
ar
X

iv
:1

50
2.

05
14

7v
2

 [
cs

.L
O

]
 1

 M
ay

 2
01

5

Finitary semantics of linear logic

and higher-order model-checking

Charles Grellois and Paul-André Melliès

Laboratoire PPS, Université Paris Diderot, Sorbonne Paris Cité
{grellois,mellies}@pps.univ-paris-diderot.fr

Abstract. In this paper, we explain how the connection between higher-
order model-checking and linear logic recently exhibited by the authors
leads to a new and conceptually enlightening proof of the selection prob-
lem originally established by Carayol and Serre using collapsible push-
down automata. The main idea is to start from an infinitary and colored
relational semantics of the λY -calculus already formulated, and to re-
place it by its finitary counterpart based on finite prime-algebraic lattices.
Given a higher-order recursion scheme G, the finiteness of its interpreta-
tion in the model enables us to associate to any MSO formula ϕ a new
higher-order recursion scheme Gϕ resolving the selection problem.

Keywords: Higher-order model-checking, linear logic, selection prob-
lem, finitary semantics, parity games.

1 Introduction

Higher-order recursion schemes (HORS) provide an abstract model of compu-
tation which appears to be perfectly adapted for the task of model-checking
functional programs. Indeed, Knapik, Niwinski and Urzyczyn established in [7]
that for n ≥ 1, the trees generated by order-n safe recursion schemes are exactly
those that are generated by order-n pushdown automata, and further, that they
have decidable MSO theories. The MSO-decidability result for safe HORS was
then extended a few years later to all HORS by Ong [9]. However, the MSO-
decidability theorem established by the four authors focuses on the decidability
of a “local” model-checking problem:

Suppose given a HORS G which generates an infinite tree 〈G〉. Is it
possible to decide for every MSO-formula ϕ whether the formula is valid
at the root of the infinite tree 〈G〉.

The MSO-decidability result means that the answer to this question is positive.
A more difficult “global” model-checking problem called the selection problem

in literature is to understand whether:

Given a HORS G and a MSO-formula ∃X ϕ[X] holding at the root of
the infinite tree 〈G〉, is it possible to compute a HORS Gϕ generating a
marked version 〈Gϕ〉 of the original tree 〈G〉, and such that the set of its
marked nodes is a witness U satisfying the MSO-formula ϕ[X].

http://arxiv.org/abs/1502.05147v2

2 Charles Grellois, Paul-André Melliès

Quite strikingly, Carayol and Serre established in a recent paper [2] that the
answer to this question is positive. They also noticed that the selection problem
follows from a purely automata-theoretic property of HORS, which was estab-
lished by Haddad in his PhD thesis [6]:

Given a HORS G and an alternating parity tree automaton A with the
same ranked alphabet, for every state q of the automaton A accepted
by the tree 〈G〉, it is possible to compute a HORS Gq generating an
accepting run-tree 〈Gq〉 of the automaton A on the tree 〈G〉 with initial
state q.

Of course, the run-tree 〈Gq〉 generated by the HORS Gq provides a witness of the
fact that the state q is accepting. But not only that: thanks to the equivalence
between MSO-formulas and alternating parity tree automata, the fact that the
HORS Gq selects a specific run-tree 〈Gq〉 among all the run-trees with initial
state q provides a solution to the “selection problem”. The idea is simply to
extract from the run-tree 〈Gq〉 a specific witnessX for the MSO-formula ∃X ϕ[X]
satisfied by the tree 〈G〉.

In this article, we will show how to establish the existence of such a “higher-
order recursive” run-tree 〈Gq〉 from purely denotational arguments, based on a
new and fundamental connection with linear logic developed by the authors in
a series of recent papers [4,5]. In these papers, an infinitary and colored vari-
ant of the traditional semantics of linear logic is constructed, see [4] for details,
and shown to compute in a compositional way the set of accepting states of
an alternating parity tree automaton, see [5] for details. Despite the concep-
tual clarification this approach provides to higher-order model-checking, this
semantic account does not lead to any decidability result. The reason is that the
relational semantics of linear logic is a quantitative semantics, where finite types
are interpreted as infinitary objects. In order to establish decidability results,
one thus needs to shift to qualititative semantics where the interpretation of fi-
nite types remains finite. This is precisely the purpose of the present paper: by
shifting from the relational semantics developed in [4,5] to the qualitative seman-
tics of linear logic provided by prime-algebraic lattices, we are able to establish
advanced decidability results like the theorem just mentioned by Carayol, Had-
dad and Serre. This is the first time, to our knowledge, that such a strong and
natural connection between model-checking and the most contemporary tools of
semantics (linear logic, relational semantics) is exhibited.

Plan of the paper. We start by recalling in §2 the notion of higher-order
recursion scheme and its correspondence with the λY -calculus. We then recall
in §3 the notion of alternating parity tree automaton. In §4, we introduce a
finitary colored semantics of the λY -calculus, which we use in §5 to interpret λ-
terms. We define a parameterized fixpoint in this model in §6, obtaining colored
semantics of the λY -calculus. In §7, we use the finiteness of the model to prove
the decidability of the local model-checking and of the selection problem. We
finally conclude in §8.

Finitary semantics of linear logic and higher-order model-checking 3

2 Higher-order recursion schemes and the λY -calculus

Higher-order recursion schemes. The set of simple types of the λ-calculus is
generated by the grammar σ, τ ::= o | σ → τ . We write t :: σ when a (possibly
open) λ-term t has simple type σ. Given a ranked alphabet Σ, a finite set of
variables V , a finite set of simply-typed non-terminals N , and a distinguished
non-terminal S ∈ N , a higher-order recursion scheme (HORS) is the data, for
every non-terminal F ∈ N , of a closed simply-typed λ-term

R(F) = λx1. . . . λxn. t (1)

of same type as the non-terminal F ∈ N , with constants in Σ, where xi ∈ V and
t :: o is a λ-term of ground type without λ-abstractions. Note that an element
a ∈ Σ of arity n is represented as a constant of type o→ · · · → o→ o with same
arity n. For each non-terminal F ∈ N , the data provided by R(F) is equivalently
represented as a rewrite rule

F t1 . . . tn →G t[xi ← ti].

Every higher-order recursion scheme G generates a potentially infinite Σ-labelled
ranked tree noted 〈G〉 and called its value tree. This tree is simply obtained by
applying an infinite number of times and in a fair way the rewrite rules →G of
the HORS G starting from the start symbol S ∈ N .

Example 1. Given Σ = { if : 2, data : 1, Nil : 0 }, consider the HORS G
{

S = L Nil

L = λx. if x (L (data x))
(2)

which abstracts a simple program whose function Main (abbreviated as S) calls
a function Listen (denoted L), starting from an empty list. Depending on a
side condition unknown to the user or abstracted by the model-checker, Listen
either returns a stack of data, or receives a new element and pushes it on the
current stack. The value tree 〈G〉 of this scheme, depicted in Figure 1, provides
an abstraction of the set of potential executions of the program. Note that even
though the program Main is very simple, its execution tree 〈G〉 is not regular,
since it admits an infinite number of different subtrees. This justifies from a
practical point of view to study how traditional model-checking techniques could
be adapted to the HORS G.

λ-calculus with recursion. It is well-known among the specialists of the λ-
calculus that higher-order recursion schemes can be nicely represented as simply-
typed λ-terms in a λ-calculus extended with a fixpoint operator Y . The resulting
λY -calculus is thus defined by adding to the simply-typed λ-calculus, a fixpoint
operator Yσ of type σ → σ together with a rewriting rule

Yσ M →δ M (Yσ M)

for every simple type σ.

Proposition 1. For every HORS G of ranked alphabet Σ, there exists a closed

λY -term t :: o with constants in Σ, such that the λY -term t converges to the

4 Charles Grellois, Paul-André Melliès

if

if

if

...data

data

Nil

data

Nil

Nil

Fig. 1: An order-1 value tree.

(if, q0)

(if, q1)

(if, q0)

...

(data, q1)

...

(if, q0)

(if, q1)

...

(if, q0)

...

Fig. 2: An APT run-tree.

value-tree 〈G〉 in the traditional sense of Böhm trees in the λY -calculus. Con-

versely, there exists for every closed λY -term t :: o with constants in Σ a HORS

G of same ranked alphabet Σ, such that the λY -term t converges to 〈G〉.

An important benefit of this equivalence property is that the λY -calculus is very
well understood from the semantic point of view, and thus somewhat simpler to
study mathematically speaking than higher-order recursion schemes.

3 MSO and alternating parity tree automata

As explained in the introduction, there is a beautiful correspondence between
the formulas of monadic second-order logic (MSO) and alternating parity tree
automata, which we briefly recall here for the sake of completeness.

Proposition 2. For every ranked alphabet Σ, one has the following equivalence:

– Every MSO formula ϕ over Σ-labelled trees can be translated to an APT

Aϕ of same ranked alphabet Σ, such that ϕ holds at the root of a Σ-labelled

tree T iff Aϕ has an accepting run-tree over T from its initial state q0.

– Conversely, every APT A of ranked alphabet Σ can be translated to a MSO

formula ϕA of same ranked alphabet, such that for every Σ-labelled tree T ,

A has an accepting run-tree over T from its initial state q0 if and only if the

MSO-formula ϕA holds at the root of T .

Recall that alternating parity tree automata (APT) are non-deterministic top-
down tree automata with the additional ability to duplicate or to erase subtrees.
Typical transitions are thus of the form

δ(q0, if) = (2, q0) ∧ (2, q1) δ(q1, if) = (1, q1) ∧ (2, q0) (3)

When a node labelled with if is visited in state q0, its left subtree is “dropped” or
“erased” while the right one is “explored twice” or “duplicated”, with q0 as initial
state in one copy, and q1 as initial state in the other copy. The second transition

Finitary semantics of linear logic and higher-order model-checking 5

does not use alternation, and would be usually written as (q1, if, q1, q0) ∈ ∆

in a nondeterministic tree automaton. Run-trees of an alternating parity tree
automaton are unranked, and their shape may differ a lot from the original tree.
The effect of the transitions (3) over the tree of Figure 1 is depicted in Figure
2. In general, a transition is of the shape

δ(q, a) =
∨

i∈I

∧

j∈Ji

(di,j , qi,j) =
∨

i∈I

ϕi (4)

where the union stands for non-determinism, and the conjunction for alternation:
after i is chosen, for every j ∈ Ji, the automaton runs with state qi,j over a copy
of its subtree in direction di,j . For every i, we say that ϕi is a conjunctive clause

of the formula δ(q, a).
Seen from an automata-theoretic point of view, monadic second-order (MSO)

logic is equivalent to the modal µ-calculus. As such it enables one to express
safety properties (typically, that a given state “error” is never encountered) as
well as liveness properties (typically, that a given state “happy” is visited in-
finitely often). The safety properties are inductive: it is enough to check that
no finite approximation of a computation enters an error state, while the live-
ness properties are coinductive, since they specify infinitary behaviors. More-
over, MSO logic and the modal µ-calculus are sufficiently expressive to alternate
these inductive and coinductive specifications. This alternation is handled by
extending APT with a parity condition over their run-trees. Alternating parity
automata are thus equipped with a coloring function Ω : Q → N, which as-
sociates a color to each state q of the automaton. This coloring of the states
q ∈ Q of the automaton induces a coloring of the nodes of its run-trees, in the
expected way. Following the principles of parity games, an infinite branch of such
a run-tree is declared winning when the greatest color occurring infinitely often
in it is even. A run-tree of the automaton is then accepted precisely when all its
infinite branches are winning. In the sequel, we find convenient to consider the
set Col = Ω(Q) ⊎ {ǫ} of colors appearing in the alternating parity automaton
A under study. The extra color ǫ is added as a neutral color, in order to reflect
the comonadic nature of colors, as we will explain in the later §4. The following
definition will also be useful in the sequel, in order to connect the alternating
parity automaton A and the finitary semantics of linear logic:

Definition 1. Given a state q ∈ Q and a n-ary constructor a ∈ Σ, we say that

a n-tuple α ∈ (Pfin(Col ×Q))n satisfies the formula δ(q, a) when α is of the

form

α = ({ (c1i1 , q1i1) | i1 ∈ I1} , . . . , { (cnin , qnin) | in ∈ In})

and there exists a n-tuple of subsets J1 ⊆ I1, . . . , Jn ⊆ In such that
n
∧

k=1

∧

jk∈Jk

(k, qkjk) (5)

defines a conjunctive clause of the formula δ(q, a), and such that moreover

∀k ∈ {1, . . . , n} ∀j ∈ Jk ckj = Ω(qkj).

6 Charles Grellois, Paul-André Melliès

In other words, α is a n-tuple of sets {(c1ik , q1ik) | ik ∈ Ik} of states annotated
with colors, each of them corresponding to one of the n subtrees below the sym-
bol a. Moreover, each such set should contain a subset {(Ω(q1ik), q1ik) | ik ∈ Jk}
of appropriately colored states, such that (5) defines a conjunctive clause of the
formula δ(q, a). The general idea is that the n-tuple is allowed to contain more
colored states than what is stricly required for the transition δ(q, a) to be per-
formed by the alternating parity automaton A. This definition will be crucial
in the construction of the finitary semantics which, we will see, is based on
downward-closed sets and subtyping.

4 The Scott semantics of linear logic

Here, we adapt the infinitary and colored relational semantics of linear logic
formulated in [4,5] to the finitary Scott semantics, where formulas of linear logic
are interpreted as partial orders. The semantics of linear logic is qualitative in
the technical sense that its exponential modality ! is interpreted using the finite
powerset construction, which transports finite sets into finite sets, in contrast
to the finite multiset construction used in the traditional and quantitative rela-
tional semantics. The terminology of Scott semantics comes from the fact that
in the derived semantics of the simply-typed λ-calculus, every type is inter-
preted as a prime algebraic complete lattice, and every simply-typed λ-term as
a Scott-continuous function. So, let ScottL denote the category with preorders
A = (A, ≤A) as objects and downward-closed binary relations R ⊆ A × B

as morphisms (A, ≤A) → (B, ≤B). Here, by a downward-closed relation, we
mean a binary relation R such that for all a, a′ ∈ A and b, b′ ∈ B, one has :

(a, b) ∈ R and a ≤A a′ and b′ ≤B b ⇒ (a′, b′) ∈ R.

The binary relation R is thus downward closed in the partial order (A,≤A)
op ×

(B,≤B) interpreting the formula (A,≤A) ⊸ (B,≤B) in the Scott semantics. The
intuition guiding this property is that if a binary relation R interpreting a proof
of linear logic can produce an output b from an input a, then the same binary
relation can also produce a less informative output b′ from a more informative
input a′. It is well-known in the literature on linear logic that this “saturation
property” is essential in order to obtain a relational semantics of linear logic
with a qualitative (that is, based on finite sets instead of finite multisets) in-
terpretation of the exponential modality. This remark is generally attributed
to Ehrhard, see [8] for details. The composition in ScottL is relational, since
relational composition preserves the property of being downward-closed. The
identity morphism over (A, ≤A) is

idA = { (a′, a) | a ≤A a′ }

ScottL is a compact closed category with products, with

(A, ≤A) ⊗ (B, ≤B) = (A×B, ≤A × ≤B) 1 = ({⋆}, =)
(A, ≤A) & (B, ≤B) = (A ⊎B, ≤A ⊎ ≤B) ⊤ = (∅, ∅)

(A, ≤A)⊥ = (A, ≥A)

Finitary semantics of linear logic and higher-order model-checking 7

The exponential modality

! : A 7→ !A : ScottL −→ ScottL

is then defined by associating to the ordered set (A,≤A) the set Pfin(A) of finite
subsets of A, where two finite subsets u and v are ordered in the following way:

u ≤!A v ⇐⇒ ∀a ∈ u, ∃b ∈ v, u ≤A v.

Recall that the endofunctor ! is transports every morphism R : A → B of the
category ScottL to the following morphism:

!R = { (u, v) ∈ !A× !B | ∀ b ∈ v ∃ a ∈ u (a, b) ∈ R } : !A→ !B

The endofunctor ! is in fact a comonad and defines a Seely category, and thus
a model of full propositional linear logic, based on the category ScottL, see for
instance [11].

The coloring comonad. As we have shown in [4,5], the treatment of colors by
alternating parity automata follows essentially the same comonadic principles
as the treatment of copies in linear logic. This connection between higher-order
model checking and linear logic leads to a coloring comonad � on the relational
semantics of linear logic, which we adapt here to the qualitative Scott semantics.
To that purpose, we fix a finite set of colors Col containing a neutral element ǫ,
and consider the coloring function Q → Col which associates a color to ev-
ery state of a parity tree automaton A, see the previous discussion in §3. The
modality � is then defined in the following way for an ordered set (A,≤A) and
a morphism R : (A,≤A)→ (B,≤B):

� (A, ≤A) = (A, ≤A)& · · · &(A, ≤A)
∼= ({(i, a) | i ∈ Col, a ∈ A} , ≤�A)

(i, a) �R (j, b) iff i = j and aR b

where (i, a) ≤�A (j, a′) iff i = j and a ≤A a′. The comonadic structure of � is
provided by the following structural morphisms

digA = {((max(c1, c2), a), (c1, (c2, a
′))) | a′ ≤A a} : �A→ ��A

derA = {((ǫ, a), a′) | a′ ≤A a} : �A→ A

mA,B = {(((i, a), (i, b)), ((i, (a′, b′)))) | a′ ≤A a, b′ ≤B b} : �A⊗ �B → �(A⊗B)
m1 = { (⋆, (c, ⋆)) | c ∈ Col } : 1→ � 1

As we did in the case of the relational semantics [4,5], we define a distributive
law λ : ! ◦ � ⇒ � ◦ ! between the comonads ! and � defined as the natural
transformation:

λA =
{({(

cj , a
′
j

)}

, (c, {ai})
)

| ∀ i ∃ j c = cj and ai ≤A a′j
}

: !�A→ � !A

The existence of such a distributive law λ enables us to equip the composite
functor = ! ◦ � with a comonadic structure. It appears moreover that this
colored exponential functor satisfies the axioms of a Seely category, and thus
defines a model of full propositional linear logic. We denote by ScottL its
Kleisli category.

8 Charles Grellois, Paul-André Melliès

5 A finitary interpretation of the simply-typed λ-calculus

In order to simplify the discussion, we suppose given an alternating parity tree A
over a signature Σ, with set of states Q and with transition function δ. As a
Kleisli category associated to a model of linear logic, the category ScottL is
cartesian closed and thus a model of the simply-typed λ-calculus. The simple
types are interpreted inductively as

[[σ → τ]] = [[σ]] ⊸ [[τ]] and [[o]] = ⊥⊥ = (Q, =)

The interpretation of the simply-typed λ-terms is standard, except for the in-
terpretation of the elements of the ranked alphabet Σ, seen as here constants of
the simply-typed λ-calculus, which are interpreted as follows:

[[a]]A = { (α, q) | q ∈ Q and α satisfies the formula δ(q, a) }

As explained in [5] in the case of the quantitative relational semantics of linear
logic, this interpretation of the elements of Σ corresponds to a Church encod-
ing of the alternating parity automaton A, encoded in the present case in the
qualitative Scott semantics of linear logic.

Example 2. Recall the two transitions (3) introduced as running example in §3:

δ(q0, if) = (2, q0) ∧ (2, q1) δ(q1, if) = (1, q1) ∧ (2, q0)

Setting ci = Ω(qi), these transitions imply that

(u1, u2, q0) ∈ [[if]]A and (v1, v2, q1) ∈ [[if]]A

for every finite sets u1, u2, v1, v2 ∈ ⊥⊥ = Pfin (Col ×Q) satisfying moreover
that {(c0, q0), (c1, q1)} ⊆ u2, that (c1, q1) ∈ v1 and that (c0, q0) ∈ v2.

Using these interpretations in ScottL of the elements of the ranked alphabet Σ,
we construct the interpretation

[[Γ ⊢ t :: τ]]A ⊆ ([[σ1]]⊗ · · · ⊗ [[σn]]) ⊸ [[τ]]

of any λ-term t of type τ in a context of typed variables Γ , with constants in
the ranked alphabet Σ. An alternative way to describe this interpretation is to
express it as an intersection type system with subtyping, in the style of Coppo,
Dezani, Honsell and Longo [3] and more recently Terui [11] in the framework of
linear logic. In this formulation, sequents are of the following form

Γ = x1 : u1 :: σ1, . . . , xn : un :: σn ⊢ t : α :: τ

where ui ∈ [[σi]] and α ∈ [[τ]]. The typing rules are presented in Figure 4,
with the subtyping relation ≤A defined inductively in Figure 3. Note that the
coloring �c Γ of a context is defined inductively as

�c (x : u :: σ, Γ) = x : �c u :: σ, �c Γ

�c { (ci, αi) } = { (max(c, ci), αi) }

Proposition 3. The sequent

Γ = x1 : u1 :: σ1, . . . , xn : un :: σn ⊢ t : α :: τ

Finitary semantics of linear logic and higher-order model-checking 9

q ≤⊥⊥ q
∀ (c, α) ∈ u ∃ (c, β) ∈ v α ≤A β

u ≤ A v

v ≤ A u α ≤B β

u → α ≤ A⊸B v → β

Fig. 3: Inference rules for the preorders associated with simple types.

∃ (ǫ, α′) ∈ u α ≤[[σ]] α′

Ax
x : u :: σ ⊢ x : α :: σ

q ∈ Q and α satisfies δ(q, a)
δ

∅ ⊢ a : α → q :: σ

Γ, x : u :: σ ⊢ M : α :: τ
λ

Γ ⊢ λx.M : u → α :: σ → τ

Γ0 ⊢ M : { (c1, β1), . . . , (cn, βn) } → α :: σ → τ Γi ⊢ N : βi :: σ (for all i)
App

Γ0 ∪ �c1 Γ1 ∪ · · · ∪ �cn Γn ⊢ M N : α :: τ

Fig. 4: Type-theoretic computation of denotations in ScottL

is provable in this intersection type system if and only if

(u1, . . . , un, α) ∈ [[Γ ⊢ t :: τ]]A ⊆ ([[σ1]]⊗ · · · ⊗ [[σn]]) ⊸ [[τ]]

6 The recursion operator Y

At this stage, we are ready to shift from the colored semantics of the simply-
typed λ-calculus formulated in §5 to a colored semantics of the simply-typed λY -
calculus. To that purpose, we construct a Conway operator Y in the category
FinScottL defined as the full subcategory of ScottL consisting of the finite

ordered sets. Note that FinScottL defines a Seely category, and thus a model
of full propositional linear logic. The Conway operator Y is defined a family of
operations YX,A transporting a binary downward-closed relation

R : X ⊗ A ⊸ A

into a binary downward-closed relation

YX,A(R) : X ⊸ A

and satisfying a series of conditions originally stated by Bloom and Esik [1]
in cartesian closed categories, and adapted in [4] to the particular framework
of Seely categories. Note that, such a Conway operator on FinScottL defines a
Conway operator in the sense of [1] in the cartesian-closed category FinScottL .
Just as in the case of the relational semantics, see [4] for details, the important
point here is that the colors added to the original Scott semantics will enable
us to alternate least and greatest fixpoints (and thus inductive and coinductive
reasoning) in the definition of the fixpoint operator Y, using the appropriate
parity condition.
Semantic run-trees. Given a relation R : X⊗ A ⊸ A and a ∈ A, we define
the set comp(R, a) of semantic run-trees of R producing a ∈ A as the set of
possibly infinite (X ⊎ A)-labelled trees, with nodes colored by elements of Col,
and such that the four conditions below are satisfied:

1. the root of the tree is labelled by a, and has neutral color ǫ,

10 Charles Grellois, Paul-André Melliès

2. the inner nodes of the tree are labelled by elements of the set A,
3. the leaves are labelled by elements of the set X ⊎ A,
4. for every node labelled by an element b ∈ A:

– if b is an inner node, letting a1, · · · , an denote the labels of its children
belonging to A and x1, · · · , xm the labels belonging to X :

b

an· · ·a1xm· · ·x1

and letting ci (resp. dj) be the color of the node labelled xi (resp. aj),

({(c1, x1), · · · , (cm, xm)} , { (d1, a1), · · · , (dn, an)} , b) ∈ R

– if b is a leaf, then (∅, ∅, b) ∈ R.

At this point, we adapt to semantic run-trees the usual acceptance condition on
the run-trees of an alternating parity automata: an infinite branch of the seman-
tic run-tree is winning if and only if an element of Col \ {ǫ} occurs infinitely
often along it, and if the maximal such element is even. A semantic run-tree is
declared winning if and only if all its infinite branches are.

Given a semantic run-tree witness, we define the set leaves(witness) ⊆ X as the
set of elements (c, x) where (c′, x) is a leaf of witness labelled with x ∈ X , and c

is the maximal color encountered on the path from the leaf to the root or witness.

Fixpoint operator. We now define the fixpoint of a binary relation

R : X ⊗ A ⊸ A

as the downward-closed binary relation

YX,A (R) = { (u, a) | ∃witness ∈ comp(R, a) with u = leaves(witness)
and witness is a winning semantic run-tree. }

(6)

Proposition 4. The fixpoint operator Y is a Conway operator over FinScottL.

Consequently, its Kleisli category FinScottL is a model of the λY -calculus.

As in §5, we find useful and even illuminating to formulate a type-theoretic
counterpart to our definition of the Conway operator YX,A provided by the
following typing rule Yσ which should be added to the original type system of
Figure 4 :

Γ0 ⊢ M : { (c1, β1), . . . , (cn, βn) } → α :: σ → σ Γi ⊢ Yσ M : βi :: σ
Yσ

Γ0 ∪�c1 Γ1 ∪ · · · ∪�cn Γn ⊢ Yσ M : α :: σ

In the resulting intersection type system, derivations of infinite depth are allowed,
and have colored nodes, defined as follows:

– for every occurrence of the rule Yσ, we assign color ci to the node Γi ⊢
Yσ M : βi :: σ.

– all the other nodes are assigned the neutral color ǫ.

Finitary semantics of linear logic and higher-order model-checking 11

An infinite derivation tree is then accepted as a proof of the system when all
its branches are winning, in the same sense as for the branches of a semantic
run-tree.

Theorem 1. Given a λY -term t, the sequent

Γ = x1 : u1 :: σ1, . . . , xn : un :: σn ⊢ t : α :: τ

has a winning derivation tree in the type system with fixpoints iff

(u1, . . . , un, α) ∈ [[Γ ⊢ t :: τ]]A ⊆ ([[σ1]]⊗ · · · ⊗ [[σn]]) ⊸ [[τ]]

At this point, we take advantage of the correspondence recalled in Proposition 1
between higher-order recursion schemes (HORS) on the ranked alphabet Σ, and
closed λY -terms with constants in the same alphabet Σ. Indeed, the correspon-
dence enables us to justify the following typing rule for HORS :

Γ0, F : { (c1, β1), . . . , (cn, βn) } :: σ ⊢ R(F) : α :: σ Γi ⊢ F : βi :: σ (∀ i)

Γ0 ∪�c1 Γ1 ∪ · · · ∪�cn Γn ⊢ F : α :: σ

which provides a direct mean to type the HORS G in the intersection type
system, in such a way as to reflect its interpretation [[G]]A ⊆ Q in the Scott
semantics.

7 Finitary semantics solve the selection problem

The first theorem of the section establishes a perfect correspondence between
our finitary interpretation [[G]]A of the higher-order recursion scheme G in the
Scott semantics, and the set of accepting states of the automaton A :

Theorem 2. An alternating parity tree automaton A has an accepting run-tree

with initial state q0 over the value tree 〈G〉 of a higher-order recursion scheme G
if and only if q0 ∈ [[G]]A.

By Theorem 1, checking whether q0 ∈ [[G]]A is equivalent to checking whether
there exists a derivation of the sequent ∅ ⊢ S : q0 :: o in the colored intersection
type system defined in §6. Since the interpretation of simple types in FinScottL

is finite, only finitely many intersection types and contexts may occur in such
a derivation. Hence, searching for a derivation of the sequent ∅ ⊢ S : q0 :: o

reduces in this case to solving a finite parity game whose nodes are precisely the
sequents of the derivation tree. This has the following immediate consequence:

Corollary 1. The local model-checking problem is decidable.

Recall moreover that the existence of a winning strategy in a finite parity
game implies that there exists a memoryless winning strategy. In this setting,
winning strategies correspond to winning derivation trees of the intersection
type system, and memoryless strategies correspond to derivation trees admit-
ting a finite representation using backtracking pointers. From such a finite rep-
resentation π, one can define a higher-order recursion scheme Gq on a ranked

12 Charles Grellois, Paul-André Melliès

alphabet ΣA obtained from Σ by annotating every terminal a with elements
of its interpretation [[a]]A. The HORS Gq has a non-terminal Fα(o) for every
occurrence o of the non-terminal F in the finite representation π of the deriva-
tion tree, where α is the intersection type of the occurrence o of F in π. Each
occurrence o of a non-terminal F then induces a rewrite rule Fα(o)→Gq

term(o)
where term(o) is an annotated version of the λ-term R(F) coming from the
original scheme G. The annotation of term(o) is obtained by annotating the
non-terminals and the terminals of R(F) with the intersection types occurring
in the finite representation π of the derivation tree. This defines a higher-order
recursion scheme Gq, which generates a run-tree 〈Gq〉 of the alternating parity
tree automaton A over 〈G〉. As a consequence:

Theorem 3. The selection problem is decidable.

8 Conclusions and perspectives

In this paper, we explain how to apply our semantic approach to higher-order
model-checking based on linear logic, in order to establish the decidability of
local model-checking and of the selection problem. Our approach provides a
rigorous and compositional approach to higher-order model-checking, and adapts
to the inductive-coinductive framework of MSO logic a nice and well-established
connection between linear logic, Scott domains, and intersection types. Future
work includes a detailed comparison with a similar line of work on finite models
of the λY -calculus currently developed by Salvati and Walukiewicz [10].

References

1. Bloom, S.L., Ésik, Z.: Fixed-point operations on ccc’s. part i. TCS 155 (1996)
2. Carayol, A., Serre, O.: Collapsible pushdown automata and labeled recursion

schemes: Equivalence, safety and effective selection. In: LICS (2012)
3. Coppo, M., Dezani-Ciancaglini, M., Honsell, F., Longo, G.: Extended Type Struc-

tures and Filter Lambda Models. In: Logic Colloquium 82 (1984)
4. Grellois, C., Melliès, P.: An infinitary model of linear logic. In: Pitts, A.M. (ed.)

FoSSaCS. LNCS, vol. 9034 (2015)
5. Grellois, C., Melliès, P.: Relational semantics of linear logic and higher-order model-

checking. submitted, http://arxiv.org/abs/1501.04789 (2015)
6. Haddad, A.: Shape-preserving transformations of higher-order recursion schemes.

Ph.D. thesis, Université Paris Diderot (2013)
7. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:

Nielsen, M., Engberg, U. (eds.) FoSSaCS. LNCS, vol. 2303 (2002)
8. Melliès, P.A.: Categorical semantics of linear logic. In: Interactive models of com-

putation and program behaviour, pp. 1–196 (2009)
9. Ong, C.H.L.: On model-checking trees generated by higher-order recursion

schemes. In: LICS. pp. 81–90. IEEE Computer Society (2006)
10. Salvati, S., Walukiewicz, I.: A model for behavioural properties of higher-order

programs. Personal communication
11. Terui, K.: Semantic evaluation, intersection types and complexity of simply typed

lambda calculus. In: RTA (2012)

http://arxiv.org/abs/1501.04789

	Finitary semantics of linear logicand higher-order model-checking
	1 Introduction
	2 Higher-order recursion schemes and the Y-calculus
	3 MSO and alternating parity tree automata
	4 The Scott semantics of linear logic
	5 A finitary interpretation of the simply-typed -calculus
	6 The recursion operator Y
	7 Finitary semantics solve the selection problem
	8 Conclusions and perspectives

