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Abstract. One question that we investigate in this paper is, how canuild b
log-concave polynomials using sparse polynomials as imgjlélocks? More
precisely, letf = Zf:o a; X" € RT[X] be a polynomial satisfying the log-
concavity conditioru? > Ta;_1a;+1 foreveryi € {1,...,d—1}, wherer > 0.
Wheneverf can be written under the forgh= Zle [Tj~, fi.; where the poly-
nomials f; ; have at most monomials, it is clear thal < kt™. Assuming that
the f; ; have only non-negative coefficients, we improve this dedraend to
d = O(km*3t*™/310g?/3(kt)) if 7 > 1, and tod < kmt if 7 = d**.

This investigation has a complexity-theoretic motivatiare show that a suit-
able strengthening of the above results would imply a s¢iparaf the algebraic
complexity classe¥P andVNP. As they currently stand, these results are strong
enough to provide a new example of a family of polynomial¥/iP which can-
not be computed by monotone arithmetic circuits of polyrairsize.

1 Introduction

Let f = Z?:o a; X’ € R[X] be a univariate polynomial of degreec Z*. It is a
classical result due to Newton (séé [4], §2.22 and §4.3 forgvoofs) that whenever
all the roots off are real, then the coefficients pfsatisfy the following log-concavity
condition:

2> d—i+1i+1
¢ d—1 7
Moreover, if the roots off are not all equal, these inequalities are strict. Wtien 2,
condition[1) becomes, > 4aqaz, which is well known to be a necessary and sufficient
condition for all the roots off to be real. Nevertheless, far > 3, the converse of
Newton’s result does not hold any morel[13].

A;—1Qi41 foralli € {1,,d—1} (1)

Whenf € RT[X], i.e., whenf = Z?:o a; X7 with a; > 0forall j € {0,...,d},
a weak converse of Newton’s result holds true. Namely, acserfft condition forf to
only have real (and distinct) roots is that

CL? > 4ai,1ai+1 foralli € {1, .. .,d— 1}
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Whenever a polynomial fulfills this condition, we say thaatisfies th&urtz condition
since this converse result is often attributed to KurtZ [Idte however that it was
obtained some 70 years earlier by Hutchinsan [6].

If f satisfies the Kurtz condition, all of ité+ 1 coefficients are nonzero except pos-
sibly the constant term. Such a polynomial is therefore fearfrom being sparse (recall
that a polynomial is informally calledparseif the number of its nonzero coefficients
is small compared to its degree). One question that we iigadstin this paper is: how
can we construct polynomials satisfying the Kurtz conditising sparse polynomials
as building blocks? More precisely, considgea polynomial of the form

k. m
= fi 2)
i=

1j=1

wheref; ; are polynomials with at mostmonomials each. By expanding the products
in @) we see thaff has at moskt™ monomials. As a resuly < kt™ if f satisfies
the Kurtz condition. Our goal is to improve this very coarseibd. For the case of
polynomialsf; ; with nonnegative coefficients, we obtain the following fesu

Theorem 1. Consider a polynomiaf € R*[X] of degreed of the form

k. m
F=>_ 114
i=1 j=1

wherem > 2 and thef; ; € R*[X] have at most monomials. Iff satisfies the Kurtz
condition, theni = O(km?/3t>™/310g?/3(kt)).

We prove this result in Sectidd 2. After that, in Sectidn 3, stedy the following
stronger log-concavity condition

a? > d*¥a;_qa;41 foralli e {1,...,d—1}. (3)
In this setting we prove the following improved analogue b&drent]L.

Theorem 2. Consider a polynomiaf € R*[X] of degreel of the form

k. m
F=>_ 114
i=1 j=1

wherem > 2 and thef; ; € R*[X] have at most monomials. Iff satisfies(3]), then
d < kmt.

This investigation has a complexity-theoretic motivatime show in Sectiohl4 that
a suitable extension of Theorém 2 (allowing negative cdefits for the polynomials
fij) would imply a separation of the algebraic complexity otss¢P and VNP. The
classes/P of “easily computable polynomial families” andNP of “easily definable
polynomial families” were proposed by Valiant [15] as alggb analogues o and
NP. As shown in Theorerf]7, Theordm 2 as it now stands is stronggmto pro-
vide a new example of a family of polynomials\iNP which cannot be computed by
monotone arithmetic circuits of polynomial size.



2 The Kurtz log-concavity condition

Our main tool in this section is a result of convex geometjy T8 state this result, we
need to introduce some definitions and notations. For a paleaar finite setsk, S C
R?, theMinkowski sunof R andS isthe setR + S := {y + 2|y € R,z € S} C R%

A finite setC C R? is convexly independeiftand only if its elements are vertices
of a convex polygon. The following result provides an uppeurd for the number of
elements of a convexly independent set contained in the diski sum of two other
sets.

Theorem 3. [B] Theorem 1] Letk and S be two planar point sets with?| = r and
|S| = s. LetC be a subset of the Minkowski sug4- S. If C'is convexly independent
we have thatC| = O(r?/3s%/3 4 r + s).

From this result the following corollary follows easily.

Corollary 1. Let Ry,..., R, S1,...,S%, Q1,Q2 be planar point sets withR;| =
r, |Si| = sforalli € {1,...,k}, |Q1] = @1 and|Q2| = ¢o. LetC be a subset of
UK, (Ri+S:)+Q1+Qo. If Cis convexly independent, thifi| = O(kr2/3s2/3¢2/%¢2/* +
krqr + ksqz).

Proof. We observe that?_, (R; + S;) + Q1 + Q2 = UE_, (R; + Q1) + (Si + Q2)).
Therefore, we partitior into & convexly independent disjoint sef§, ..., Cy such
thatC; C (R; + Q1) + (S; + Q) foralli € {1,...,k}. Since|R; + Q1] = rq: and
|S; + Q2| < sq2, by Theoreni B, we get that;| = (’)(r2/352/3qf/3q§/3 +7q1 + sq2)
and the result follows. O

Theorem 4. Consider a polynomiaf € R*[X] of degreel of the form

k
=2 gihi,
i=1

whereg;, h; € RT[X], the g; have at most monomials and thé; have at most
monomials. Iff satisfies the Kurtz condition, thein= O (kr2/3s2/3 10g?/3 (kr) + k(r+
s)log'/?(kr)).

Proof. We write f = Zf:o c; X*, wherec; > 0foralli € {1,...,d} andcy > 0.
Sincef satisfies the Kurtz condition, settirg= log(4)/2 we get that

2log(c;) > log(ci—1) + log(cit1) + 2e. 4)
for everyi > 2. For everydy, ..., d0q € R, we setCs, . 5,y := {(4,log(c;) + ;) [1 <

i < d}. We observe thal{4) implies thats, . s, is convexly independent whenever
0<d; <eforallie{1,...,d}.

yeeey



We write g; = 37", a; ;X andh; = Y70 bi i XPei, with r; < 1, s; < s
anda; j,b; ; > 0 forall ¢, j. Then,¢; = Zle(zamwl 1,=1 @1 bi g, ). SO, setting

M, = max{ai,jlbi’jz |’L € {1, ceey k},aml + ﬁh]z l} foralll € {1 . ..,d}, we
have thatV; < ¢; < krM;, solog(M;) < log(c;) < log(M;) + log(kr).

Foreveryl € {1,...,d}, we set

\ Fog(q) -

€

log(Ml)] and &; := log(M;) + \ie — log(¢;), ()

and have thath < A\; < [(log(kr))/€] and tha) < §; < e.
Now, we consider the sets
(i j,log(a; ;) |1 <j<r}fori=1,... k,
= {(Bi,j,log(bi ; )|1<]<sz}f0rz—1 .k,
- Q — {(0. 5[0 <X flog(/ﬂ‘)/d},

- Qu={0Ope)0<p<] log(kr)/d} and

— Q2:={(0,¢] log(/ﬂ“)/de) < [Vlog(kr)/el}.

If (0,\e) € Q, then there exist andv such that\ = v[+/log(kr)/e| + u where

w, v < [y/log(kr)/e]. We have,
(0, xe) = (0,v[+/log(kr)/ele) + (0, ue) € Q1 + Qa,

S0Q C Q1 + Q2. Then, we claim tha€s, . 5,) C US| (R; + S;) + Q. Indeed, for
alll e {1,...,d}, by ®),

log(c;) + &) = log(M;) + Ne = log(ai j,) + log(bi, j,) + Aie
for some: € {1,...,k} and somg, j» such thaty; ;, + 3; j, = [; thus
(la 10g(01)+51) = (ai-jl ’ log(ai-jl ))"’(ﬂi-jz ; 1Og(bi7j1))+(07 )‘le) S Uf:l(Ri'i_Si)_FQ-

SinceCs, ,....5,) is a convexly independent set @felements contained ok (R; +
Si) + Q1 + Q-, a direct application of Corollafy 1 yields the result. O

From this result it is easy to derive an upper bound for theegdrcase, where we
have the products oh > 2 polynomials. If suffices to divide the: factors into two
groups of approximatelyn/2 factors, and in each group we expand the product by
brute force.

Proof of Theorerhl1 We write each of thé products as a product of two polynomials
G = H]L’:”{QJ fi; and H; := Hjm:Lm/2J+1 fi.;- We can now apply Theorefd 4 to
= Zle G, H; with r = tl™/2] ands = t"~1"/2] and we get the result. O



Remark 1.We observe that the role of the constdnin the Kurtz condition can be
played by any other constant> 1 in order to obtain the conclusion of TheorEi 1, i.e.,
we obtain the same result fgr= Z?:o a; X" satisfying thata? > 7a;_1a;,1 for all

i € {1,...,d — 1}. For proving this it suffices to replace the value= log(4)/2 by

e = log(7)/2 in the proof of Theoreml4 to conclude this more general result

For f = gh with g, h € RT[X] with at mostt monomials, whenevef satisfies the
Kurtz condition, thery has only real (and distinct) roots and sogandh. As a conse-
guence, botly andh satisfy [1) with strict inequalities and we derive thlag 2¢. Nev-
ertheless, in the similar setting whefe= gh + ' for somei > 0, the same argument
does not apply and a direct application of Theofém 1 yidlds O(t*/? log?/3(t)), a
bound which seems to be very far from optimal.

Comparison with the setting of Newton polygons

Aresult similar to Theorei] 1 was obtained(in][12] for the Nempolygons of bivariate
polynomials. Recall that the Newton polygon of a polynonjiéK,Y") is the convex
hull of the points(i, j) such that the monomiaX‘Y’ appears inf with a nonzero
coefficient.

Theorem 5 (Koiran-Portier-Tavenas-Thomassé)Consider a bivariate polynomial
of the form

FXY) =3 ] fis(X.Y) 6)
i=1 j=1

wherem > 2 and thef; ; have at most monomials. The Newton polygon ptas
O(kt*>™/3) edges.

In the setting of Newton polygons, the main issue is how td déh the cancel-
lations arising from the addition of the products in[(5). Two monomials of the form
cX Y7 with the same paifi, j) of exponents but oppositive values of the coefficient
will cancel, thereby deleting the poifi, j) from the Newton polygon.

In the present paper we associate to the monomi&l with ¢ > 0 the point
(,log ¢). There are no cancellations since we only consider polyatsii ; with non-
negative coefficients in Theorerk 1 ddd 4. However, the iatddf two monomials
cX', ¢ X" with the same exponent will “move” the corresponding polong the co-
efficient axis. By contrast, in the setting of Newton polyg@oints can be deleted but
cannot move. In the proof of Theorémh 4 we deal with the issienofrable points” by
an approximation argument, using the fact that the constanlog(4)/2 > 0 gives us
a little bit of slack.

3 A stronger log-concavity condition

The objective of this section is to improve the bound prodidte Theorenf Il when
f= Z?:o a; X" € RT[x] satisfies a stronger log-concavity condition, namely, when
af > d2dai,1ai+1 foralli e {1, ey d— 1}



To prove this bound, we make use of the following well-knowmima (a refer-
ence and similar results for polytopes in higher dimensiam lse found in[[B]). For
completeness, we provide a short proof.

Lemmal. If Ry,..., R, are planar sets andR;| = r; forall i € {1,..., s}, then the
convex hull ofR; + --- + R, has at most + - - - + r, vertices.

Proof. We denote by:; the number of vertices of the convex hullBf. Clearlyk; < r;.
Let us prove that the convex hull &f; + - - - + R, has at mosk; + - - - + k; vertices.

Assume that = 2. We write Ry = {aq,...,a,, }, thena, € Ry is a vertex of the
convex hull of R; if and only if there existsy € S* (the unit Euclidean sphere) such
thatw - a; > w - a; forallj € {1,...,7} \ {i}. Thus,R; induces a partition of*

into k&, half-closed intervals. Similarlyk, induces a partition o' into k, half-closed
intervals. Moreover, these two partitions induce a new ang’owith at mostk; + k-
half-closed intervals; these intervals correspond to #ntices ofR; + Ry and; thus,
there are at most; + k.. By induction we get the result for any valueof O

Proposition 1. Consider a polynomiaf = Z?:o a; X* € RY[X] of the form

f:ZHfi,j

=1 j5=1

where thef; ; € Rt [z]. If f satisfies the condition
CLZ2 > kzdzmai,laprl,
then there exists a polynomil ; with at leastd/km monomials.

Proof. Every polynomialf; ; := Zf;g cij1 X', whered, ; is the degree of; ;, corre-
sponds to a planar set

Rij = {(l,log(cij)) | cijp > 0} C R%

We set,C;; := max{0,[[~, cirs. |lh + -+ ln = I}, foralli e {1,... k},
1 €{0,....d},andC; := max{C;; |1 < i < k} foralll € {0,...,d}. Since the
polynomialsf; ; € R*[X] and

- % o]

i=1 \li4-A+lm=l r=1
foralll € {0,...,d}, we derive the following two properties:

- C < a <kd™Cforalll e {0,...,d},

— eitherC;; = 0 or (1,10g(Cy1)) € Rix+ -+ Ry foralli € {1,...,k}, 1l €
{0,...,d}.Sinceq; > 0foralll € {1,...,d}, we have tha€; > 0and(l,log(C})) €
Ule (Rig+ -+ Rim)



We claim that the points in the s/, log(C;)) |1 < I < d} belong to the upper
convex envelope ofJ/_,(Ri1 + --- + Ri.m). Indeed, if(a,log(b)) € UL, (Ri1 +
~++ R; ), thena € {0,...,d} andb < C,; moreover, forall € {1,...,d — 1}, we
have that

C? > ai/(K*d®™) > a—1 a141 = C1—1C141.

Hence, there exisiy € {1,...,k} andL C {1,...,d} such that|L| > d/k
andC; = C;,, forall I € L. Since the points i{(l,log(C;)) |1 < I < d} belong
to the upper convex envelope bjle(RM + -+ + R; ) We easily get that the set
{(l,10g(Cs,.1)) |1 € L} is a subset of the vertices in the convex hullidyf ; + - - - +
Ri, .m- By Lemmal, we get that there exigtssuch thatR;, j,| = |L|/m > d/km
points. Finally, we conclude thdt, ;, involves at least//km monomials. O

0,50

Proof of Theorerl2If d < k ord < m, thend < kmt. Otherwised?? > k2d2(4-1) >
k2d?™ and, thus f satisfies[(B). A direct application of Propositidn 1 yielts tesult.
|

4 Applications to Complexity Theory

We first recall some standard definitions from algebraic derity theory (see e.g.[2]
or [15] for more details). Fix a field(. The elements of the complexity clag® are
sequencesf,) of multivariate polynomials with coefficients frol¥. By definition,
such a sequence belongsiB if the degree off,, is bounded by a polynomial function
of n and if f,, can be evaluated in a polynomial number of arithmetic oparat(addi-
tions and multiplications) starting from variables anchfroonstants iri<'. This can be
formalized with the familiar model adrithmetic circuits In such a circuit, input gates
are labeled by a constant or a variable and the other gatéstaied by an arithmetic
operation (addition or multiplication). In this paper wéea = R since there is a
focus on polynomials with nonnegative coefficients. Anhamgtic circuit ismonotone
if input gates are labeled by nonnegative constants only.

A family of polynomials belongs to the complexity claghIP if it can be obtained
by summation from a family i'vP. More precisely,f,,(Z) belongs toVNP if there
exists a family(g,, (%, 7)) in VP and a polynomiap such that the tuple of variablgss
of lengthi(n) < p(n) and

fn(f) = Z gn(fa y)

7e{0,1}4m

Note that this summation over all boolean valuesjahay be of exponential size.
Whether the inclusioVP C VNP is strict is a major open problem in algebraic com-
plexity.

Valiant's criterion [2[ 15] shows that “explicit” polynomai families belong to/NP.
One version of it is as follows.



Lemma 2. Suppose that the functien: {0,1}* — {0, 1} is computable in polynomial
time. Then the familyf,,) of multilinear polynomials defined by

fo= Y dle)af---afr

ec{0,1}"
belongs toVNP.

Note that more general versions of Valiant's criterion anew. One may allow
polynomials with integer rather than 0/1 coefficients [2]t m Theorenil/ below we
will only have to deal with 0/1 coefficients. Also, one mayoall f,, to depend on any
(polynomially bounded) number of variables rather tharcéya: variables and in this
case, one may allow the algorithm for computing the coefiitsief f,, to take as input
the indexn in addition to the tuple of exponents (se€l[9], Theorem 2.3).

Reduction of arithmetic circuits to depth 4 is an importaugtredient in the proof of
the forthcoming results. This phenomenon was discoverefigmgwal and Vinay[[1].
Here we will use it under the form of [14], which is an improvem of [11]. We will
also need the fact that if the original circuit is monotoregrt the resulting depth 4
circuit is also monotone (this is clear by inspection of thegb in [14]). Recall that a
depth 4 circuit is a sum of products of sums of products of igpsum gates appear on
layers 2 and 4 and product gates on layers 1 and 3. All gatedienagyarbitrary fan-in.

Lemma 3. Let C be an arithmetic circuit of size > 1 computing av-variate polyno-

mial of degreel. Then, there is an equivalent depthircuit I" of size2 O((v/dlog(ds) log(v))
with multiplication gates at layes of fan-in©(+/d). Moreover, ifC' is monotone, then
I" can also be chosen to be monotone.

We will use this result under the additional hypothesis étiaipolynomially bounded
by the number of variables In this setting, since < s, we get that the resulting depth

4 circuit I" provided by LemmaBl3 has siz& (V).

Before stating the main results of this section, we constncexplicit family of
log-concave polynomials.

Lemma 4. Letn, s € Z*+ and considew, ,(X) := Y7 ' a; X", with
a; = 2%"=17D foraili € {0,...,2" —1}.
Then,af > 2%a;_1 Ajq1-
Proof. Takei € {1,...,2" — 2}, we have that
log (2°a;—1ai41) = s+ 82"(i—1) —s(i— )i+ s2"(i+ 1) —s(i + 1)(i + 2)

=282" —2si(i+ 1) — s
< 252" — 2si(i + 1)
— log(a?).



In the next theorem we start from the family . of Lemmd# and we sat= n2"*1.
Theorem 6. Let(f,) € N[X] be the family of polynomial, (z) = g, non+1 ().

() f. hasdegre@™ — 1 and satisfies the log-concavity conditif).
(i) If VP = VNP, f,, can be written under forn@) with k = n°V™), m = O(y/n)
andt = n@Vn),

Proof. Itis clear thatf,, € N[X]| has degre@™ — 1 and, by Lemmal4f,, satisfies[(B).
Consider now the related family of bivariate polynomigl§ X, Y) = 2" 1 xiye(ni),

wheree(n, i) = si(2™ — i —1). One can check in time polynomialinwhether a given

monomialX ‘Y’ occurs ing,,: we just need to check that< 2" and thatj = e(n, ).

By mimicking the proof of Theorem 1 i [12] and taking into acot Lemmd&B we get

that, if VP = VNP, one can write

k. m

where the bivariate polynomials ; ,, haven®v™ monomialsf = n®v™ andm =
O(y/n). Performing the substitutiolr = 2 in ([7) yields the required expression for
fn- O

We believe that there is in fact no way to wrifg under form[2) so that the pa-
rametersk, m, ¢ satisfy the constraints = n°V®, m = O(y/n) andt = n©Vn),
By part (ii) of Theoreni b, a proof of this would separate from VNP. The proof of
TheorenilV below shows that our belief is actually correchandpecial case where the
polynomialsf; ; in (@) have nonnegative coefficients.

The main point of Theorerl 7 is to present an unconditionakllound for a
polynomial family(h,,) in VNP derived from(f,,). Note that( f,,) itself is not inVNP
since its degree is too high. Recall that

2" —1

fn(X) — Z 22712"1'(2”71'71))(1" (8)

1=0
To constructh,, we write down in base 2 the exponents of “2” antl™in (B). More
precisely, we také,, of the form:

o= 3 Mmoo, B) XG0 XYY )

a€{0,1}n
pe{o,1}4n

wherea = (ag,...,an—1), 8 = (Bo,---,Pan—1) @andA(n,«a, 3) € {0,1}; we set
A(n,a, 3) = 1if and only if Z?Zgl B;27 = 2n2mi(2" — i — 1) < 24" wherei :=
S 7—o @i 2%, By construction, we have:

Fu(X) = ha (X2, X2, X2 020 02" 02T, (10)

This relation will be useful in the proof of the following l@wbound theorem.



Theorem 7. The family(h,,) in (@) is in VNP. If (h,,) is computed by depthmonotone
arithmetic circuits of sizes(n), thens(n) = 2 If (h,,) is computed by monotone
arithmetic circuits of sizes(n), thens(n) = 22", In particular, (h,) cannot be
computed by monotone arithmetic circuits of polynomiad.siz

Proof. Note thath,, is a polynomial in5n variables, of degree at most, and its
coefficients\(n, a, 3) can be computed in polynomial time. Thus, by Valiant's ciite
we conclude thath,,) € VNP.

Assume thath,,) can be computed by depttmonotone arithmetic circuits of size
s(n). Using [10), we get thaf,, = Zle H;.”:l fi.,; wheref; ; € RT[X] have at most
t monomials and:, m, t areO(s(n)). Since the degree df, is 2" — 1, by Theoreni P,
we get tha™ — 1 < kmt. We conclude thag(n) = 2 (),

To complete the proof of the theorem, assume tha} can be computed by mono-
tone arithmetic circuits of size(n). By Lemma3, it follows that the polynomials,
are computable by depth 4 monotone circuits of size) := s(n)°V™). Therefore
s'(n) = 2% and we finally get thag(n) = 2 2(V7), O

Lower bounds for monotone arithmetic circuits have beennméor a long time
(see for instance [7,16]). Theordm 7 provides yet anothamgte of a polynomial
family which is hard for monotone arithmetic circuits, wiéim apparently new proof
method.

5 Discussion

As explained in the introduction, log-concavity plays eerwl the study of real roots of
polynomials. In[[10] bounding the number of real roots of sush products of sparse
polynomials was suggested as an approach for sepandBrigom VNP. Hrubes [5]
suggested to bound the multiplicities of roots, and [12]doifd the number of edges
of Newton polygons of bivariate polynomials.

Theoreni b provides another plausible approactiRo# VNP: it suffices to show
that if a polynomialf € R*[X] under form [2) satisfies the Kurtz condition or the
stronger log-concavity conditiohl(3) then its degree isrsad by a “small” function of
the parameterks, m, t. A degree bound which is polynomial boundiine and2” would
be good enough to separa¥® from VNP. Theoren{]L improves on the triviat™
upper bound whetf satisfies the Kurtz condition, but certainly falls shortlostgoal:
not only is the bound odeg( /) too coarse, but we would also need to allow negative
coefficients in the polynomialg; ;. Theoreni R provides a polynomial bound bnm
andt under a stronger log-concavity condition, but still neddsextra assumption that
the coefficients in the polynomiafs ; are nonnegative. The unconditional lower bound
in Theoren¥ provides a “proof of concept” of this approachtfe easier setting of
monotone arithmetic circuits.
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