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Abstract

The Černý conjecture states that every n-state synchronizing automaton has a reset word of
length at most (n−1)2. We study the hardness of finding short reset words. It is known that the
exact version of the problem, i.e., finding the shortest reset word, is NP-hard and coNP-hard,
and complete for the DP class, and that approximating the length of the shortest reset word
within a factor of O(log n) is NP-hard [Gerbush and Heeringa, CIAA’10], even for the binary
alphabet [Berlinkov, DLT’13]. We significantly improve on these results by showing that, for
every ε > 0, it is NP-hard to approximate the length of the shortest reset word within a factor
of n1−ε. This is essentially tight since a simple O(n)-approximation algorithm exists.

1 Introduction

Let A = (Q,Σ, δ) be a deterministic finite automaton. We say that w ∈ Σ∗ resets (or synchronizes)
A if |δ(Q,w)| = 1, meaning that the state of A after reading w does not depend on the choice
of the starting state. If at least one such w exists, A is called synchronizing. In 1964 Černý
conjectured that every synchronizing n-state automaton admits a reset word of length (n − 1)2.

The problem remains open as of today. It is known that an n3−n
6 bound holds [20] and that there

are automata requiring words of length (n − 1)2. The conjecture was proved for various special
classes of automata [1, 8, 12, 17, 21, 22]. For a thorough discussion of the Černý conjecture see [23].

Computational problems related to synchronizing automata were also studied. It is known that
finding the shortest reset word is both NP-hard and coNP-hard [8]. Moreover, it was shown to be
DP-complete [19].

In this paper, rather than looking at the exact version, we consider the problem of finding
short reset words for automata, or to put it differently, the question of approximating the length
of the shortest reset word. For a given n-state synchronizing automaton, we want to find a reset
word which is at most α times longer than the shortest one, where α can be either a constant or a
function of n. There is a simple polynomial time algorithm achieving O(n)-approximation [11].

∗Supported by the NCN grant 2011/01/D/ST6/07164.
†Currently holding a post-doctoral position at Warsaw Center of Mathematics and Computer Science.
‡Part of the work was carried out while the author was a student at Institute of Computer Science, University of

Wroc law, Poland.

1

ar
X

iv
:1

40
8.

52
48

v2
  [

cs
.F

L
] 

 9
 J

un
 2

01
5



1.1 Previous work and our results.

Berlinkov showed that finding an O(1)-approximation is NP-hard by giving a combinatorial reduc-
tion from SAT [6]. Later, Gerbush and Heeringa [11] used the log n−approximation hardness of
SetCover [9] to prove that O(log n)-approximation of the shortest reset word is NP-hard. Finally,
Berlinkov [7] extended their result to hold even for the binary alphabet, and conjectured that a
polynomial time O(log n)-approximation algorithm exists. We refute the conjecture by showing
that, for every constant ε > 0, no polynomial time n1−ε−approximation is possible unless P = NP.
This together with the simple O(n)−approximation algorithm gives a sharp threshold result for
the shortest reset word problem.

The mathematical motivation and its algorithmic version considered in this paper are closely
connected, although not in a very formal sense. All known methods for proving bounds on the
length of the shortest reset word are actually based on explicitly computing a short reset word (in

polynomial time). The best known method constructs a reset word of length n3−n
6 , while the (most

likely) true upper bound is just (n− 1)2, which is smaller by a factor of roughly n
6 . Similarly, the

best known (polynomial time) approximation algorithm achieves O(n)-approximation. Hence it is
reasonable to believe that an o(n)-approximation algorithm could be used to significantly improve
the upper bound on the length of the shortest synchronizing word to o(n3). In this context, our
result suggests that improving the bound on the length of the shortest synchronizing word to
O(n3−ε) requires non-constructive tools.

The main insight is to start with the PCP theorem. We recall the notion of constraint satisfac-
tion problems, and using the result of H̊astad and Zuckerman provide a class of hard instances of
such problems with specific properties tailored to our particular application. Then, we show how
to appropriately translate such a problem into a synchronizing automaton.

1.2 Organization of the paper.

We provide the necessary definitions and the background on finite automata in the preliminaries.
We also introduce the notion of probabilistically checkable proofs and state the PCP theorem, then
define constraint satisfaction problems and their basic parameters.

In the next three sections we gradually move towards the main result. In Section 3 we prove
that (2−ε)-approximation of the shortest reset word is NP-hard. In Section 4 we strengthen this by
showing that, for a small fixed ε > 0, nε−approximation is also NP-hard. Finally, in Section 5, we
provide more background on probabilistically checkable proofs and free bit complexity, and prove
that, for every ε > 0, even n1−ε-approximation is NP-hard. Even though the final result subsumes
Sections 3 and 4, this allows us to gradually introduce the new components.

In the Appendix we sketch how deduce the subconstant error PCP theorem from the classical
version.

2 Preliminaries

2.1 DFA.

A deterministic finite automaton (in short, an automaton) is a triple A = (Q,Σ, δ), where Q is
a nonempty finite set of states, Σ is a nonempty finite alphabet, and δ is a transition function
δ : Q × Σ → Q. In the usual definition one includes additionally a starting state and a set of
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accepting states, which are irrelevant in our setting. Equivalently, we can treat an automaton as
a collection of |Σ| transformations of a finite set Q. We consider words over Σ, which are finite
sequences of letters (elements of Σ). The empty word is denoted by ε, the set of words of length
n by Σn, and the set of all words by Σ∗. For w ∈ Σ∗, |w| stands for the length of w and wi is the
i-th letter of w, for any i ∈ {1, 2, . . . , |w|}.

If A = (Q,Σ, δ) is an automaton, then we naturally extend δ from single letters to whole words
by defining δ(q, ε) = q and δ(q, wa) = δ(δ(q, w), a). For P ⊆ Q we denote by δ(P,w) the image of
P under δ(·, w).

2.2 Synchronizing Automata.

An automaton A = (Q,Σ, δ) is synchronizing if there exists a word w for which |δ(Q,w)| = 1. Such
w is then called a synchronizing (or reset) word and the length of a shortest such word is denoted
by Syn(A). One can check if an automaton is synchronizing in polynomial time by verifying that
every pair of states can be synchronized to a single state.

SynAppx(Σ, α)
Given a synchronizing n-state automaton A over an alphabet Σ, find a word of length at most
α · Syn(A) synchronizing A. Here both α and |Σ| can be a function of n.

We are interested in solving SynAppx(Σ, α) in polynomial time, with α as small as possible.

2.3 O(n)−Approximation.

It is known [11] that for any fixed k the problem SynAppx(Σ, nk ) can be solved in O(nk+1) time (we
assume that Σ is of constant size). The basic idea is that, for a given automaton A = (Q,Σ, δ), we
construct a graph G with the vertex set V = {S ⊆ Q : |S| ≤ k+1} and a directed edge S → δ(S, a)
labeled with a for every S ∈ V and a ∈ Σ. Then for a given S ∈ V the shortest word synchronizing
S to a single state corresponds to the shortest path connecting S to some singleton set {q} ∈ V .
Each such word is of length at most Syn(A). The algorithm works in

⌈
n
k

⌉
phases. We start with

the full set of states to reset R := Q and with an empty word w := ε, and in each phase we will
decrease the size of R by k, while assuring that δ(Q,w) = R. In a single phase we take any subset
S of R of size k + 1 (if possible) and find the shortest word w′ resetting S to a single state (note
that |w′| ≤ Syn(A)). We set w := ww′, R := δ(R,w′) and continue. One can easily see that in the
end we obtain a synchronizing word w of length at most

⌈
n
k

⌉
· Syn(A).

2.4 Cubic Bound for the Černý Conjecture.

Setting k = 1 in the reasoning from Section 2.3, we obtain an upper bound for Syn(A). This follows
from the fact that the graph G has O(n2) vertices and consequently every shortest path has length
O(n2). In the end we have Syn(A) ≤ |w| = (n − 1) · O(n2) = O(n3). In contrast, the famous
Černý conjecture states that for every synchronizing automaton A it holds Syn(A) ≤ (n − 1)2.

Interestingly, the best bound known up to now is n3−n
6 [20], which is also cubic. Any o(n3) upper

bound would be a very interesting result for this problem.
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2.5 Alphabet Size.

In the general case, the size of the alphabet can be arbitrary. Our construction will use Σ = {0, 1, 2},
which can be then reduced to the binary alphabet using the method of Berlinkov [7]. It is based
on encoding every letter in binary and adding some intermediate states. For completeness we state
the appropriate lemma and sketch its proof.

Lemma 2.1 (Lemma 7 of [7]) Suppose SynAppx({0, 1}, nα) can be solved in polynomial time
for some α ∈ (0, 1), then so can be SynAppx(Σ, O(nα)) for any Σ of constant size.

Proof: As shown in Lemma 7 of [7], given an n-state automaton A over an alphabet Σ, one
can efficiently construct an automaton B on ñ := 2|Σ|n states over the binary alphabet, such that
Syn(A)t ≤ Syn(B) ≤ t(1 + Syn(A)), where t = dlog2 |Σ|e+ 1. Then, if we can approximate Syn(B)
within a factor of ñα, we can compute in polynomial time an x such that Syn(B) ≤ x ≤ Syn(B)ñα.
Then t ·Syn(A) ≤ x and x ≤ t(1+Syn(A))ñα ≤ 2tSyn(A)ñα. Therefore, Syn(A) ≤ x

t ≤ 2Syn(A)ñα,
so x

t approximates Syn(A) within a factor of 2ñα = O(nα). �

2.6 PCP Theorems.

We briefly introduce the notion of Probabilistically Checkable Proofs (PCPs). For a comprehensive
treatment refer to [5] or [2].

A polynomial-time probabilistic machine V is called a (p(n), r(n), q(n))-PCP verifier for a lan-
guage L ⊆ {0, 1}∗ if:

• for an input x of length n, given random access to a “proof” π ∈ {0, 1}∗, V uses at most r(n)
random bits, accesses at most q(n) locations of π, and outputs 0 or 1 (meaning “reject” or
“accept” respectively),

• if x ∈ L then there is a proof π, such that Pr[V (x, π) = 1] = 1,

• if x /∈ L then for every proof π, Pr[V (x, π) = 1] ≤ p(n).

We consider only nonadaptive verifiers, meaning that the subsequently accessed locations depend
only on the input and the random bits, and not on the previous answers, hence we can think that
V specifies at most q(n) locations and then receives a sequence of bits encoding all the answers.
p(n) from the above definition is often called the soundness or the error probability. In some cases,
also the proof length is important. For a fixed input x of length n the proof length is the total
number of distinct locations queried by V over all possible 2r(n) runs of V (on different sequences
of r(n) random bits). The proof length is always at most q(n) · 2r(n), and such a bound is typically
sufficient for applications, however in some cases we desire PCP-verifiers with smaller proof length.

The set of languages for which there exists a (p, r, q)-PCP verifier is denoted by PCPp[r, q].

Theorem 2.2 (PCP Theorem [3, 4]) NP = PCP1/2[O(log n), O(1)].
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2.7 Constraint Satisfaction Problems.

We consider Constraint Satisfaction Problems (CSPs) over boolean variables. An instance of a
general CSP over N boolean variables x1, x2, . . . , xN is a collection of M boolean constraints φ =
(C1, C2, . . . , CM ), where a boolean constraint is just a function C : {0, 1}N → {0, 1}. A boolean
assignment v : {0, 1}N → {0, 1} satisfies a constraint C if C(v) = 1, and φ is satisfiable if there
exists an assignment v : {0, 1}N → {0, 1} such that Ci(v) = 1 for all i = 1, 2, . . . ,M . We define
Val(φ) to be the maximum fraction of constraints in φ which can be satisfied by a single assignment.
In particular Val(φ) = 1 iff φ is satisfiable.

We consider computational properties of CSPs. We are mainly interested in CSPs, where every
N -variable constraint has description of size poly(N) (as opposed to the naive representation using
2N bits). A natural class of such CSPs are CNF-formulas, where every constraint is a clause being
a disjunction of N literals, thus described in O(N) space. Another important class are qCSPs,
where every constraint depends only on at most q variables. Such a constraint can be described
using poly(N, 2q) space, which is polynomial whenever q = O(logN). Formally, we say that a
clause C depends on variable xi if there exists an assignment v ∈ {0, 1}N such that C(v) changes
after modifying the value of xi and keeping the remaining variables intact. We define VC to be the
set of all such variables. It is easy to see that φ(C) is determined as soon as we assign the values
to all variables in VC . Finally, the following class will be of interest to us.

Definition 2.3 Let C be an N -variable constraint and let VC be the set of variables on which C
depends. Consider all 2|VC | assignments {0, 1}VC → {0, 1}. If only K of such assignments satisfy
C, we write Fsat(C) ≤ K. Fsat(φ) ≤ K if Fsat(C) ≤ K for every constraint C in φ.

According to the above definition, if φ is a qCSP instance then Fsat(φ) ≤ 2q. A constraint C
such that Fsat(C) ≤ K can be described by its set VC and a list of at most K assignments to the
variables in VC satisfying C. Thus the description is polynomial in N and K. We will consider
CSPs φ with Fsat(φ) ≤ poly(N) and always assume that they are represented as just described.

3 Simple Hardness Result

We start with a simple introductory result, which is that for any fixed constant ε > 0, it is NP-
hard to find for a given n-state synchronizing automaton A a synchronizing word w such that |w| ≤
(2−ε) ·Syn(A). The final goal is to prove a much strong result, but the basic construction presented
in this section is the core idea further developed in the subsequent sections. The construction is not
the simplest possible, nor the most efficient in the number of states of the resulting automaton, but
it provides good intuitions for the further proofs. For a simpler construction in this spirit see [6].

Theorem 3.1 For every constant ε > 0, SynAppx({0, 1, 2}, 2 − ε) is not solvable in polynomial
time, unless P = NP.

3.1 Idea.

Fix ε > 0. We will reduce 3-SAT to our problem, that is, show that an algorithm solving
SynAppx({0, 1, 2}, 2 − ε) can be used to decide satisfiability of 3-CNF formulas. This will stem
from the following reduction. For a given N -variable 3-CNF formula φ consisting of M clauses we
can build in polynomial time a synchronizing automaton Aφ such that:
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1. if φ is satisfiable then Syn(Aφ) ≈ N ,

2. if φ is not satisfiable then Syn(Aφ) ≥ 2N .

This implies Theorem 3.1, since applying an (2 − ε)-approximation algorithm to Aφ allows us to
find out whether φ is satisfiable or not.

3.2 Construction.

Let φ = C1∧C2∧ . . .∧CM be a 3-CNF formula with N variables x1, x2, . . . , xN and M clauses. We
want to build an automaton Aφ = ({0, 1, 2}, Q, δ) with properties as described above. Aφ consists
of M gadgets, one for each clause in φ, and a single sink state s. All letters leave s intact, that is,
δ(s, 0) = δ(s, 1) = δ(s, 2) = s. We describe now a gadget for a fixed clause C.

The gadget built for a clause C can be essentially seen as a tree with 8 leaves. Each leaf
corresponds to one of the assignments to 3 variables appearing in C. First we introduce the
uncompressed version of the gadget. Take all possible 2N assignments and form a full binary tree
of height N . Every edge in the tree is directed from a parent to its child and has a label from {0, 1}.
Every assignment naturally corresponds to a leaf in the tree. We could potentially use such a tree
as the gadget, except that its size is exponential. We will fix this by merging isomorphic subtrees
to obtain a tree of size linear in N .

Let us denote by L0, L1, . . . , LN the vertices at levels 0, 1, . . . , N , respectively, so that L0 = {r},
where r is the root, and LN is the set of leaves.

Suppose that the variable xk does not occur in C. Take any vertex v ∈ Lk−1 and denote the
subtrees rooted at its children by T0 and T1. It is easy to see that T0 and T1 are isomorphic and
can be merged, so that we have two edges outgoing from v, labeled by 0 and 1, respectively, and
both leading to the same vertex v′, which is the root of T0. We continue the merging until there
are no more such vertices, which can be seen as “compressing” the tree.

Let us now formalize the construction. The set of vertices at level j (where 0 ≤ j ≤ N) is
Lj = {qwj : w ∈ {0, 1}d}, where d is the number of variables xi occurring in C with i ≤ j. For

example L0 is simply {qε0}. Given qwj , one should think of w ∈ {0, 1}d as some boolean assignment
to variables xj1 , xj2 , . . . , xjd appearing in C (where j1 ≤ j2 ≤ . . . ≤ jd ≤ j). Let us now describe
the edges. Take any variable xk and a vertex qwk−1 ∈ Lk−1, then:

• if xk occurs in C, then qwk−1 has two distinct children δ(qwk−1, 0) = qw0
k and δ(qwk−1, 1) = qw1

k ,

• if xk does not occur in C, then qwk−1 has one child δ(qwk−1, 0) = δ(qwk−1, 1) = qwk .

We have already defined the edges outgoing from levels 0, 1, . . . , N − 1. This justifies the name
tree-gadget. It remains to define level N , where intuitively the “synchronization” or “rejection”
happens. Let qwN be a vertex on the last level, then:

• if w corresponds to a satisfying assignment of C then δ(qwN , 0) = δ(qwN , 1) = s,

• otherwise δ(qwN , 0) = δ(qwN , 1) = qε0.

The above defined tree-gadget will be further denoted by TC , and its root qε0 will be usually
referred to as r. To complete the definition, we set δ(q, 2) = r for every q ∈ TC . See Figure 1 for
an example.
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Figure 1: Tree-gadget TC constructed for a clause C = x3 ∨ x5 and N = 6.

The automaton Aφ consists of M disjoint tree-gadgets TC1 , TC2 , . . . , TCM
and a single “sink

state” s. Formally, its set of states is Q =
∑M

i=1 TCi ∪ {s} and the transition δ is defined above for
every tree-gadget and the sink state s.

3.3 Properties of Aφ.

The following properties of Aφ can be established.

Proposition 3.2 Consider a tree-gadget TC with root r constructed for a clause C. If C depends
only on variables xj1 , xj2 , xj3 then for any binary assignment v ∈ {0, 1}N we have δ(r, v) = qwN ,
where w = vj1vj2vj3.

Proof: This follows immediately from the construction of TC . We start in state qε0. Whenever
we meet a relevant variable, we concatenate the assigned bit to our “memory”. Thus after reading
the whole assignment, we end up with the 3 relevant bits. �

Proposition 3.2 immediately yields the following.

Corollary 3.3 Consider a tree-gadget TC constructed for a clause C, and let w = vc be a binary
word with |v| = N and c ∈ {0, 1}. If v is an assignment satisfying C then δ(r, w) = s, otherwise
δ(r, w) = r.

Since s is a sink state, synchronizing Aφ is equivalent to pushing all of its states into s. Actually,
it is enough to consider how to synchronize the set R = {r1, r2, . . . , rM}, where ri is the root of the
i-th tree-gadget TCi . This is because δ(TCi , 2) = {ri} for every i, hence one application of letter 2
“synchronizes” every gadget to its root and then it is enough to synchronize the roots.

It is already easy to see that Aφ is always synchronizing, because we can synchronize gadgets
one by one. The following lemma says that in case when φ is satisfiable, we can synchronize Aφ
very quickly.
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Lemma 3.4 If φ is satisfiable and v ∈ {0, 1}N is a satisfying assignment, then the word w = 2v0
synchronizes Aφ. Therefore Syn(Aφ) ≤ N + 2.

Proof: Applying 2 to the states Q of Aφ yields δ(Q, 2) = R ∪ {s}. Then, for every ri ∈ R, since
Ci is satisfiable by v, we have by Corollary 3.3 δ(ri, v0) = s. Hence δ(Q,w) = {s}. �

Our next goal is to show that whenever φ is not satisfiable, Aφ cannot by synchronized quickly.
To this end, we prove the following.

Lemma 3.5 Suppose there exists a binary word of length less than 2N +2 synchronizing R to {s}.
Then φ is satisfiable.

Proof: First note that if for some tree-gadget TC with root r and a word v ∈ {0, 1}N+1 we have
δ(r, v) = r, then for every binary word v′ of length d ≤ N we have δ(r, vv′) ∈ Ld (where Ld is the
d-th level of the tree-gadget), in particular vv′ does not push r to s. This implies that if there is
a word w of length less than 2N + 2, synchronizing Aφ, then there exists a word of length N + 1
synchronizing Aφ, because we can simply truncate it after the (N + 1)-th letter. By Corollary 3.3,
such a synchronizing word of length N + 1 has then a prefix of length N , which is a satisfying
assignment for φ. �

By Lemma 3.5, if there is no short binary word synchronizing R then φ is not satisfiable. Using
letter 2 does not help at all in synchronizing R as shown below.

Lemma 3.6 Suppose there exists a word w ∈ {0, 1, 2}∗ synchronizing R to {s}. Then there is a
word w′ ∈ {0, 1}∗ of length at most |w| synchronizing R to {s}.

Proof: For convenience assume w ends with a 2. Decompose w as follows w = v12v22 . . . vk2,
where v1, v2, . . . , vk ∈ {0, 1}∗. Fix one part of the form vi2. If |vi| ≤ N , then for every r ∈ R, the
empty word ε acts exactly the same on r as vi2. Hence we can replace the part vi2 by ε in w. More
generally if vi is of the form vi = vv′, where v has length being a multiple of N + 1 and |v′| ≤ N ,
then the words vi2 and v are again equivalent with respect to action on R. Thus every part vi2
can be replaced by a shorter binary word yielding a word w′ with the same action on R as w. The
lemma follows. �

We are now ready to prove Theorem 3.1.
Proof: [of Theorem 3.1] Fix ε > 0 and suppose we can solve SynAppx({0, 1, 2}, 2 − ε) in poly-
nomial time. We will show that we can solve 3-SAT in polynomial time. Let φ be any 3-CNF
formula. We construct Aφ and approximate its shortest reset word within a factor of 2 − ε. By
Lemma 3.4 if φ is satisfiable then Syn(Aφ) ≤ N + 2, and if φ is not satisfiable then by Lemma 3.5
and Lemma 3.6 we have Syn(Aφ) ≥ 2N + 2. Hence, (2− ε)-approximation allows us to distinguish
between those two cases in polynomial time. �

4 Hardness with Ratio nε

In this section we show that it is possible to achieve a stronger hardness result using essentially
the same reduction, but from a different problem. The problem we reduce from is CSP with some
specific parameters. Its hardness is proved by suitably amplifying the error probability in the
classical PCP theorem. We provide the details below.
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4.1 PCP, qCSP and Probability Amplification.

We want to obtain a hard boolean satisfaction problem, which allows us to perform more efficient
reductions to SynAppx. The usual source of such problems are PCP theorems, the most basic one
asserting that NP = PCP1/2[O(log n), O(1)]. By sequential repetition we can obtain verifiers erring
with much lower probability, i.e., NP = PCPε[O(log n), O(1)] for any fixed ε ∈ (0, 1). Combining
such a verifier with the construction of Aφ described in the previous section yields that it is NP-hard
to approximate the shortest reset word within a factor of α, for any constant α. However, we aim
for a stronger nε-hardness for some ε > 0. To this end we need to construct PCP verifiers with
subconstant error.

Sequential repetition used to reduce the error probability as explained above has severe lim-
itations. We want the error probability to be ≈ n−1. This requires Θ(log n) repetitions, each
consuming fresh O(log n) random bits, and results in a verifier with the error probability bounded
by n−1 using O(log n) queries. The total number of used random bits is then r = Θ(log2 n), which
is too much, since the size of the automaton polynomially depends on 2r. Fortunately, the amount
of used random bits can be reduced using the standard idea of a random walk on an expander,
resulting in the following theorem. We explain the details and deduce the following theorem in
Appendix A from Theorem 2.2.

Theorem 4.1 (Subconstant Error PCP) NP ⊆ PCP1/n[O(log n), O(log n)].

Now we can use Theorem 4.1 to prove the following.

Theorem 4.2 There exists a polynomial time reduction f , which takes a 3-CNF n-variable formula
φ and returns a qCSP instance f(φ) with q = O(log n), such that:

• if φ is satisfiable then Val(f(φ)) = 1,

• if φ is not satisfiable then Val(f(φ)) ≤ 1
n .

Proof: Take the PCP verifier V for 3-SAT from Theorem 4.1. Assume it uses r = O(log n)
random bits and queries the proof q = O(log n) times, for an n-variable formula φ. One can see
that the proof length ` is polynomial in n (at most q · 2r). There will be ` variables in the resulting
qCSP instance, one for every position in the proof. f(φ) consists of 2r constraints, one for every
possible sequence of random bits of length r. For a fixed sequence of random bits s ∈ {0, 1}r,
we create a constraint Cs. Given an assignment v ∈ {0, 1}l, Cs evaluates to 1 if and only if V
accepts a proof v (note that Cs depends on at most q variables). One can easily see that such a
constraint satisfaction instance is satisfiable for satisfiable φ. If φ is not satisfiable, then for every
proof the probability of acceptance is at most 1

n . It means that for every assignment v ∈ {0, 1}l at
most ( 1

n)−fraction of constraints can be satisfied by v. Finally, the reduction is polynomial time
computable, because there are polynomially many constraints, each depending on q = O(log n)
variables, thus one constraint can be described in O(2q) = poly(n) time. �

4.2 Construction.

Let φ be an N -variables qCSP instance with M clauses and q = O(logN). We want to construct a
synchronizing automaton Aφ, such that the length of its shortest reset word allows us to reconstruct
Val(φ) up to some error.
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The construction of Aφ is exactly the same as the one given for 3-CNF instances in Section 3.
For a q-constraint C we build a tree-gadget TC with 2q leaves, each corresponding to an assignment
to the variables C depends on. As previously, the automaton has one sink state s and M tree-
gadgets, one for every constraint. The construction still takes just polynomial time, the size of the
automaton is polynomial in M,N and 2q = poly(N).

4.3 Properties of Aφ.

Similarly as in the previous sections, the following properties of Aφ can be established.

Lemma 4.3 Let φ be a N -variable qCSP instance. If φ is satisfiable and v ∈ {0, 1}N is a satisfying
assignment, then the word w = 2v0 synchronizes Aφ. Therefore Syn(Aφ) ≤ N + 2.

For the case when φ is not satisfiable we need a stronger statement than the one from Lemma 3.5.

Lemma 4.4 Let φ be a N -variable qCSP instance. If w synchronizes Aφ then |w| ≥ 1
Val(φ)(N + 1).

Proof: We prove a lower bound, thus we can focus on synchronizing a particular set of states.
Let R = {r1, r2, . . . , rM} be the set of roots of all tree-gadgets. Suppose w synchronizes R to {s}.
By Lemma 3.6 we can assume w does not contain any occurrence of 2. Also, we can assume (as in
the proof of Lemma 3.5) that the length of w is a multiple of (N + 1). If it is not then we can cut
out the last |w| mod (N + 1) letters and the resulting word will still synchronize R to {s}.

Decompose w into the following parts: w = v1c1v2c2 . . . vkck, where vi is a binary word of length
N and ci is a single binary character, for i = 1, 2, . . . , k. We claim that for every constraint C in φ,
some assignment vi (for i ∈ {1, 2, . . . , k}) satisfies C. Here a binary string of length N is treated
as a boolean assignment to the N variables. Suppose for the sake of contradiction that there is a
constraint C in φ such that no vi satisfies C. Suppose r is the root of the corresponding tree-gadget
TC . Using Corollary 3.3 we can reason by induction that if w′ is a prefix of w of length d then
δ(r, w′) ∈ Ld mod (N+1). In particular δ(r, w) = r.

Therefore we know that every constraint C in φ is satisfied by some vi. However, one assignment
can satisfy at most Val(φ) constraints, hence k ≥ 1

Val(φ) . The lemma follows. �

Now we are ready to prove the main theorem of this section.

Theorem 4.5 There exists a constant ε > 0, such that SynAppx({0, 1, 2}, nε) is not solvable in
polynomial time, unless P = NP.

Proof: We reduce 3-SAT to SynAppx({0, 1, 2}, nε), for some constant ε > 0. Let φ be an n-
variable 3-CNF formula φ. We use Theorem 4.2 to obtain a qCSP instance f(φ) on N variables and
then convert it into a G-state automaton Af(φ). If φ is satisfiable, then by Lemma 4.3 Syn(Af(φ)) ≤
N + 2. On the other hand, if φ is not satisfiable, then Val(f(φ)) ≤ 1/n, hence by Lemma 4.4

Syn(Af(φ)) ≥ n(N + 1). The ratio between those two quantities is n(N+1)
N+2 = Ω(n).

It remains to show that n = Ω(Gε) for some constant ε > 0. In other words, we need to show that
G is polynomial in n. This holds, because f is a polynomial time reduction, hence N,M = poly(n)
and the size of Af(φ) is polynomial with respect to N,M, 2q, but q = O(logN) = O(log n) so
2q = poly(n). �

Remark 4.6 By keeping track of all the constants, one can obtain nε−hardness for ε ≈ 0.0095,
but this is anyway subsumed by the next section.
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5 Hardness with Ratio n1−ε

In this section we prove the main result of the paper. It is not enough to use the reasoning from
the previous section and simply optimize the constants. In fact, the strongest hardness result that
we can possibly obtain by applying Theorem 4.1 is nε for some tiny constant ε > 0. This stems
from the fact that in our reduction we require the number of queries q to be logarithmic in the size
of the instance. If this is not the case, then the reduction takes superpolynomial time. However,
the crucial observation is that the reduction can be modified so that we do not need the query
complexity of the verifier to be logarithmic. It suffices that the free bit complexity (defined below)
is logarithmic.

Theorem 5.1 For every constant ε > 0, SynAppx({0, 1, 2}, n1−ε) is not solvable in polynomial
time, unless P = NP.

5.1 Free Bit Complexity and Stronger PCP Theorems.

Let us first briefly introduce the notion of free bit complexity. For a comprehensive discussion
see [5].

Definition 5.2 Consider a PCP verifier V using r random bits on any input x. For a fixed input
x and a sequence of random bits R ∈ {0, 1}r, define G(x,R) to be the set of sequences of answers
to the questions asked by V , which result in an acceptance. We say that V has free bit complexity
f if |G(x,R)| ≤ 2f and there is a polynomial time algorithm which computes G(x,R) for given x
and R.

The set of languages for which there exists a verifier with soundness p, free bit complexity f ,
and proof length ` is denoted by FPCPp[r, f, `].

H̊astad in his seminal work [13] proved that approximating the maximum clique within the factor
n1−ε is hard, for every ε > 0. To obtain this result he constructs PCP verifiers with arbitrarily
small amortized free bit complexity1. We state his result in a more recent and stronger version [14]:

Theorem 5.3 For every ε > 0, there exist constants t ∈ N and α, β > 0 such that NP ⊆
FPCP2−t [β log n, ε · t, nα].

In the next step we need to amplify the error probability, as we did in the previous section. It
turns out that the amplification using expander walks is too weak for our purpose. H̊astad [13],
following the approach of Bellare et al. [5], uses sequential repetition together with a technique to
reduce the demand for random bits. (See Proposition 11.2, Corollary 11.3 in [5].) Unfortunately,
this procedure involves randomization, so his MaxClique hardness result holds under the assumption
that ZPP 6= NP.

In his breakthrough paper Zuckerman [24] showed how to derandomize H̊astad’s MaxClique
hardness result by giving a deterministic method for amplifying the error probability of PCP
verifiers. He constructs very efficient randomness extractors, which then by known reductions
allow to perform error amplification. One can conclude the following result from Theorem 5.3 and
his result (see also Lemma 6.4 and Theorem 1.1 in [24]).

1Amortized free bit complexity is a parameter of a PCP verifier which essentially corresponds to the ratio between
the free bit complexity and the logarithm of error probability.
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Theorem 5.4 For every ε > 0, there exist c, α > 0 such that for t = c log n it holds that NP ⊆
FPCP2−t [(1 + ε)t, εt, nα].

Based on the above theorem, we can prove the following very strong analogue of Theorem 4.2.

Theorem 5.5 For every ε > 0, there exists a polynomial time reduction f , which takes an n-
variable 3-CNF formula φ and returns an N -variable CSP instance f(φ) with M constraints, such
that:

• N ≤M ε,

• if φ is satisfiable then Val(f(φ)) = 1,

• if φ is not satisfiable then Val(f(φ)) ≤ 1
M1−ε ,

• Fsat(f(φ)) ≤M ε.

Proof: Fix an ε > 0. We use Theorem 5.4 to conclude NP ⊆ FPCP2−t [(1 + ε)t, εt, nα] for some
α, c > 0 and t = c log n. As a preliminary step, we make the proof length negligible (because α can
be arbitrarily big) using the simple sequential repetition. By repeating the verification procedure k
times we obtain NP ⊆ FPCP2−kt [(1+ε)kt, εkt, nα]. We take such verifier V for the 3-SAT language
with k chosen large enough to make sure that α < εkc.

Consider any 3-CNF formula φ. For convenience denote r := (1 + ε)kt = (1 + ε)kc log n.
We construct f(φ) as in the proof of Theorem 4.2. The number of variables is N = nα. For
every possible sequence s ∈ {0, 1}r of r random bits we define a constraint Cs, such that given an
assignment v ∈ {0, 1}N , Cs evaluates to 1 if and only if V accepts the proof v.

We have defined f(φ), now we prove that it satisfies all the claimed properties. N = nα,
M = n(1+ε)kc and α

kc < ε, hence N ≤M ε. If φ is satisfiable then there is a proof which is accepted
for all possible sequences of random bits, hence all the constraints can be satisfied simultaneously,
so Val(f(φ)) = 1. Suppose φ is not satisfiable, then the probability of accepting a wrong proof is at
most 2−kt = n−kc = M−1/(1+ε) ≤ 1

M1−ε . Finally, because of the bound on the free bit complexity
of V , for every sequence of random bits s ∈ {0, 1}r there are at most 2εkt = nεkc ≤ M ε sequences
of bits encoding the answers to the queries, which result in an acceptance. By the definition of
free bit complexity, those sequences can be efficiently listed, hence the CSP instance f(φ) can be
constructed in polynomial time. �

5.2 Construction.

Let φ be an N -variable CSP instance with M constraints such that Fsat(φ) ≤ K (for a parameter
K to be chosen later). We want to construct an automaton Âφ of size polynomial in K and the

size of φ such that Syn(Âφ) ≈ N
Val(φ) .

Using Aφ as in the previous sections gives an automaton of superpolynomial size, so we need to
tweak it. Take any constraint C and suppose it depends on q variables. Consider the tree-gadget
TC built for C. We cannot assume that q = O(log n) as in the Section 4. In consequence, TC can
be of exponential size, because the only possible bound on its number of leaves is 2q. However, we
have a bound K on the number of essentially satisfying assignments. We will modify the definition
of TC , so that its size depends polynomially on K rather than 2q.
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Figure 2: Compressing the tree. The grey and black leaves correspond to non-satisfying and
satisfying assignments, respectively.

Observe that in the original construction, at most K out of 2q leaves of TC correspond to
satisfying assignments (think of K much smaller than 2q). Imagine for a moment a subtree of TC
corresponding to the at most K satisfying assignments. The size of such subtree is at most NK,
but it is not yet a good candidate for our gadget, because some transitions are not well defined.
However, this is not difficult to fix to obtain an equivalent compressed tree-gadget T̂C as follows.
Take a variable xk (such that C depends on xk) and a node qwk with w = vc (then basically c ∈ {0, 1}
corresponds to the boolean value assigned to xk). Suppose that every leaf in the subtree rooted
at qwk corresponds to a non-satisfying assignment. Suppose further that there is some satisfying
assignment in the subtree qvk−1 (then the leaf with a satisfying assignment must necessarily lie in
the subtree rooted at qvc̄k ). In such a case there is nothing interesting happening in the subtree
rooted at qwk , it has height h = N − k and all of its leaves have two edges (labeled 0 and 1) going
back to the root r of TC . We remove this subtree rooted at qwk and instead attach a path of length
h to qwk , we also add transitions from the endpoint of the path to r.

For an illustration of the compression procedure refer to Figure 2. The leftmost vertex in the
figure is qvk−1, his two children are qv0

k and qv1
k , the subtree rooted at qv0

k gets compressed. In a
tree-gadget the black leaf in the picture has transitions (labeled by 0 and 1) to the sink vertex s
and all the grey vertices have transitions back to the root r. We obtain the compressed tree-gadget
T̂C by applying the above transformation to every relevant node qwk .

The automaton Âφ is built analogously to Aφ, with the crucial difference that we use T̂C instead

of TC . One can see that T̂C can be constructed in time polynomial in its size by proceeding from
the root down to the leaves. Furthermore, the resulting automaton Âφ is small.

Lemma 5.6 Suppose φ is an N -variable CSP instance with M constraints and Fsat(φ) ≤ K. Then
the size of Âφ is O(MN2K).

Proof: The automaton consists of M gadgets and 1 additional state s. It suffices to prove that
every gadget has size O(N2K). Fix any constraint C in φ and consider the compressed tree-gadget
T̂C . Suppose we remove from T̂C all leaves corresponding to non-satisfying assignments together
with the paths created in the compression procedure. What remains is a subtree T0 of height N
with at most K leaves, each corresponding to the satisfying assignments of C. The size of T0 is
O(NK). To get T̂C back from T0, we need to attach paths (of length at most N) to some vertices
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of T0 (at most one path per vertex). We add at most O(NK) paths consisting of at most N nodes
each, hence the total size of T̂C is O(N2K). �

5.3 Properties of Âφ.

The lemma below summarizes the properties of Âφ. Its proof is very similar to the proofs of the
lemmas summarizing the properties of Aφ and hence skipped.

Lemma 5.7 Let φ be an N -variable CSP instance with M constraints and Fsat(φ) ≤ K. Then
Âφ is a synchronizing automaton of size O(MN2K), which can be constructed in polynomial time.

Furthermore, if φ is satisfiable then Syn(Âφ) ≤ N + 2 and otherwise Syn(Âφ) ≥ N+1
Val(φ) .

Proof: [of Theorem 5.1] Fix any ε > 0. We reduce 3-SAT to SynAppx({0, 1, 2}, nε). Let φ be
an n-variable 3-CNF formula. Then by Theorem 5.5 we can construct an N -variable CSP instance
f(φ) with M = poly(n) constraints and Fsat(f(φ)) ≤ K = M ε, where N ≤M ε. We know that if φ
is satisfiable then f(φ) is satisfiable as well and if φ is not satisfiable then Val(f(φ)) ≤ 1

M1−ε . Then

by Theorem 5.7 we can construct Âf(φ), which is an automaton of size O(MKN2) = O(M1+3ε).

If φ is satisfiable, Syn(Âf(φ)) ≤ N + 2 and if φ is not satisfiable then Syn(Âf(φ)) ≥ N+1
Val(f(φ)) . The

ratio of those two bounds is:

N + 1

(N + 2)Val(f(φ))
= Θ

(
1

Val(f(φ))

)
= Θ

(
M1−ε)

The size of the automaton Âf(φ) is G = O(M1+3ε), so the above ratio can be related to the size of

the automaton as Ω
(
G

1−ε
1+3ε

)
= Ω

(
G1−4ε

)
. Hence assuming P 6= NP, approximating the shortest

reset word within ratio G1−4ε in polynomial time is not possible. �
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A Expanders and Error Reduction

In this section we show how to deduce a subconstant error PCP theorem from the standard version,
i.e., Theorem 2.2. Thus, we prove the following.

Theorem 4.1 (Subconstant Error PCP) NP ⊆ PCP1/n[O(log n), O(log n)].

To this end we need a method of reusing random bits when repeating a random experiment
introduced by Impagliazzo and Zuckerman [15]. The idea is that, instead of generating fresh random
bits for each repetitions of the experiment, we use a random walk on an expander to construct a
pseudorandom sequence of bits, which is then used in subsequent repetitions. Because of expanding
properties of such graphs, which we summarize below, this is enough to significantly decrease the
error probability. A good reference for expander graphs and pseudorandom constructions is [2].
For completeness we include all essential definitions, but we refer to the book for the proofs.

WheneverG appears in the following text, it denotes an undirected d-regular graph on n vertices,
possibly containing loops and parallel edges.

Definition A.1 (λ(G)) Let AG be the random walk matrix of G (that is, AG is the adjacency
matrix of G with each entry scaled by 1

d). Let λ1, λ2, . . . , λn ∈ [−1, 1] be the eigenvalues of AG,
sorted so that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. We define λ(G) to be |λ2|.

Definition A.2 ((n, d, λ)-expander) If G is an n-vertex d-regular multigraph with λ(G) ≤ λ < 1,
then we say that G is an (n, d, λ)-graph.

It turns out that constructing a family of (n, d, λ)-graphs for some fixed λ > 0 is a pretty simple
task, since a random d-regular graph is an expander with high confidence. However, a true challenge
is to construct expanders explicitly and without any use of random bits. A beautiful example of
such a construction was given by Margulis [18], its analysis was later improved and simplified first
by Gabber and Galil [10], and then by Jimbo and Maruoka [16], to yield the following.

Theorem A.3 Let Gn2 be the 8-regular graph on vertex set Z2
n, with edges defined as follows: (x, y)

has neighbors (x±2y, y), (x± (2y+1), y), (x, y±2x), (x, y± (2x+1)) (addition is performed modulo

n). Then Gn2 is an (n2, 8, 5
√

2
8 )-graph.

The following theorem can be now used to reduce the error probability.

Theorem A.4 (Expander walks, 21.12 in [2]) Let G be an (n, d, λ)-graph and let B ⊆ [n] be
a set satisfying |B| ≤ βn for some β ∈ (0, 1). Let X1, X2, . . . , Xk be random variables denoting
a (k − 1)-step random walk in G, meaning that X1 is chosen uniformly from [n] and Xi+1 is a
uniform random neighbor of Xi. Then P (X1 ∈ B ∧X2 ∈ B ∧ . . .∧Xk ∈ B) ≤ ((1− λ)

√
β + λ)k−1.
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Theorem 4.1 (Subconstant Error PCP) NP ⊆ PCP1/n[O(log n), O(log n)].

Proof: Take any language L ∈ NP, we would like to show that there exists a polynomial
time ( 1

n , O(log n), O(log n))−verifier for L. By the basic Theorem 2.2 we know that there is a
(1

2 , O(log n), O(1))−verifier for L. Suppose it consumes at most r log n random bits. We intend to
define another verifier V ′, which makes more queries to the proof and needs more random bits, but
its failure probability is at most 1

n . Running V independently Ω(log n) times and checking if there
was at least one reject is not acceptable, as it increases the number of used random bits to Ω(log2 n)
bits. For this reason, instead of making Ω(log n) fully independent runs, we save some random bits
using expanders. Let k = c log n be the number of repetitions. Fix an input x of length n. We

construct an (O(2r logn), 8, λ)-graph with λ = 5
√

2
8 from Theorem A.3, select a random starting

vertex X1 there, and choose a random walk of length k − 1 starting from X1 obtaining vertices
X2, X3, . . . , Xk. Now run V k times using Xi as the required stream of r log n bits for the i-th run.
Answer 1 if and only if all runs returned 1. To obtain the sequence X1, . . . , Xk we use r random bits
for X1 and (k − 1) · 3 bits for X2, . . . Xk (we need 3 bits to pick one neighbor out of five), O(log n)
random bits in total. Let us now calculate the error probability. According to Theorem A.4 (where
we choose B to be the set of length−(r log n) bitstrings which cause a false positive for x), it is at
most: (

(1− λ)

√
1

2
+ λ

)k−1

=

((
1− 5

√
2

8

)√
1

2
+

5
√

2

8

)k−1

< (0.97)k

Which is less then 1
n when we take c = 1

log 0.97 . To finish, let us note that the query complexity of

V ′ is k ·O(1) = O(log n) as claimed. �
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