed into the knapsack and g;
encodes their total value:

k k
max Zgi S.t. Zwi sy < W,
=1 =1

glgfl(xl)7 Z‘:]‘?"'?k?
xiG{O,l,...,ni}, gi € Ny 1=1,...,k.
The functions f; are in general non-linear. Their concavity implies the following lemma.
Lemma 2. For each i there exists a set of linear functions p(l), . ,pgm) such that fi(s) =

(e)(s) for every s € {0,...,n;}.

ming p;

Proof. For each ¢ € {1,...,n;} we define pgg)(s) to be the unique linear function such that

p(=1) = fi(t~1) and p?(0) = £i(0).



The function f;(s) is concave because

Fl+1) = (0 = v ) <o) = fi0) = fit = 1)
()

fi(s) < pz(g)(s) for every ¢ € {1,...,n;} and s € {0,...,n;}. Since for each s € {1,...,n;} we
have that pgs)(s) = fi(s) and pgl)(O) = fi(0), we conclude that f;(s) = manp(Z)(s) for every

i

SG{O,...,TLZ’}. (|

for each ¢ € {1,...,n; — 1}. Therefore, the definition of the linear functions p;’ implies that

Hence in the program above, we can, for every i € {1,...,k}, replace the constraint g; <
fi(x;) by the set of constraints g; < pgg)(xi) for £ € {1,...,n;}. This way we obtain a formulation
of the knapsack problem as an integer linear program with k variables. The encoding length
of this integer linear program is polynomially bounded in the encoding length of the instance
of KNAPSACK. Together with the algorithm by Kannan [I§] this implies the fixed-parameter
tractability of KNAPSACK with k item weights. Using the improved version of this algorithm by

Frank and Tardos [12], the theorem follows. 0

5.2 Polynomial Kernel for Subset Sum with Few Item Sizes

We now improve the work of Fellows et al. [10] in another direction. Namely, we show that the
SUBSET SUM problem admits a polynomial kernel for parameter the number k£ of item sizes;
this improves upon the exponential-size kernel due to Fellows et al. [10]. To show the kernel
bound of k°M)| consider an instance I of SUBSET SUM with n items that have only k distinct
item sizes. For each item size s;, let u; be its multiplicity, that is, the number of items in I of
size s;. Given I, we formulate an ILP for the task of deciding whether some subset S of items
has weight exactly ¢t. The ILP simply models for each item size s; the number of items z; < p;
selected from it as to satisfy the subset sum constraint:

s121+ ...+ spxK =1,
ngzg,uz, ’L'Zl,...,k?, (1)
z; €Ny, i=1,...,k .

Then (1) is an INTEGER LINEAR PROGRAMMING instance on m = 1 relevant constraint and
each variable x; has maximum range bound v = max; u; < n.
Now consider two cases:

— If logn < k - log k, then we apply Theorem [Il to () to reduce the instance to an equivalent
instance I’ of size O(k*+k®logn) = O(k*+-k3-(klogk)) = O(k*log k). We can reformulate I’
as an equivalent SUBSET SUM instance by replacing each size s; by O(log p;) new weights
2/ .5, for 0 < j < ¢; and <Mi — Z?:o 2J > - 8;, where /; is the largest integer such that

2§;0 29 < p;. Then we have O(klogn) = O(k?logk) items each with a weight which can
be encoded in length O(k® + k?logn + logn) = O(k3log k), resulting in an encoding length
of O(k?log? k).

— If klogk < logn, then we solve the integer linear program (II) by the improved version of
Kannan’s algorithm [I8] due to Frank and Tardos [I2] that runs in time d>°#to(@ . s for
integer linear programs of dimension d and encoding size s. As (Il) has dimension d = k and
encoding size s = |I|, the condition k¥ < n means that we can solve the ILP (and hence
decide the instance I) in time k25F+o(k) . g = nO),

In summary, we have shown the following;:



Theorem 8. SUBSET SUM with k item sizes admits a kernel of size O(k® log? k). Moreover,
it admits a kernel of size O(k*log k) if the multiplicities of the item weights can be encoded in
binary.

We remark that this method does not work if the instance I is succinctly encoded by specifying
the k distinct item weights w; in binary and for each item size s; its multiplicity p; in binary:
then the running time of Frank and Tardos’ algorithm can be exponential in k& and the input
length of the subset sum instance, which is O(k - logn).

5.3 A Kernelization Lower Bound for Subset Sum

In the following we show a kernelization lower bound for SUBSET SUM assuming the Ezponential
Time Hypothesis. The Exponential Time Hypothesis [16] states that there does not exist a 20(n)_
time algorithm for 3-SAT, where n denotes the number of variables.

Lemma 3. SUBSET SUM does not admit a 2°") -time algorithm assuming the Exponential Time
Hypothesis, where n denotes the number of numbers.

Proof. The proof is based on a polynomial-time reduction by Gurari [14] that transforms any 3-

SAT formula ¢ with n variables vy, ..., v, and m clauses C1, ..., Cy,, into an equivalent instance
of SUBSET SUM with exactly 2n 4+ 2m numbers.
For j € {1,...,m}, let clause C; = (cj1Veje Ve 3), where ¢j1, ¢jo, ¢j3 € {v1, w1, .., Vp, "V}

As an intermediate step in the reduction, we consider the following system of linear equations
in which we interpret v; and —v; as variables and introduce additional variables y; and y; for
every j € {1,...,m}:

Vie{l,...,n}: v+ -w =1, @)
\V/j S {1,...,m} : Cj1+Cj2+Cj3+yj+y§' = 3.

It can easily be checked that this system of linear equations has a solution over {0, 1} if and

only if the formula ¢ is satisfiable. Relabeling the variables yields a reformulation of (2)) as

ai a1.2n+2m c1
z1+...+ 22n+2m = > (3)

An4m,1 An4+m,2n+2m Cn4m

where a; ; € {0,1} and ¢; € {1,3}. We can rewrite this system of equations as the single equation
a1z1 + ... + aznqomZontom = C, (4)

where each a; € N is the integer with decimal representation ai ;... ap4m,; and C € N denotes
the integer with decimal representation c¢; . .. ¢, 4m. Equation () is equivalent to the system (3)),
because the sum a; 1+. . . +a; 2 +2m is at most five. This ensures that no carryovers occur and the
h-th digit of the sum a121+. ..+ a2n4+2m22n+2m is equal to the sum ap, 121+ . . +an 2n12m22n+2m-
It follows that (2)) is satisfiable over {0,1} if and only if () is satisfiable over {0,1}.

As a result, the 3-SAT formula ¢ is satisfiable if and only if the tuple (a1,...,agmion, C) is
a “yes”-instance for SUBSET SUM. Now assume there is an algorithm for SUBSET SUM that runs
in time 2°0), where ¢ denotes the number of numbers. With the reduction above we could use
this algorithm to decide whether or not ¢ is satisfiable in time 2°(**t™)_ Due to the sparsification
lemma of Impagliazzo et al. [16], this contradicts the Exponential Time Hypothesis. O
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Theorem 9. SUBSET SUM does not admit kernels of size O(n*>~¢) for any e > 0 assuming the
Ezxponential Time Hypothesis, where n denotes the number of numbers.

Proof. Assume there exists a kernelization algorithm A for SUBSET SUM that produces instances
of size at most xkn?~¢ for some k > 0 and some £ > 0. We show that A can be utilized to solve
SUBSET SUM in time 2°(") | which contradicts the Exponential Time Hypothesis due to Lemmal[3l

Let I be an arbitrary SUBSET SUM instance with n items. We apply the kernelization algo-
rithm A to obtain an equivalent instance I’ whose encoding size is at most kn’~¢. Let ay, ..., am
be the numbers in I’ and let ¢ be the target value.

Let k = n'~¢/2. We divide the numbers in I’ into two groups: a number a; is called heavy
if a; > 2% and light otherwise. Since one needs at least k bits to encode a heavy number, the
number of heavy numbers is bounded from above by xkn?~¢/k = knl=e/2,

We solve instance I’ as follows: for each subset Jg of heavy numbers, we determine whether

or not there exists a subset Jp, of light numbers such that ), JyuJy @i = ¢ via dynamic program-

ming. Since there are at most kn!~¢/2 heavy numbers, there are at most 2512 qubsets Jo.
The dynamic programming algorithm runs in time O(m? - 2”1_5/2), as each of the at most m
light numbers is bounded from above by gn' =2, Hence, instance I’ can be solved in time

O(m? - 2(”””)”175/2) = 2°(")  where the equation follows because m < kn?—¢ = 200", O

6 Integer Polynomial Programming with Bounded Range

Up to now, we used Frank and Tardos’ result only for linear inequalities with mostly binary
variables. But it also turns out to be useful for more general cases, namely for polynomial
inequalities with integral bounded variables. We use this to show that INTEGER POLYNOMIAL
PROGRAMMING instances can be compressed if the variables are bounded. As a special case,
INTEGER LINEAR PROGRAMMING admits a polynomial kernel in the number of variables if the
variables are bounded.

Let us first transfer the language of Theorem [I] to arbitrary polynomials.

Lemma 4. Let f € Q[X1,...,X,] be a polynomial of degree at most d with v non-zero coef-
ficients, and let w € N. Then one can efficiently compute a polynomial f € Z[Xl,N. .. ,X@] of

encoding length O (r* + r3dlog(ru) + rdlog(nd)) such that sign(f(z)— f(y)) = sign(f(z)— f(y))
forall z,y € {—u,...,u}".

Proof. Let wy,...,w, € Qand f1,..., fr € Q[X1,...,X,] be pairwise distinct monomials with
coefficient 1 such that f =>""_; w;- f;. Apply Theoremdto w = (wy,...,w,) and N = 2rut+1
to obtain @ = (@, ...,w,) € Z". Set f = S1_ ;- fi.

The encoding length of each @; is upper bounded by O(r® +72log N) = O(r3 +7r2-d-log(r-
u)). As there are ("zd) monomials of degree at most d, the information to which monomial a
coefficient belongs can be encoded in O(log((n +d)?)) = O(dlog(nd)) bits. Hence, the encoding
length of f is upper bounded by

(9(7“4 + r3dlog(ru) + rdlog(nd)) .
To prove the correctness of our construction, let z,y € {—u,...,u}". For 1 < i < r, set

bi = fi(z) — fi(y) € ZN[-2u?, 2u?], and set b = (b1,...,b,). Then Hle < r-2uf, and thus by

Theorem [I], sign(w - b) = sign(w - b). Then also sign(f(x) — f(y)) = sign(f(x) — f(y)), as

11



and
f(x)_f(y) :sz(fz(x)—f,(y)) :Zwi'bi =w-b.
i=1 i=1

This completes the proof of the lemma. ad

We use this lemma to compress INTEGER POLYNOMIAL PROGRAMMING instances.

INTEGER POLYNOMIAL PROGRAMMING
Input: Polynomials ¢, g1, ...,9m € Q[X1,...,X,] of degree at most d encoded by the
coeflicients of the O(nd) monomials, rationals by,...,b,,2z € Q, and u € N.
Question: Is there a vector x € {—u,...,u}" with ¢(z) < z and g;(x) <b; fori=1,...,m?

Theorem 10. Every INTEGER POLYNOMIAL PROGRAMMING instance in which ¢ and each g;
consist of at most r monomials can be efficiently compressed to an equivalent instance with an
encoding length that is bounded by O (m(r* + r3dlog(ru) + rdlog(nd))).

Proof. Define ¢, ¢},...,q,,: Z" x {0,1} — Q as

d(x,y) i=c(x)+y- 2,
gi(z,y) == g

g(x)+y-b i=1,....,m.

Now apply Lemma H to ¢ and ¢},...,g., to obtain ¢ and §,,...,J.,,. Thereafter, split these
functions up into their parts (& 2) and (§1,b1),- - -, (Gm,bm). We claim that the instance I =
(¢, 915---+Gm,d, 51, e ,Bm, Z,u) is equivalent to I. To see this, we have to show that a vector
x € {—u,...,u}" satisfies c(x) < z if and only if it satisfies é¢(x) < Z (and analogously g¢;(x) < b;
if and only if §;(z) < b; for all 7). This follows from

sign(c(r) — z) = sign(c'(z,0) — ¢(0,1))

Y sign(@(x,0) — #(0,1))

= sign(é(a) - 2),

where equality () follows from Lemma [l
It remains to show the upper bound on the encoding length of I’. Each of the tuples (c, 2),
(91,01), -+, (gm,bm) can be encoded with

(9(7’4 + r3dlog(ru) + rdlog(nd))

bits. The variables d and u can be encoded with O(logd + log u) bits. In total, this yields the
desired upper bound on the kernel size. a

This way, Theorem [I0] extends an earlier result by Granot and Skorin-Karpov [I3] who
considered the restricted variant of d = 2.

As r is bounded from above by O((n 4 d)?), Theorem [I0 yields a polynomial kernel for the
combined parameter (n,m,u) for constant dimensions d. In particular, Theorem [I0 provides
a polynomial kernel for INTEGER LINEAR PROGRAMMING for combined parameter (n,m,u).
This provides a sharp contrast to the result by Kratsch [19] that INTEGER LINEAR PROGRAM-
MING does not admit a polynomial kernel for combined parameter (n,m) unless the polynomial
hierarchy collapses to the third level.
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7 Conclusion

In this paper we obtained polynomial kernels for the KNAPSACK problem parameterized by the
number of items. We further provide polynomial kernels for weighted versions of a number of
fundamental combinatorial optimization problems, as well as integer polynomial programs with
bounded range. Our small kernels are built on a seminal result by Frank and Tardos about
compressing large integer weights to smaller ones. Therefore, a natural research direction to
pursue is to improve the compression quality provided by the Frank-Tardos algorithm.

For the weighted problems we considered here, we obtained polynomial kernels whose sizes
are generally larger by some degrees than the best known kernel sizes for the unweighted coun-
terparts of these problems. It would be interesting to know whether this increase in kernel size
as compared to unweighted problems is actually necessary (say it could be that we need more
space for objects but also due to space for encoding the weights), or whether the kernel sizes of
the unweighted problems can be matched.
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