Skip to main content

Maximum Minimal Vertex Cover Parameterized by Vertex Cover

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

Abstract

The parameterized complexity of problems is often studied with respect to the size of their optimal solutions. However, for a maximization problem, the size of the optimal solution can be very large, rendering algorithms parameterized by it inefficient. Therefore, we suggest to study the parameterized complexity of maximization problems with respect to the size of the optimal solutions to their minimization versions. We examine this suggestion by considering the Maximum Minimal Vertex Cover (MMVC) problem, whose minimization version, Vertex Cover, is one of the most studied problems in the field of Parameterized Complexity. Our main contribution is a parameterized approximation algorithm for MMVC, including its weighted variant. We also give conditional lower bounds for the running times of algorithms for MMVC and its weighted variant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For example, they show that one can guarantee the approximation ratios 0.1 and 0.4 in times \({\mathcal O}^*(1.162^{opt})\) and \({\mathcal O}^*(1.552^{opt})\), respectively.

  2. 2.

    Indeed, \(x \approx 0.11964\) if \(\frac{1}{x^x(1-x)^{1-x}}= 3^{\frac{1}{3}}\), and \(x=1-\frac{1-\alpha }{M(2\alpha -1)+1-\alpha }=\frac{1}{2}\) if \(\alpha =\frac{1}{2-\frac{1}{M+1}}\).

  3. 3.

    In particular, the result holds for any \(0.53183\le \alpha < \frac{2}{3}\).

  4. 4.

    ProcedureA could also be developed without using recursion; however, relying on the bounded search tree technique simplifies the presentation.

  5. 5.

    This claim follows from the definition of x and since \(\alpha <\displaystyle {\frac{1}{2-\frac{1}{M+1}}}\).

References

  1. Balasubramanian, R., Fellows, M., Raman, V.: An improved fixed-parameter algorithm for vertex cover. Inf. Process. Lett. 65(3), 163–168 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bonnet, E., Lampis, M., Paschos, V.T.: Time-approximation trade-offs for inapproximable problems. CoRR abs/1502.05828 (2015)

    Google Scholar 

  3. Bonnet, E., Paschos, V.T.: Sparsification and subexponential approximation. CoRR abs/1402.2843 (2014)

    Google Scholar 

  4. Boria, N., Della Croce, F., Paschos, V.T.: On the max min vertex cover Problem. In: Kaklamanis, C., Pruhs, K. (eds.) WAOA 2013. LNCS, vol. 8447, pp. 37–48. Springer, Heidelberg (2014)

    Google Scholar 

  5. Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms. Discrete Appl. Math. 159(17), 1954–1970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brankovic, L., Fernau, H.: A novel parameterised approximation algorithm for minimum vertex cover. Theor. Comput. Sci. 511, 85–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buss, J., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22(3), 560–572 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chandran, L.S., Grandoni, F.: Refined memorization for vertex cover. Inf. Process. Lett. 93(3), 123–131 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Chapelle, M., Liedloff, M., Todinca, I., Villanger, Y.: Treewidth and pathwidth parameterized by the vertex cover number. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 232–243. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: Further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: improved upper bounds for NP-hard problems. Algorithmica 43(4), 245–273 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, J., Liu, L., Jia, W.: Improvement on vertex cover for low degree graphs. Networks 35(4), 253–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chlebík, M., Chlebíová, J.: Crown reductions for the minimum weighted vertex cover problem. Discrete Appl. Math. 156(3), 292–312 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. In: CCC, pp. 74–84 (2012)

    Google Scholar 

  16. Downey, R., Fellows, M.: Fundamentals of parameterized complexity. Springer, Heidelberg (2013)

    Google Scholar 

  17. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1–2), 109–131 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complexity: a framework for systematically confronting computational intractability. DIMACS 49, 49–99 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. Eur. J. Comb. 34(3), 541–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fellows, M.R., Kulik, A., Rosamond, F., Shachnai, H.: Parameterized approximation via fidelity preserving transformations. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 351–362. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Fomin, F.V., Gaspers, S., Saurabh, S.: Branching and treewidth based exact algorithms. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 16–25. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching and treewidth. Algorithmica 54(2), 181–207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized by vertex cover and modular width, through potential maximal cliques. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 182–193. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  24. Hurink, J., Nieberg, T.: Approximating minimum independent dominating sets in wireless networks. Inf. Process. Lett 109(2), 155–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Issac, D., Jaiswal, R.: An \(O^*(1.0821^n)\)-time algorithm for computing maximum independent set in graphs with bounded degree 3. CoRR abs/1308.1351 (2013)

    Google Scholar 

  26. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited - upper and lower bounds for a refined parameter. Theory Comput. Syst. 53(2), 263–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chapelle, M., Liedloff, M., Todinca, I., Villanger, Y.: Treewidth and pathwidth parameterized by the vertex cover number. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 232–243. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Niedermeier, R., Rossmanith, P.: Upper bounds for vertex cover further improved. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 561–570. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  29. Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover. J. Algorithms 47(2), 63–77 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Peiselt, T.: An iterative compression algorithm for vertex cover. Ph.D. thesis Friedrich-Schiller-Universität Jena, Germany (2007)

    Google Scholar 

  31. Razgon, I.: Faster computation of maximum independent set and parameterized vertex cover for graphs with maximum degree 3. JDA 7(2), 191–212 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Shachnai, H., Zehavi, M.: A multivariate framework for weighted FPT algorithms. CoRR abs/1407.2033 (2014)

    Google Scholar 

  33. Xiao, M.: A note on vertex cover in graphs with maximum degree 3. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 150–159. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. Zehavi, M.: Maximization problems parameterized using their minimization versions: the case of vertex cover. CoRR abs/1503.06438 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meirav Zehavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zehavi, M. (2015). Maximum Minimal Vertex Cover Parameterized by Vertex Cover. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics