
Concurrent Systems: Hybrid Object
Implementations and Abortable Objects

Michel Raynal1,2,3(B)

1 Institut Universitaire de France, Paris, France
2 IRISA, Université de Rennes, Rennes, France

3 Department of Computing, Polytechnic University, Hong Kong, China
raynal@irisa.fr

Abstract. As they allow processes to communicate and synchronize,
concurrent objects are, de facto, the most important objects of con-
current programming. This paper presents and illustrates two impor-
tant notions associated with concurrent objects. The first one, which is
related to their implementation, is the notion of a hybrid implementa-
tion. The second one, which is related to their definition, is the notion
of an abortable object.

1 Introduction

Concurrent Objects: On the Classical Side. An object is a (passive) com-
puting entity providing processes with operations. Only these operations are
visible from outside the object. Said differently, the internal representation, of
an object remains invisible to the processes. Hence, an object is an abstrac-
tion. An object is defined by a specification, which states the properties defining
all its correct behaviors. Those are usually captured by the set of the allowed
sequences on operation invocations. It appears that the object notion was intro-
duced a long time ago (it seems that its very first appearance dates back in 1967,
in the language SIMULA 67 [21]).

The first object, specific to the domain of concurrent programming, seems to
be the semaphore [3,9]. It is a counting object whose value has to never become
negative. Hence, processes can decrease and increase it as long they maintain
invariant the fact that it remains non-negative. Then, more sophisticated object
constructs have been introduced to cope with concurrent objects, such the con-
cept of a monitor [4,20]. In nearly all cases, these language constructs reduce
concurrency to sequential computing (they basically ensure that the object oper-
ations are executed in mutual exclusion).

Concurrent Objects: The World is Changing. Concurrency in multiproces-
sors (e.g., multicore) is real concurrency. It follows that the concurrency concepts
and techniques used to cope with multiplexing or interrupt handling are no
longer appropriate, and must be revisited to address the new computing world.
As expressed in [15]: “Changes in technology can have far-reaching effects on
theory. [...] After decades of being respected but not taken seriously, research
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 3–15, 2015.
DOI: 10.1007/978-3-662-48096-0 1

4 M. Raynal

on multiprocessor algorithms and data structures is going mainstream” (see also
[18,29,34]).

Among the most important concepts that have been introduced there is the
notion of progress conditions suited to systems where processes are asynchro-
nous and can fail by crashing. These notions are obstruction-freedom [16], non-
blocking [19], and wait-freedom [14]. This has motivated researchers to re-think
the implementation of concurrent data structures to exploit the benefit of new
architectures (e.g. [2,7,8,26,27,35,36] to cite a few).

Concurrent Objects: The Topics Addressed in the Paper. This paper
first defines (Sect. 2) basic computing models, which allow us to reason on con-
current objects. Their main characteristics lies in the hardware operations the
processes can use, the asynchrony of the processes, and the fact that failures can
occur or not.

Then the paper presents the notion of a hybrid implementation of a concur-
rent object (Sect. 3). Roughly speaking, a hybrid implementation is such that
the algorithms implementing the object operations do not use locks in “good
circumstances”, those being defined statically or dynamically. It follows that in
concurrency-free patterns, locks are not used.

Finally (Sect. 4), the paper considers the notion of an abortable object,
and illustrates it with a non-blocking abortable stack. An abortable object
allows operations to return a default value ⊥ when operation invocations are
concurrent.

The paper is an introductory paper to concurrent objects, addressing hybrid
implementation and abortable objects, which are only two facets of concurrent
objects. The reader will find more developments on concurrent programming
objects in [18,29,33].

2 Computing Models, Objects, and Progress Conditions

2.1 Basic Read/Write Model and Enriched Models

Basic Read/Write Model. The basic read/write model consists of n sequen-
tial asynchronous deterministic processes, denoted p1, ..., pn, which communicate
by reading and writing atomic registers only.

Asynchronous means each process proceeds to its own speed, which is not
known by other processes, and can be arbitrary and vary with time. Determin-
istic means that the behavior of a process is entirely determined from its initial
state, the algorithm it executes, and the sequence of values read from atomic
registers. Atomic means that, for each register, the read and write operations
appear as if they had been invoked sequentially, each abstracted as a point of
the time line occurring between its start and its end [19,23].

This computation model, where there are no failures, is denoted ARWn.

Crash Failures. The most common failures studied in multicore distributed
computing are process crash failures and Byzantine failures. Here we consider

Concurrent Systems: Hybrid Object Implementations and Abortable Objects 5

only process crash failures. Such a failure occurs when a process halts unexpect-
edly. Before crashing it executes correctly its algorithm, and after it crashed, a
process remains crashed forever.

Let t be the maximal number of processes that may crash; t is a model para-
meter and the corresponding model is called t-resilient model. The asynchronous
read/write model in which all processes, except one, may crash is called wait-free
model. Hence, “wait-free model” is synonym of “(n − 1)-resilient model”.

This crash-prone computationmodel is denotedARWn[∅].Whenenrichedwith
hardware-provided objects of some typeTYPE (whose aim is to allow processes to
communicate), the corresponding system model is denoted ARWn[TYPE].

Enriched Model. While, from a computability point of view, ARWn[∅] has
the same power as a Turing machine, this is no longer the case for ARWn,t[∅]
which is strictly weaker than ARWn[∅] as soon as only even one process may
crash (i.e., for any t > 0) [10,14,17,25,30,33].

The situation is different as soon as processes can use hardware-provided syn-
chronization objects stronger than atomic read/write registers, such as test&set
objects, compare&swap objects, or LL/SC objects, to cite a few. The crash-
prone computation model, enriched with objects of type TYPE , is denoted
ARWn,t[TYPE].

It was shown by Herlihy [14] that the computability power of such objects can
be measured with the notion of a consensus number. The greater this number,
the stronger the object. An infinite hierarchy of objects suited to the wait-free
model has been exhibited, where it is shown that the consensus number of reg-
isters is 1, the one of test&set objects is 2, while the one of compare&swap or
LL/SC objects is infinite. Hence, the model ARWn,n−1[Compare&swap] is com-
putationally stronger than ARWn,n−1[Test&set], which itself is stronger than
ARWn,n−1[∅] (see, e.g., [14,29]).

2.2 Concurrent Objects

Definition. A concurrent object (sometimes also called shared object) is an
object that can be accessed by several processes, simultaneously or not.

We consider here the subset of concurrent objects defined by a sequential
specification on total operations. An operation is total if it always returns a
result, whatever the state of the object (e.g., the operation remove() applied to an
empty queue is not allowed to wait until an element is added to the queue; it must
always terminate, for example returning the control value empty). Sequential
specification means that the correct behaviors of an object can be expressed by
traces on its operation invocations.

One-Shot vs Multi-shot. An object is one-shot if it has only one operation
and each process is allowed to invoke this operation at most once. Otherwise,
the object is multi-shot. As an example, a consensus object is one-shot, while a
set object or a stack are multi-shot objects.

6 M. Raynal

Consistency Condition. The most familiar consistency condition considered
for concurrent objects is atomicity [23], also called linearizability [19]. It states
that it must be possible to totally order the operations issued on each object
in such a way that (a) this total order respects the occurrence order of non-
concurrent operations, and (b) the resulting sequence of operations belongs to
the specification of the object.

An important property of linearizability, which motivates its practical con-
sideration, lies in its composability dimension (also called locality) [19], namely,
linearizable objects compose for free. This means that if we have two linearizable
objects O1 and O2 (whose implementations are independent) then the composed
object 〈O1, O2〉 is also linearizable, and this is obtained for free, i.e., without
additional implementation cost. (Intuitively, this comes from the fact that lin-
earizability respects the occurrence order of non-concurrent operations).

It is important to notice that other consistency conditions such as sequential
consistency [22] (or non-strict serializability encountered in databases [28]) are
not composable. This means that, to obtain a sequentially consistent composed
object 〈O1, O2〉 from two sequentially consistent objects O1 and O2, the imple-
mentation of both O1 and O2 has to be modified, each one must cooperate with
the other one to ensure that the composite object is sequentially consistent [29].

2.3 Progress Conditions for Object Operations

Classical Progress Conditions. The classical progress conditions encountered
in the implementation of concurrent objects are deadlock-freedom and starvation-
freedom. The first one captures the point of view of the object (service), namely,
if processes concurrently invoke operations, at least one process succeeds. The
second one captures the point of view of the processes (clients), namely, if any
process invokes an operation, it eventually executes it. These progress conditions
are usually implemented with locking mechanisms. Trivially, starvation-freedom
⇒ deadlock-freedom.

Locks in the Presence of Failures. It is important to notice that locks cannot
be used in the system model ARWn,t[∅]. This is due to the following reason. If
a process p obtains a lock on an object and crashes before unlocking it, due to
asynchrony, no other process can distinguish the case where p crashes and the
case where p is slow. Hence, in an asynchronous crash-prone system, locks may
prevent processes from progressing.

Progress Conditions Suited to Net Effect of Asynchrony and Process
Crashes. Three progress conditions have been proposed to cope with the net
effect of asynchrony and process crashes. Actually, a process crash can be seen
as if the corresponding process was pausing during a “very” long period of
time, during which the non-faulty processes must progress despite its absence of
progress.

Obstruction-Freedom [16] is the weakest progress conditions (from a progress
point of view). It states that a non-faulty process, that invokes an object oper-
ation, is required to terminate it, if it executes alone during a “long enough”

Concurrent Systems: Hybrid Object Implementations and Abortable Objects 7

period. (“Long enough” means it has enough time to terminate its operation,
without being bothered by other processes). Hence, obstruction-freedom allows
concurrent operations to never terminate.

Non-blocking is a stronger progress condition [19]. It states that, whatever
the concurrency among operation invocations, at least one of the concurrent
invocations terminate. As one can see, this is nothing else than deadlock-freedom
in a context where locks are forbidden (also called mutex-free context).

Finally, wait-freedom is the strongest progress condition [14]. It requires that,
until it possibly crashes, and whatever the behavior of the other processes, all
the operations issued by a process terminate.

Trivially, wait-freedom ⇒ non-blocking ⇒ obstruction-freedom. Of course,
the previous three mutex-free progress conditions remain meaningful in the clas-
sical failure system model ARWn[∅].

Where is the Difficulty. As previously indicated, locks cannot be used when
one has to cope with asynchrony and failures. Hence, mutex-free solutions have
to be found [29].

The main difficulty when one wants to implement a concurrent object whose
operations have to satisfy one of obstruction-freedom, non-blocking, or wait-
freedom, comes from the fact that there is no way to prevent several processes
to simultaneously access the internal representation of the object. This is true
even for the weak obstruction-freedom progress condition. As a simple example,
let us consider two processes that, invoking the operation S.pop() on a stack S,
access simultaneously its internal representation, and then one of them pauses
during a long enough period that allows the other process to terminate. Both
the returned values must be correct.

According to the high level object that has to be built, solving this issue may
require basic objects whose computational power is stronger than read/write
registers. In some cases, the power required is the one provided by the most
powerful objects (such as compare&swap) when considering the consensus num-
ber hierarchy.

3 Hybrid Implementation of a Concurrent Object

3.1 The Notion of a Hybrid Implementation of a Concurrent Object

Definition. The idea that underlies the notion of a hybrid implementation is
that locks are expensive, and consequently their use must be prevented in some
circumstances.

Given a concurrent object O, an hybrid implementation of O is an implemen-
tation that merges lock-based code and mutex-free code in the implementation
of the operations of O. This notion has been introduced in an explicit way in [29].
As locks can be used, these implementations are for failure-free systems. (Said
differently, this means that, in the presence of failures, the system may stop
progressing in configurations where a process crashes while holding a lock.)

8 M. Raynal

Static Hybrid vs Dynamic Hybrid Implementation. Two types of hybrid
implementations can be distinguished.
– Static hybrid implementation. In this case, the operations on the object are

statically divided into subsets: the ones whose implementation can use locks,
and the others whose implementation cannot use locks.

– Dynamic hybrid implementation. In this case, whatever the operation, its
implementation cannot use locks in “favorable circumstances”. Those are
defined according to the object, the context in which it is used, the aplication
features, etc.

3.2 Example 1: Static Hybrid Implementation of a Set Object

Set Object A concurrent set object S is defined by three operations:
– S.add(v) adds v to the set S and returns true if v was not in the set. Otherwise

it returns false.
– S.remove(v) suppresses v from the set S and returns true if v was in the set.

Otherwise it returns false.
– S.contain(v) returns true if v belongs to the set. Otherwise it returns false.

In a lot of applications using a set object, the number of invocations of
S.contain() outperforms the number of invocations of S.add() and S.remove().
This is, for example, the case of dictionary-like objects. In such a context, for
efficiency reasons, we want to have an implementation of S.contain() that (a) is
mutex-free (it does not use locks), and (b) always terminates. Said more com-
pactly, the algorithm implementing S.contain() has to be wait-free. Differently,
the algorithms implementing the operations S.add() and S.remove() may use
locks. These operations are required to be only deadlock-free. Moreover, to allow
them to be as concurrent as possible, a lock is associated with each element of
the set, and a process can simultaneously hold locks on at most two elements.

An hybrid implementation of such a concurrent set has been proposed in [13]
and proved correct in [6] (see also [29] for a pedagogical presentation). This
implementation is list-based. It assumes that the elements of the set are totally
ordered, they have a smallest element and a greatest element, and there is finite
number of elements between any two elements.

3.3 Example 2:
Dynamic Hybrid Implementation of a Double-Ended Queue

A dynamic hybrid implementation of a double-ended queue (in short, dequeue)
is presented in [16]. The “favorable circumstances” are when there is no con-
currency. The main difficulty that this implementation has to solve occurs when
a process started executing an operation in a no-concurrency context (hence it
uses no lock) and, while it is executing its operation, another process issue a
conflicting operation. This implementation considers the enriched system model
ARWn[Compare&swap]. A version of it, suited to the system model ARWn[LL/
SC] is described in [29,34].

Due to page limitation, the reader will consult [16,29] for a full presentation
of these implementations.

Concurrent Systems: Hybrid Object Implementations and Abortable Objects 9

3.4 Example 3:
Dynamic Hybrid Implementation of a Consensus Object

Binary Consensus Object. Such an object C is a one-shot object that provides
the processes with a single operation denoted C.propose() ans returns a value,
called “decided value”. Only the values 0 and 1 can be proposed. The object is
defined by the following properties.

– Validity. A decided value is a proposed value.
– Agreement. No two processes decide different values.
– Termination. If a process invokes C.propose(), it decides a value.

Favorable Circumstances. Here “favorable circumstances” concern two dif-
ferent cases. The first is when all the processes that invoke C.propose(), propose
the same value. The second is when an invocation of propose() executes in a
concurrency-free context.

When a favorable circumstance occurs, no lock has to be used. This means
that an invocation of propose(v) is allowed to use an underlying lock only if (a)
the other value (1−v) was previously or is currently proposed, and (b) there are
concurrent invocations. Hence, from a lock point of view, the notion of conflict
is related to both concurrency and proposed values.

Dynamic Hybrid Implementation: Internal Representation of the
Object. The implementation that follows is from [34]. The internal represen-
tation of the consensus object is made up of the following atomic read/write
registers, plus a lock:

– PROPOSED [0..1], which is an array of two Boolean registers, both initialized
to false. The atomic register PROPOSED [v] is set to true to indicate that a
process has proposed value v.

– DECIDED , which is an atomic register whose domain is {⊥, 0, 1}. Initialized
to ⊥, it is eventually set to the value that is decided and never the value which
is not decided.

– AUX , which is an atomic register whose domain and initial value are the same
as for DECIDED .

– LOCK , which is a starvation-free lock used to solve conflicts (if any).

Dynamic Hybrid Implementation: Algorithm. This algorithm is described
in Fig. 1. A process decides when it executes the statement return(val), where
val is the value it decides.

When a process p invokes propose(v), it first indicates that v was proposed,
and writes it into AUX if this register is still equal to ⊥ (line 01). Let us notice
that, if several processes proposing different values concurrently read ⊥ from
AUX , each writes its proposed value in AUX .

Then, process p checks if the other binary value (1 − v) was proposed by
another process (line 02). If it is not the case, p writes v into DECIDED (line 03),
and assuming that no other process has written a different value into DECIDED

10 M. Raynal

operation C.propose(v) is
(01) PROPOSED [v] ← true; if (AUX = ⊥) then AUX ← v end if;
(02) if (¬PROPOSED [1 − v])
(03) then DECIDED ← v
(04) else if (DECIDED = ⊥)
(05) then LOCK .acquire lock();
(06) if (DECIDED = ⊥) then DECIDED ← AUX end if;
(07) LOCK .release lock()
(08) end if;
(09) end if;
(10) return(DECIDED)
end operation.

Fig. 1. A dynamic hybrid implementation of a binary consensus object in ARWn

[LOCK] [34]

in the meantime, it decides the value stored in DECIDED (line 10). If the other
value was proposed there is a conflict. Process p then decides the value kept in
DECIDED if there is one (lines 04 and 10). If there is no decided value, the
conflict is solved with the help of the lock (lines 05–07). Process p assigns the
current value of AUX to DECIDED if that register was still equal to ⊥ when it
read it (lines 06) and p finally decides the value kept in DECIDED . Proofs can
be found in [29,34].

4 Abortable Concurrent Objects

4.1 The Notion of a Concurrent Abortable Object

In practice, conflicts are rare in a lot of applications. So the idea is here, not
only to forbid locks at the implementation level, but, at the semantics/interface
level, allow a process, that invokes an object operation, to return a predefined
default value ⊥ (abort) in specific circumstances, namely in the presence of
concurrency1.

Hence, the meaning of ⊥ is “the operation has not been executed because
the invocation occurred in a concurrency context”. Moreover, if we do not con-
sider the operation invocations that return ⊥, an abortable object behaves as
described by its sequential specification.
1 In some sense, the origin of abortable objects can be found in Lamport’s fast mutex

algorithm [24]. This paper presents a mutual exclusion algorithm which allows a
process to take a fast path to access the critical section when there is no concur-
rency. This fast path requires only five accesses to atomic read/write registers, and
is consequently independent of the total number of processes. When there is concur-
rency, the number of accesses to atomic read/write registers is O(n). This algorithm
was the starting point of the design of time-adaptive algorithms. The time complex-
ity of such an algorithm A is O(f(d)) ≤ O(f(n)), where d ∈ [1..n] is the concurrency
degree at the time where the object operation implemented by A is executed.

Concurrent Systems: Hybrid Object Implementations and Abortable Objects 11

This notion of an abortable object, introduced in [12,29], has not to be
confused with a close (but different) notion introduced in [1]. In this paper,
when an operation returns ⊥, the invoking process learns that its call occurred
in a concurrency context, but it does know if the operation was executed or not.

4.2 Example: A Non-blocking Abortable Stack
in ARWn,n−1[Compare&swap]

The implementation of a non-blocking abortable stack presented below is from [32].
It is based on compare&swap objects.

Compare&swap Object and the ABA Problem. A compare&swap object
X is an atomic register that can be read, and can be written by a hardware-
provided operation called compare&swap(). This operation is a conditional write,
which has two input parameters (denoted old and new), and returns a Boolean
value. Its effect can be described as follows:

X.compare&swap(old, new) is

if (X = old) then X ← new; return(true) else return(false) end if.

When using compare&swap(), a process pi usually does the following. It first
reads the atomic register X (obtaining its current value a), then executes state-
ments (possibly involving accesses to the shared memory) and finally updates
X to a new value c only if X has not been modified by another process since it
was read by pi. To that end, pi invokes X.compare&swap(a, c).

Unfortunately, the fact that this invocation returns true to pi does not allow
pi to conclude that X has not been modified since the last time it read it. This
is because, between the read of X and the invocation X.compare&swap(a, c)
both issued by pi, X could have been updated twice, first by a process pj that
successfully invoked X.compare&swap(a, b), and then by another process pk that
successfully invoked X.compare&swap(b, a), thereby restoring the value a to X.
This is called the ABA problem.

This problem can be solved by associating sequence numbers with each value
that is written (see [29]). Hence, in the previous scenario, the read of X by pi
would have returned a pair 〈a, sn〉. Then, X = 〈a, sn+2〉 after the the successful
invocations issued by pj and pk. Hence, the X.compare&swap(〈a, sn〉, c) cannot
be successful.

Abortable Stack: Operations. The stack operations are denoted push(v)
(where v is the value to be added at the top of the stack) and pop(). The stack
is a bounded stack: it can contain at most k values. If the stack is full, push(v)
returns the control value full , otherwise v is added at the top of the stack and the
control value done is returned. The operation pop() returns the value that is at the
top of the stack (and suppresses it from the stack), or the control value empty if
the stack is empty. Both operations may return ⊥ in the presence of concurrency.

Non-blocking Abortable Stack. As the stack must be non-blocking, even in
the presence of concurrency, at least one operation does not return ⊥.

12 M. Raynal

Non-blocking Abortable Stack: Internal Representation. The stack is
implemented with an atomic register denoted TOP and an array of k+1 atomic
registers denoted STACK [0..k]. These registers can be read and can be modified
only by using the compare&swap() primitive.

– TOP has three fields that contain an index (to address an entry of STACK),
a value, and a counter. It is initialized to 〈0,⊥, 0〉.

– Each atomic register STACK [x] has two fields: the field STACK [x].val, which
contains a value, and the field STACK [x].sn, which contains a sequence num-
ber (used to prevent the ABA problem as far as STACK [x] is concerned).
STACK [0] is a dummy entry initialized to 〈⊥,−1〉. Its first field always con-
tains the default value ⊥. As far as the other entries are concerned, STACK [x]
(1 ≤ x ≤ k) is initialized to 〈⊥, 0〉.

The array STACK is used to store the contents of the stack, and the register
TOP is used to store the index and the value of the element at the top of the
stack. The contents of TOP and STACK [x] are modified with the help of the
conditional write operation compare&swap() (which, with the help of sequence
numbers, is used to prevent erroneous modifications of the stack internal pre-
sentation).

A Non-blocking Abortable Stack: The Algorithm. The implementation is
lazy in the sense that a stack operation assigns its new value to TOP and leaves
the corresponding effective modification of STACK to the next stack operation.
Hence, while on the one hand a stack operation is lazy, on the other hand it has to
help terminate the previous stack operation (as far as the internal representation
of the stack is concerned) (Fig. 2).

When a process pi invokes push(v), it first reads the content of TOP (which
contains the last operation on the stack) and stores its three fields in its local
variables index, value, and seqnb (line 01).

Then, pi calls the internal procedure help(index, value, seqnb) to help termi-
nate the previous stack operation (line 02). That stack operation (be it a push()
or a pop()) is required to write the pair 〈value, seqnb〉 into STACK [index]. To
that end, pi invokes STACK [index].compare&swap.

(
old, new

)
with the appro-

priate values old and new so that the write is executed only if not yet done
(lines 15–16).

After its help (which was successful if not yet done by another stack oper-
ation) to move the content of TOP into STACK [index], pi returns full if the
stack is full (line 03). If the stack is not full, it tries to modify TOP so that it
registers its push operation. This invocation of TOP .compare&swap() (line 06)
succeeds if no other process modified TOP since it was read by pi at line 01. If
it succeeds, TOP takes its new value and push(v) returns the control value done
(line 06). Otherwise, pi returns ⊥ (line 07).

The triple of values to be written in TOP at line 06 is computed at lines
04–05. Process pi first computes the last sequence number sn of next used in
STACK [index + 1] and then defines the new triple, namely newtop = 〈index +
1, v, sn of next+1〉, to be written first in TOP and, later, in STACK [index+1]

Concurrent Systems: Hybrid Object Implementations and Abortable Objects 13

operation push(v) is
(01) (index, value, seqnb) ← TOP ;
(02) help(index, value, seqnb);
(03) if (index = k) then return(full) end if;
(04) sn of next ← STACK [index + 1].sn;
(05) newtop index + 1, v, sn of next + 1 ;
(06) if TOP .compare&swap index, value, seqnb , newtop
(07) then return(done) else return(⊥) end if
end operation.

operation pop() is
(08) (index, value, seqnb) ← TOP ;
(09) help(index, value, seqnb);
(10) if (index = 0) then return(empty) end if;
(11) belowtop ← STACK [index − 1];
(12) newtop index − 1, belowtop.val, belowtop.sn + 1 ;
(13) if TOP .compare&swap index, value, seqnb , newtop
(14) then return(value) else return(⊥) end if
end operation.

internal procedure help(index, value, seqnb):
(15) stacktop ← STACK [index].val;
(16) STACK [index].compare&swap stacktop, seqnb − 1 , value, seqnb
end procedure.

Fig. 2. A non-blocking abortable stack in ARWn,n−1[Compare&swap] [32]

thanks to the help provided by the next stack operation (sn of next+ 1 is used
to prevent the ABA problem).

5 Conclusion

Considering concurrent objects, the aim of this paper was to present the notion of
an hybrid implementation of such objects, and the notion of an abortable object.
To this end, it first introduced fundamental notions associated with concurrent
objects (namely, consistency conditions and progress conditions). Then, after
having defined the notions of an hybrid implementation and an abortable object,
it illustrated them with appropriate examples.

The reader interested in concurrent programming can consult the follow-
ing textbooks devoted to concurrent objects, where are presented concurrency-
related concepts, algorithms, techniques, and numerous object implementations
[18,29,33] (parts of this paper are from [29]). A more general and sophisticated
notion, related to concurrent objects, is the one of a universal construction for
concurrent objects. This important topic, focusing on universality in the pres-
ence of concurrency, asynchrony and process crash failures, introduced in [14],
is addressed in the previous textbooks, and in [5,11,31].

14 M. Raynal

References

1. Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S.L., Toueg, S.: Abortable
and query-abortable objects and their efficient implementation. In: Proceedings
of 26th ACM Symposium on Principles of Distributed Computing (PODC 2007),
pp. 23–32. ACM Press (2007)

2. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

3. Hansen, P.B.: The Architecture of Concurrent Programs. Prentice Hall, Upper
Saddle River (1977)

4. Hansen, P.B. (ed.): The Origin of Concurrent Programming, p. 534. Springer, New
York (2002)

5. Capdevielle, C., Johnen, C., Milani, A.: Solo-fast universal constructions for deter-
ministic abortable objects. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp.
288–302. Springer, Heidelberg (2014)

6. Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy
concurrent list-based set algorithm. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 475–488. Springer, Heidelberg (2006)

7. Crain, T., Gramoli, V., Raynal, M.: A contention-friendly binary search tree. In:
Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 229–240.
Springer, Heidelberg (2013)

8. Crain, T., Gramoli, V., Raynal, M.: No hot spot non-blocking skip list. In: Proceed-
ings of 33rd International Conference on Distributed Computing Systems (ICDCS
2013), pp. 196–205. IEEE Press (2013)

9. Dijkstra, E.W.D.: Cooperating sequential processes. In: Genuys, F. (ed.) Program-
ming Languages, pp. 43–112. Academic Press, New York (1968)

10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

11. Gafni, E., Guerraoui, R.: Generalized universality. In: Katoen, J.-P., König, B.
(eds.) CONCUR 2011. LNCS, vol. 6901, pp. 17–27. Springer, Heidelberg (2011)

12. Hadzilacos, V., Toueg, S.: On deterministic abortable objects. In: Proceedings of
32nd ACM Symposium on Principles of Distributed Computing (PODC 2013), pp.
4–12. ACM Press (2013)

13. Heller, S., Herlihy, M.P., Luchangco, V., Moir, M., Scherer, W.I.I.I., Shavit, N.: A
lazy concurrent list-based algorithm. Parallel Process. Lett. 17(4), 411–424 (2007)

14. Herlihy, M.P.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

15. Herlihy, M.P., Luchangco, V.: Distributed computing and the multicore revolution.
ACM SIGACT News 39(1), 62–72 (2008)

16. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-
ended queues as an example. In: Proceedings of 23th International IEEE Confer-
ence on Distributed Computing Systems (ICDCS 2003), pp. 522–529. IEEE Press
(2003)

17. Herlihy, M.P., Rajsbaum, S., Raynal, M.: Power and limits of distributed comput-
ing shared memory models. Theor. Comput. Sci. 509, 3–24 (2013)

18. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, p. 508. Morgan
Kaufmann, Burlington (2008). ISBN 978-0-12-370591-4

19. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

Concurrent Systems: Hybrid Object Implementations and Abortable Objects 15

20. Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun. ACM
17(10), 549–557 (1974)

21. https://en.wikipedia.org/wiki/Simula
22. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-

tiprocess programs. IEEE Trans. Comput. C 28(9), 690–691 (1979)
23. Lamport, L.: On interprocess communication. Part I: basic formalism. Distrib.

Comput. 1(2), 77–85 (1986)
24. Lamport, L.: Fast mutual exclusion. ACM Trans. Comput. Syst. 5(1), 1–11 (1987)
25. Loui, M., Abu-Amara, H.: Memory Requirements for Agreement among Unreli-

able Asynchronous Processes. Advances in Computing Research, pp. 163–183. JAI
Press, Greenwich (1987)

26. Michael, M.M., Scott, M.L.: Simple, fast and practical blocking and non-blocking
concurrent queue algorithms. In: Proceedings of 15th International ACM Sympo-
sium on Principles of Distributed Computing (PODC 1996), pp. 267–275. ACM
Press (1996)

27. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free FIFO queues. In: Proceedings of 17th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA 2005), pp. 253–262. ACM
Press (2005)

28. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979)

29. Raynal, M.: Concurrent Programming: Algorithms, Principles, and Foundations,
p. 530. Springer, Heidelberg (2013). ISBN 978-3-642-32026-2

30. Raynal, M.: What can be computed in a distributed system? In: Bensalem, S.,
Lakhneck, Y., Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415, pp.
209–224. Springer, Heidelberg (2014)

31. Raynal, M., Stainer, J., Taubenfeld, G.: Distributed universality. In: Aguil-
era, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878,
pp. 469–484. Springer, Heidelberg (2014)

32. Shafiei, N.: Non-blocking array-based algorithms for stacks and queues. In: Garg,
V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408, pp.
55–66. Springer, Heidelberg (2008)

33. Taubenfeld, G.: SynchroNization Algorithms and Concurrent Programming, p. 423.
Pearson Education/Prentice Hall, Upper Saddle Rive (2006). ISBN 0-131-97259-6

34. Taubenfeld, G.: Contention-sensitive data structures and algorithms. In: Keidar,
I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 157–171. Springer, Heidelberg (2009)

35. Tsigas, Ph., Zhang, Y.: A simple, fast and scalable non-blocking concurrent
FIFO queue for shared memory multiprocessor systems. In: Proceedings of 13th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2001),
pp. 134–143. ACM Press (2001)

36. Valois, J.D.: Implementing lock-free queues. In: Proceedings of 7th International
Conference on Parallel and Distributed Computing Systems (PDCS 1994), pp.
64–69. IEEE Press (1994)

https://en.wikipedia.org/wiki/Simula

	Concurrent Systems: Hybrid Object Implementations and Abortable Objects
	1 Introduction
	2 Computing Models, Objects, and Progress Conditions
	2.1 Basic Read/Write Model and Enriched Models
	2.2 Concurrent Objects
	2.3 Progress Conditions for Object Operations

	3 Hybrid Implementation of a Concurrent Object
	3.1 The Notion of a Hybrid Implementation of a Concurrent Object
	3.2 Example 1: Static Hybrid Implementation of a Set Object
	3.3 Example 2: Dynamic Hybrid Implementation of a Double-Ended Queue
	3.4 Example 3: Dynamic Hybrid Implementation of a Consensus Object

	4 Abortable Concurrent Objects
	4.1 The Notion of a Concurrent Abortable Object
	4.2 Example: A Non-blocking Abortable Stack in ARWn,n-1[Compare&swap]

	5 Conclusion
	References

