
Locality and Balance for Communication-Aware
Thread Mapping in Multicore Systems

Matthias Diener1,2(B), Eduardo H.M. Cruz1, Marco A.Z. Alves1,
Mohammad S. Alhakeem2, Philippe O.A. Navaux1, and Hans-Ulrich Heiß2

1 Informatics Institute, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
{mdiener,ehmcruz,mazalves,navaux}@inf.ufrgs.br

2 Communication and Operating Systems Group, Technische Universität Berlin,
Berlin, Germany

{alhakeem,hans-ulrich.heiss}@tu-berlin.de

Abstract. In multicore architectures, deciding where to execute the
threads of parallel applications is increasingly a significant challenge.
This thread mapping has a large impact on the application’s performance
and energy consumption. Recent research in this area mostly focuses on
improving the locality of memory accesses and optimizing the use of
shared caches by mapping threads that frequently communicate with
each other to processing units that are closer to each other in the mem-
ory hierarchy. However, locality-based policies can lead to a substantial
performance reduction in some cases due to communication imbalance. In
this paper, we perform a comprehensive exploration of communication-
aware thread mapping policies in multicore architectures. We develop a
set of metrics to evaluate the communication behavior of parallel applica-
tions, and describe how these metrics can be used to favor locality-based
or balance-based mapping policies. Based on these metrics, we introduce
a novel mapping policy that combines locality and balance aspects and
achieves the highest overall improvements. We provide an experimental
evaluation of the performance gains using different mapping policies as
well as a detailed analysis of the sources of energy savings.

1 Introduction

Due to the rising parallelism in modern multicore architectures, deciding where
to execute each thread of a parallel application is becoming increasingly impor-
tant to improve the application’s performance as well as its energy consumption.
The assignment of threads to processing units (PUs), which is called thread map-
ping, can take into account several characteristics of the parallel application and
the underlying hardware architecture, such as utilization of PUs, contention on
functional units, memory usage or memory access patterns. Recent research in
this area mostly focuses on threads’ memory accesses to shared data, which we
call communication between threads, and uses a thread mapping policy that
puts threads closer to each other in the memory hierarchy if they communicate
frequently. In this way, threads can make better use of shared caches, and the
overall memory access locality increases [2,9].
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 196–208, 2015.
DOI: 10.1007/978-3-662-48096-0 16



Locality and Balance for Communication-Aware Thread Mapping 197

However, these communication-aware mapping policies based on increasing
locality can actually reduce the performance in some cases. We identify two con-
ditions under which a locality-based policy has no improvements or is even detri-
mental to performance; when communication is imbalanced between threads, and
when the ratio of communication to private data memory accesses is low. In such
cases, it can be better to balance the communication or to scatter threads, such
that there is less contention on caches or interconnections.

In this paper, we make the following contributions to the thread mapping
problem: (1) We develop a set of metrics that are based on shared mem-
ory accesses and comprehensively represent the communication behavior of the
threads in parallel applications. These metrics describe the structure and vol-
ume of communication. (2) We discuss which characteristics are suitable for
each type of thread mapping, and introduce policies that optimize the mapping
for each metric, as well as a policy that combines locality and balance. (3) We
evaluate parallel applications in terms of the metrics and show the performance
improvements of the different mapping policies. We also analyze the sources
of performance improvements and energy savings by using a microarchitectural
simulator.

2 Communication in Shared Memory

In parallel applications based on shared memory programming models, such as
OpenMP and Pthreads, communication is implicit and is performed via memory
accesses to shared memory areas. By observing accesses to memory addresses at
the cache line granularity, we can define a communication event as two memory
accesses from two different threads to the same cache line. With this definition,
we create a communication matrix that represents the communication behavior
of a parallel application by grouping the communication events [8,14].

In a communication matrix, the axes represent the thread IDs, while each cell
in the matrix contains the number of communication events for the corresponding
thread pair. For example, Fig. 1a shows a communication matrix for an appli-
cation that consists of 5 threads. Figure 1b shows a visualization of this matrix,
where darker matrix cells illustrate more communication. Based on the commu-
nication matrix, we introduce metrics to describe the communication behavior
formally. Our goal is to determine the most appropriate mapping policy for a
particular communication behavior depending on these metrics. Four metrics are
presented: heterogeneity and balance describe the structure of communication,
while amount and ratio describe the volume of communication.

Communication Heterogeneity. For policies that focus on improving the
locality of communication, it is necessary to have groups of threads that com-
municate more within the group than with threads outside the group. Based
on this intuition, a higher variation in the number of communication events for
thread pairs in the communication matrix indicates opportunities to increase the
overall locality. We refer to this variation as the heterogeneity of communication.
We adapt previous work [6,10] to formulate the metric HComm, which evaluates



198 M. Diener et al.

Fig. 1. Communication behavior of a parallel application consisting of 5 threads.

this heterogeneity. As shown in (1), HComm is calculated by first normalizing the
communication matrix M to its highest value, and then calculating the average
variance of the number of communication events per thread. The max and var
functions calculate the maximum and variance, respectively, and T represents
the number of threads. A locality-based thread mapping policy is more suitable
for higher values of HComm.

Mnorm =
M

max(M)
· 100, HComm =

∑T
i=1 var(Mnorm[i][1...T ])

T
(1)

Communication Balance. For mapping policies that are based on balance, it
is necessary to determine if some threads are performing more communication
than others. To evaluate this property, we introduce the metric BComm, which
we refer to as the balance of the threads’ communication behavior. To calculate
BComm, we first calculate the total amount of communication per thread in a
communication vector CommV , where each element i of CommV contains the
number of communication events of thread i. Then, similar to traditional load
balance [15], BComm is calculated by (2).

CommV [i] =
T∑

j=1

M [i][j], BComm =

(
max(CommV )

∑T
i=1 CommV [i]/T

− 1

)

· 100% (2)

A value of BComm that is close to 0 indicates a highly balanced communication
between threads, while higher values indicate more imbalance in the threads’
communication behavior, suggesting that communication balance-based map-
ping policies are more beneficial. A comparison of communication matrices with
different values of heterogeneity and balance is shown in Fig. 1c.

Communication Amount. Improvements according to a specific thread map-
ping policy depend on how much threads are communicating. We expect higher
gains for parallel applications that communicate more. To describe the amount of
communication, we introduce the AComm metric, defined as the average number
of communication events per thread, which is calculated by (3).



Locality and Balance for Communication-Aware Thread Mapping 199

AComm =

∑T
i=1

∑T
j=1 M [i][j]
T 2

(3)

Communication Ratio. The amount of communication itself is not sufficient to
evaluate if an application is suitable for communication-aware thread mapping. If
threads have much more memory accesses to private data than communication,
a communication-aware mapping might not affect the overall memory access
behavior. For this reason, we define the communication ratio metric RComm,
which is the ratio of the communication accesses to the total number of memory
accesses of the application threads. RComm is calculated by (4), where AccV [i]
is the number of memory accesses performed by thread i.

RComm =
AComm

∑T
i=1 AccV [i]

(4)

3 Communication Behavior of the Benchmarks

In this section, we analyze the communication behavior of two sets of parallel
applications in terms of the metrics introduced in the previous section.

3.1 Methodology of the Experiments

Benchmarks. We chose two parallel benchmark suites for the evaluation. NAS-
OMP [11] is the OpenMP implementation of the NAS Parallel Benchmarks
(NPB), which consists of 10 applications from the HPC domain. We use three
input sizes for the characterization, W, A, and B (from smallest to largest), to
show how the behavior changes with increasing input sizes. All applications were
executed with 64 threads. PARSEC [3] is a suite of 13 benchmarks that focus
on emerging workloads and are implemented using OpenMP and Pthreads. All
benchmarks were executed with the native input size. The number of threads is
different for each application, but most of them use 64 threads.

Profiling Environment. To characterize the benchmarks’ communication
behavior, we use a memory tracer based on our numalize technique [10], built
with the Pin DBI tool [13]. We calculate the communication behavior in a simpli-
fied way to characterize the applications independently from a particular hard-
ware architecture. We collect all memory accesses of the application’s threads
at a granularity of 64 byte-wide memory blocks and within time intervals of
10 ms. During each time interval, every time a memory block is accessed by
a thread, we record a communication event between this thread and the other
threads that have been involved in memory accesses to the same block since the
beginning of the current time interval. By aggregating these events, we generate
a communication matrix. Comparison with different time intervals, as well as a
full cache simulator, showed that the detected behavior is stable in such a way
that our characterization remains the same.



200 M. Diener et al.

3.2 Results of the Communication Characterization

We begin with a discussion of several common types of communication matrices
of the benchmarks, followed by an analysis of the metrics introduced in Sect. 2.

Communication Matrices. Figure 2 shows the communication matrices of
selected benchmarks that represent the most common types of behavior. For the
NAS-OMP benchmarks (LU and UA), we show the matrices of the B input.
In LU, threads that are far apart communicate mostly with each other, e.g.,
the threads 0 and 53. UA has a nearest neighbor pattern, where neighboring
threads perform most communication. In Blackscholes, thread 0 communicates
with all other threads, indicating that communication is due to initialization or
reduction of data. Ferret has a pipeline pattern, where one stage (threads 34–
49) performs most of the communication of the application. Swaptions has an
all-to-all pattern with similar amounts of communication for all threads.

From the communication matrices, it is possible to develop an idea of which
applications can benefit from which type of mapping. In LU, UA, and Ferret,
groups of threads perform substantial amounts of communication among them-
selves and only little communication with threads outside the group. Therefore,
a locality-based policy can increase the overall locality by mapping threads that
communicate closer to each other. Blackscholes and Swaptions can not benefit
from such a policy, as no mapping can improve the overall locality. LU and Fer-
ret can also benefit from a balance-based policy, as some threads perform very
little communication, such as threads 53–63 of LU and threads 1–33 of Ferret.

Fig. 2. Communication matrices of several parallel applications.

Communication Metrics. The values of the communication metrics intro-
duced in Sect. 2 for the two benchmark suites are shown in Figs. 3 and 4.

All NAS-OMP applications except EP, FT, and IS have a high heterogene-
ity, indicating their suitability for locality-based mapping. In BT, LU, SP, and
UA, the heterogeneity increases with larger input sizes. Evaluating the commu-
nication balance shows that only BT, LU, and SP are significantly imbalanced
and show a suitability for balance-based policies. The reason for the imbalance
of these applications is shown in Fig. 2a, as some of the threads are not com-
municating at all. This behavior changes with the input size: inputs W and B
are imbalanced, while A is much more balanced. However, despite this commu-
nication imbalance, there is no significant load imbalance for these benchmarks
according to our measurements, showing that the threads that communicate less



Locality and Balance for Communication-Aware Thread Mapping 201

Fig. 3. Communication characteristics of the NAS-OMP benchmarks.

Fig. 4. Communication characteristics of the PARSEC benchmarks.

still perform substantial amounts of computation. For example, SP with the B
input has a load balance of only 3.8, while the communication balance metric is
much higher (16.5, higher values indicate a higher imbalance). The communica-
tion amount increases slightly with larger input sizes for most benchmarks. The
communication ratio presented in Fig. 3d shows that with increasing input sizes,
less communication in comparison to the total number of memory accesses is
performed. This indicates that larger input sizes of NAS-OMP are less suitable
for communication-aware thread mapping in most cases. Although DC has a
high amount of communication, its ratio is very low.

Only a minority of the PARSEC benchmarks have a high heterogeneity, indi-
cating that PARSEC applications are generally less suitable for locality-based
thread mapping than those from NAS-OMP. Three PARSEC benchmarks, Fer-
ret, Dedup, and Streamcluster, are significantly imbalanced. These three applica-
tions have a pipeline communication pattern, similar to the one shown in Fig. 2d.
The load balance is again much lower than the communication balance (13.1 and
58.0 for Ferret, respectively). The communication amount differs widely between
applications, but PARSEC benchmarks have a high communication ratio in gen-
eral compared to NAS-OMP.

Summary. Summarizing our analysis, we find that a majority of the applications
have a high heterogeneity and are therefore suitable for locality-based thread
mapping. Some of these applications show varying degrees of communication



202 M. Diener et al.

imbalance and should therefore benefit also from balancing policies. On the
other hand, few applications appear to require only a balance-based mapping
policy, i.e., none of the imbalanced benchmarks have a low heterogeneity.

4 Mapping Policies

Several mapping policies that optimize different characteristics will be evaluated:
OS, Compact, Scatter, Locality, Distance, Balance and Balanced Locality. The
three last policies are introduced in this paper.

OS. The mapping performed by the operating system represents the baseline for
our experiments. We use the Linux kernel, version 3.8, which uses the Completely
Fair Scheduler (CFS) [18]. The scheduler focuses mostly on fairness and load
balance [18], and has no means for improving communication locality or balance.

Compact. The Compact mapping performs a round-robin scheduling of threads
to PUs such that neighboring threads are placed close to each other in the
memory hierarchy. This mapping can increase the locality of communication
behaviors where neighboring threads communicate frequently with each other.

Scatter. The Scatter policy represents the opposite of Compact. In this map-
ping, neighboring threads are placed far from each other in the hierarchy. In this
way, performance can be improved for applications with little communication or
a low communication ratio, by reducing competition for cache space. Compact
and Scatter do not take the actual communication behavior into account.

Locality. The Locality policy optimizes the communication behavior by map-
ping threads that communicate frequently close to each other in the memory hier-
archy. The mapping algorithm receives as input the communication matrix and
a description of the memory hierarchy of the system, generated with hwloc [4].
It outputs a thread mapping that maximizes the overall locality of communica-
tion. Several algorithms have been proposed to calculate this mapping. We use
the recently-proposed EagerMap algorithm [7] to calculate the Locality policy.

Distance. The Distance policy represents the opposite of Locality, placing
threads that communicate far apart in the memory hierarchy. We calculate this
mapping by inverting the communication matrix, subtracting each cell by the
maximum value of the matrix. We then apply the same mapping algorithm as
for the Locality mapping to the inverted matrix. This mapping can be useful
when the heterogeneity is high, but the communication ratio is low, similar to
the Scatter policy, but taking the actual communication behavior into account.

Balance. The Balance policy focuses on maximizing the communication balance
for the application. The mapping algorithm receives the communication vector
(introduced in Sect. 2) and the description of the memory hierarchy as input.
The mapping is calculated by selecting the thread with the highest amount of
communication that has not been mapped to a PU yet. This thread is then
mapped to the PU which currently has the lowest amount of communication



Locality and Balance for Communication-Aware Thread Mapping 203

mapped to it. This process is repeated until all threads are mapped to a PU.
This policy focuses only on balance and does not take locality into account.

Balanced Locality. The Balanced Locality policy focuses on increasing local-
ity while still maintaining the balance of the communication. First, it maps
threads that communicate frequently to nearby PUs, similar to the Locality pol-
icy. Second, for each level of the memory hierarchy, it keeps a similar amount
of communication for each cache memory of that level. We model the memory
hierarchy as a tree, where the leaves represent the PUs, and the other levels
of the tree represent cache levels and their nodes represent specific cache mem-
ories. Our algorithm groups threads with high amounts of communication to
the leaves of the tree, propagating this mapping to the parent nodes up to the
root node. We add threads to the leaves until the amount of communication is
higher than the average amount of communication per leaf. Summarizing, this
policy maps threads that communicate frequently to close PUs whose amounts
of communication are lower than the average amount of communication per PU.

Load Balance. We also evaluate the Load Balance of selected benchmarks to
compare it to the Communication Balance metric introduced in Sect. 2. We use
the number of executed instructions per thread as the metric for the load.

5 Performance Evaluation on a Real Machine

In this section, we evaluate the performance improvements that are achieved by
the thread mapping policies proposed in the previous section on a real machine.

Methodology. We run the experiments on a 4-socket system consisting of 4
Intel Xeon X7550 processors, with 8 cores and 2-SMT each (64 processing units
in total). Each core has private L1 and L2 caches, while the L3 cache is shared
among all the cores of the same processor. The same benchmarks with the same
number of threads and input sizes (NAS-OMP only with A and B) as in the
previous sections were evaluated. For each mapping policy presented in Sect. 4,
we show the average execution time of 10 runs. The OS mapping policy is our
baseline, and results are presented in terms of performance gains over this policy.
In all policies except OS, no thread migrations during execution were performed.

Results. Figure 5 shows the performance gains compared to the OS mapping.
For NAS-OMP with the A input, most benchmarks profit from the Locality
policy, as predicted by our analysis. With the A input, this policy never reduces
performance. The Balanced Locality policy has similar results as Locality for
all benchmarks except DC. For the benchmarks that have a nearest neighbor
communication pattern, the Compact policy improves performance, but reduces
it in some cases, such as LU. The Distance and Balance policies only show
performance improvements close to the Locality policy for the DC benchmark,
which benefits from a better balance due to its low communication ratio. The
Scatter policy never results in significant performance gains and reduces it in
many cases. On average, the Locality, Balanced Locality, and Compact policies
show improvements of more than 12 %, the other policies gain less than 4 %.



204 M. Diener et al.

Fig. 5. Performance improvements on the real machine compared to the OS mapping.

For the NAS-OMP benchmarks with the B input, the Locality policy reduces
performance for the benchmarks that are imbalanced (BT, LU, and SP). On the
other hand, Balanced Locality achieves the highest gains, proving that only tak-
ing locality into account is not sufficient for applications with this characteristic.
The Load Balance policy (not shown in the figure) has improvements of less than
5 % for the 3 benchmarks, indicating that balancing the load is not as effective
as balancing the communication in these cases. The other benchmarks show
a similar behavior as the A input, with lower average gains. This echoes our
discussion of the communication ratio, were we expected lower improvements
when the ratio decreases. On average, Balanced Locality achieved the highest
improvements, of 10.9 %. As several benchmarks benefit from balancing, the Bal-
ance policy has the second-highest improvements, of 7.3 %. The other policies
gain less than 5 %.

As discussed in Sect. 3, the PARSEC benchmarks generally have lower met-
rics than the NAS-OMP benchmarks, which is reflected in the performance
results. Five benchmarks (Ferret, Vips, X264, Dedup, and Streamcluster) bene-
fit from communication-aware thread mapping. Most of them benefit from both
the Locality and the Balance polices, but the Balanced Locality policy, which
combines both, results in the highest improvements in most cases. The Com-
pact, Distance, and Scatter policies do not improve performance consistently
and result in performance losses in several cases. On average, Balanced Locality
has again the highest gains of 6.7 %, followed by Balance (5.4 %) and Locality
(3.4 %).

Summary. We conclude that increasing locality is the most important way to
perform communication-aware thread mapping for most parallel applications.
However, many applications can benefit from improving the balance of the com-
munication, achieving higher performance gains and avoiding the performance



Locality and Balance for Communication-Aware Thread Mapping 205

reduction that a locality-based policy can cause. Simple mapping policies that
do not take the communication behavior into account only improve performance
in some cases and provide no consistent improvements over the OS.

6 Performance and Energy Consumption in a Simulator

Apart from performance, thread mapping can also improve the energy efficiency
of parallel applications, for two main reasons. By reducing execution time, static
energy consumption (leakage) will be reduced proportionally, since the processor
is in a high power-consuming state for less time. Additionally, reducing the
number of cache misses and traffic on the interconnections reduces the dynamic
energy consumption, leading to a more energy-efficient execution. This section
investigates the architectural impacts of thread mapping on the performance
and energy consumption using a microarchitecture simulator.

Table 1. Parameters of the simulated machine.

Parameter Value

System 2x 4-core processors; L1I/L1D cache per core; L2 cache shared
between 2 cores

Execution cores OoO; 1.8 GHz, 65 nm; 12 stages; 16 B fetch size; 96-entry
ROB; PAs branch predictor

L1I/L1D caches 32 KB, 8-way, 64 B line size; LRU policy; 1 cycle; MOESI
protocol; stride prefetch

L2 caches 2 MB, 8-way, 64 B line size; LRU policy; 4 cycles; stream
prefetch

Interconnection Cache line transfer: 2 cycles L2-to-L2; 32 cycles L2-to-DRAM

DRAM DDR2 667 MHz (5-5-5); 8 DRAM banks/channel; 2 channels;
1 KB row buffer

Methodology. We use an in-house, cycle-accurate x86 processor simulator [1].
The execution statistics of the simulator are fed into McPAT [12] to calculate the
energy consumption. Table 1 shows the simulation parameters. As benchmark,
we chose SP from NAS-OMP, and run it with input W and 8 threads. We
compare the Locality and Distance mappings in depth, which have the highest
performance difference for this configuration of SP in the simulated machine.

Results. Figure 6 presents the results for execution time, performance statistics
and energy consumption. The results are normalized to the values of the Dis-
tance mapping. Regarding the performance, the execution time was reduced by
10.1 %, caused by the reduction of the number of L2 cache misses (32.0 %) and a
reduction of the number of DRAM accesses (39.9 %). The processor memory read
time was reduced by 22.6 %. The higher data locality also led to a reduction of



206 M. Diener et al.

Fig. 6. Results of executing SP in the simulator, normalized to the Distance mapping.

the number of L2 invalidation messages and off-chip interconnection usage. The
reduction of the interconnection traffic and L2 misses enabled the L2 prefetcher
to issue 5.8 % more requests, which also contributed to the overall performance
gains.

The more efficient execution also reduced energy consumption. Leakage was
reduced by 10.1 % for all components, the same amount as the execution time.
As expected, dynamic energy consumption was reduced less, by 2.4 % overall,
leading to a total energy reduction of 6.1 %. Although there are reductions of the
energy consumed by the cores and L2 caches, of 5.5 % and 8.0 % respectively,
the extra prefetches reduced potential reductions of the L2 dynamic energy,
which comprises 23.2 % of the total L2 energy. The highest energy reductions
were achieved by the memory controller and the interconnections between the
L2 caches, and between the processors and the main memory, with reductions of
17.9 % and 22.4 % respectively. The interconnection savings are caused by less
off-chip searches, as well as less cache-to-cache and DRAM data transfers.

7 Related Work

Many techniques for thread mapping have been investigated previously, focusing
on balance-based or locality-based policies. Most balance-based policies depend
on characteristics of the parallel application and the underlying architecture,
such as memory usage or core utilization. Sasaki et al. [16] develop a schedul-
ing scheme for multi-threaded applications based on predicting the application
scalability to balance the resource utilization. The Extended Lowest Load tech-
nique [17] uses a heuristic that is based on the amount of time spent by each
core doing useful work to find the optimal target core for each thread. Pearce
et al. [15] argue that the limitation in load balancing-based mapping policies
is related to inaccurate load information. Depending on information about the
work units of the application and dependencies between them, they develop load
metrics and a cost model for re-correcting load imbalance.

In these approaches, locality issues and the communication behavior are not
considered. On the other hand, policies that perform communication-aware map-
ping mostly focus on improving the locality of communication without evaluating



Locality and Balance for Communication-Aware Thread Mapping 207

balance. For parallel applications that communicate through MPI, most previous
research focuses on methods to trace the messages and uses the information to
perform a process mapping. MPIPP [5] is a framework for process mapping, con-
sisting of a message tracer and mapping algorithm. Some papers evaluate process
mapping for particular applications, such as the NAS-MPI benchmarks [14]. For
applications that use OpenMP or Pthreads, most mapping solutions focus on
analyzing memory accesses to map threads that communicate on shared caches,
but do not address the balance issue [6,8].

8 Conclusions

Communication-aware thread mapping can improve the performance of paral-
lel applications on multicore systems. In this paper, we introduced metrics to
describe the communication behavior and determine if an application can benefit
from mapping policies that focus on the locality or the balance of communication.
We presented a mapping policy that increases locality while still maintaining the
balance. Our evaluation on a real system showed that this policy can provide the
highest improvements and avoids the performance losses that may occur using a
pure locality-based policy. We also provided an in-depth analysis of performance
and energy efficiency gains from thread mapping in a hardware simulator.

References

1. Alves, M.A.: Increasing energy efficiency of processor caches via line usage predic-
tors. Ph.D. thesis, Federal University of Rio Grande do Sul (2014)

2. Barrow-Williams, N., Fensch, C., Moore, S.: A communication characterisation of
Splash-2 and Parsec. In: International Symposium on Workload Characterization
(2009)

3. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: charac-
terization and architectural implications. In: International Conference on Parallel
Architectures and Compilation Techniques (2008)

4. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: hwloc: a generic framework for managing hardware
affinities in HPC applications. In: International Conference on Parallel, Distributed
and Network-based Processing (2010)

5. Chen, H., Chen, W., Huang, J., Robert, B., Kuhn, H.: MPIPP: an automatic
profile-guided parallel process placement toolset for SMP clusters and multiclus-
ters. In: International Conference on Supercomputing (2006)

6. Cruz, E.H.M., Diener, M., Alves, M.A.Z., Navaux, P.O.A.: Dynamic thread map-
ping of shared memory applications by exploiting cache coherence protocols. J.
Parallel Distrib. Comput. 74(3), 2215–2228 (2014)

7. Cruz, E.H.M., Diener, M., Pilla, L.L., Navaux, P.O.A.: An efficient algorithm for
communication-based task mapping. In: International Conference on Parallel, Dis-
tributed, and Network-Based Processing (2015)

8. Diener, M., Cruz, E.H.M., Navaux, P.O.A.: Communication-based mapping using
shared pages. In: International Parallel and Distributed Processing Symposium
(2013)



208 M. Diener et al.

9. Diener, M., Cruz, E.H.M., Navaux, P.O.A., Busse, A., Heiß, H.U.: kMAF: auto-
matic kernel-level management of thread and data affinity. In: International Con-
ference on Parallel Architectures and Compilation Techniques (2014)

10. Diener, M., Cruz, E.H.M., Pilla, L.L., Dupros, F., Navaux, P.O.A.: Characteriz-
ing communication and page usage of parallel applications for thread and data
mapping. Perform. Eval. 88–89, 18–36 (2015)

11. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel bench-
marks and its performance. Technical report, October 1999

12. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.: The
McPAT framework for multicore and manycore architectures: simultaneously mod-
eling power, area, and timing. ACM Trans. Archit. Code Optim. (TACO) 10(1),
5 (2013)

13. Luk, C., Cohn, R., Muth, R., Patil, H.: Pin: building customized program analysis
tools with dynamic instrumentation. In: SIGPLAN Conference on Programming
Language Design and Implementation (2005)

14. Mercier, G., Clet-Ortega, J.: Towards an efficient process placement policy for MPI
applications in multicore environments. In: Ropo, M., Westerholm, J., Dongarra,
J. (eds.) PVM/MPI. LNCS, vol. 5759, pp. 104–115. Springer, Heidelberg (2009)

15. Pearce, O., Gamblin, T., de Supinski, B.R., Schulz, M., Amato, N.M.: Quantifying
the effectiveness of load balance algorithms. In: Supercomputing (2012)

16. Sasaki, H., Tanimoto, T., Inoue, K., Nakamura, H.: Scalability-based manycore
partitioning. In: International Conference on Parallel Architectures and Compila-
tion Techniques (2012)

17. Tousimojarad, A., et al.: An efficient thread mapping strategy for multiprogram-
ming on manycore processors. In: International Conference on Parallel Computing
(2013)

18. Wong, C.S., Tan, I., Kumari, R.D., Wey, F.: Towards achieving fairness in the
Linux scheduler. SIGOPS Oper. Syst. Rev. 42(5), 34–43 (2008)


	Locality and Balance for Communication-Aware Thread Mapping in Multicore Systems
	1 Introduction
	2 Communication in Shared Memory
	3 Communication Behavior of the Benchmarks
	3.1 Methodology of the Experiments
	3.2 Results of the Communication Characterization

	4 Mapping Policies
	5 Performance Evaluation on a Real Machine
	6 Performance and Energy Consumption in a Simulator
	7 Related Work
	8 Conclusions
	References


