A Composable Deadlock-Free Approach
to Object-Based Isolation

Shams Imam ™), Jisheng Zhao, and Vivek Sarkar

Department of Computer Science, Rice University, Houston, USA
{shams, jisheng.zhao,vsarkar}@rice.edu

Abstract. A widely used principle in the design of concurrent programs
is isolation — the property that a task can operate on shared data with-
out interference from other tasks. In this paper, we introduce a new
approach to object-based isolation that is guaranteed to be deadlock-
free, while still retaining the rollback benefits of transactions. Further,
our approach differentiates between read and write accesses in its concur-
rency control mechanisms. Finally, since the generality of our approach
precludes the use of static ordering for deadlock avoidance, our runtime
ensures deadlock-freedom by detecting and resolving deadlocks at run-
time automatically, without involving the programmer.

Keywords: Object-Based isolation - Deadlock freedom - Lock compo-
sition + Read-Write locks + Delimited continuations

1 Introduction

Designing and implementing correct and efficient concurrent programs is a noto-
riously challenging task due to the possibility of data races. Programs must use
concurrency control mechanisms to ensure that multiple threads of execution do
not interfere with each other while sharing data in memory. One approach for
enforcing mutual exclusion is to use critical sections that execute in isolation
with respect to other interfering critical sections. Isolation is the property that
a thread can access shared data without interference from other threads.
Threads use locks to guard the operations performed while the lock is held;
this enforces isolation properties of a thread’s guarded operations. The domi-
nant concurrency control mechanism in high-level languages, such as Java and
C+#, are mutual-exclusion locks [2]. Parallel programming models (e.g. OpenMP
4.0 [20], Cilk [8]) also rely on locks for implementing mutual exclusion. In fact,
there is comprehensive empirical evidence that programmers almost always use
mutual-exclusion locks to enforce isolation properties [7]. Transactional memory
offers a promising alternative to lock-based synchronization as a mechanism for
isolation. A programmer can reason about the correctness of code within a trans-
action and need not worry about interactions with other concurrently executing
transactions [14]. However, re-execution of conflicting transactions, and the log-
ging of data accesses to prepare for the possibility of rollback, add overhead and
often lead to poor performance even in the presence of moderate contention.

© Springer-Verlag Berlin Heidelberg 2015
J.L. Traff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 426-437, 2015.
DOI: 10.1007/978-3-662-48096-0_33

A Composable Deadlock-Free Approach to Object-Based Isolation 427

The focus of this work is to provide a deadlock-free construct to sup-
port shared-exclusive object-based isolation in concurrent programs. When
threads can not coordinate their accesses to shared data, deadlocks can occur
while acquiring isolation privileges. When a deadlock can occur, a dynamically
assigned low-priority thread is forced to roll back and release privilege(s) it is
holding that is preventing a high-priority thread from making progress. Once
released, this allows the high-priority thread to acquire the privilege and make
progress. After the high-priority thread releases the conflicting privileges, the
low-priority thread can resume execution. Our construct combines the features
of transactions and shared-exclusive locks to resolve deadlocks and to minimize
re-executions due to conflicts. It also enables promotion of shared privileges to
exclusive privileges by rolling back part of the computation and re-executing it
with an exclusive privilege.

In summary, the contributions of this paper are as follows:

— We introduce object-based isolation as a high-level construct for deadlock-free
shared-exclusive mutual-exclusion.

— We describe an implementation approach for object-based isolation that
resolves deadlocks at runtime, exploits the rollback benefits of transactions,
and differentiates between read and write accesses in its concurrency control
mechanisms.

— We compare the performance obtained by our implementation of object-
based isolation with that of Java’s synchronized statement, the regular and
shared-exclusive locks available in the JDK [13], and with the Multiverse STM
library [18].

2 Background and Motivating Example

Large multi-threaded programs that involve concurrency control via the use of
multiple locks can be challenging to write. Deadlocks can occur when multiple
threads need the same locks but obtain them in a different order. Always acquir-
ing locks in a consistent order ensures that programs will not deadlock. But
this can be challenging (or even impossible) to ensure as the dynamic dispatch
capabilities or library composition features in many languages make it difficult
to know a program’s exact call graph structure at compile-time.

Using read-write (shared-exclusive) locks can significantly improve parallel
performance if the protected data is read frequently and modified only occa-
sionally. They can be acquired either for reading or for writing: multiple readers
may hold the lock simultaneously, but writers must acquire exclusive ownership
of the lock. Along with deadlocks, an issue while composing software compo-
nents is the need to promote read privileges to write privileges and vice versa.
Promoting (demoting) a write privilege to a read privilege carries no restrictions
and can be supported trivially with reentrant behavior. However, promoting a
read privilege to a write privilege is usually not permitted as doing so can lead
to inconsistent behavior and is prone to deadlocks. As we will see in Sect. 3.3,
our construct also supports promotion of read privileges to write privileges.

428 S. Imam et al.

2.1 Motivating Example

Our motivating example is the classic bank transaction; a transaction must debit
one account and credit another with a particular amount of money when legal
to do so. For proper accounting, it is essential that either both operations suc-
ceed or neither operation succeeds. This means that both operations should be
performed with transactional semantics to ensure the integrity of the system’s
state.

Listing 1.1. Classic bank transaction Listing 1.2. Classic bank transaction

example using read-write locks. example using transaction memory solu-
| class BankTransactionRWLock { tion with atomic blocks.
% def trySafe(from, to, amount) { 1 class BankTransactionAtomic {

lock (from.readLock) { def trySafe(from, to, amount) {

2
3 atomic {

4 if from.balance() > amount

5 transfer (from, to, amount)

3
4 if from.balance() > amount

5 transfer (from, to, amount)
6 return true

7 else 6 return true

8 return false - else

9 T} 8 return false

10 def transfer (from, to, amount) { 5 } 3

11 val l?w = min(from, to) 10 def transfer (from, to, amount) {
12 val high = max(from, to) . atomic {

13 lock (low.writeLock) { 12 from.debit (amount)
14 lock (high.writeLock) { 13 to.credit (amount)
15 from.debit (amount) 1} %}

16 to.credit (amount) 5}

7YY+ %

Listing 1.1 uses read-write locks to ensure fine-grained synchronization to
increase concurrency. To avoid deadlocks, it uses ordering of the bank accounts
to retrieve the locks (lines 11-12). However, composing of trySafe and transfer
can still lead to deadlock since the locks individual instances can still be acquired
out of order from multiple calls. In addition, deadlocks will also occur in systems
that do not allow promotion of read privileges (in trySafe()) to write privileges
(in transfer()).

Listing 1.2 displays the same example written using atomic blocks that offer
software transactional memory (STM) support. Deadlock is not possible in this
example as transactions never wait for one another; at least one transaction is
guaranteed to succeed in the presence of conflicts. In STMs, a conflict occurs
when two concurrent uncommitted transactions perform conflicting read or write
operations on the same bank accounts. However, the likelihood of aborting due
to intervening conflicting commits increases in longer running transactions or in
write-heavy workloads, causing deterioration in performance.

3 Object-Based Isolation as a High-Level Construct for
Concurrent Programming

In this section, we introduce Object-Based Isolation (OBI) as a high-level con-
struct for concurrent programming. Our goal for OBI is to combine the program-
mability of scoped synchronized blocks with the efficiency of read-write locks

A Composable Deadlock-Free Approach to Object-Based Isolation 429

(RWLs) and the semantic guarantees of transactional execution (i.e. isolation,
deadlock freedom, optimistic concurrency). As with locks, mutual exclusion is
only guaranteed between instances of isolated statements; no such guarantees
exist between isolated and non-isolated statements. Assuming that there are
no data races between isolated and isolated/non-isolated statements, an
isolated statement executing in parallel is guaranteed to produce the same
answer (for the same input state) as when no other task/thread is executing at
the same time [14]. As with transactions (but not with locks), the programmer
is spared the burden of guaranteeing deadlock freedom — that burden is passed
on to the implementation instead.

As we will see, our proposed isolated statement is scoped, and (unlike trans-
actions) allows the user to specify a list of objects with read or write (R/W)
modes for which isolation is desired. Two isolated statements are only guaran-
teed to execute in mutual-execution if they have a non-conflicting intersection
in their shared-exclusive object sets. This allows isolated statements to exe-
cute critical sections that are guarded by explicitly specified objects, unlike in
transactions where critical sections appear to be guarded globally leading to
deadlock scenarios [16]. In transactional memory, a data access pattern with
frequent writes to shared data will induce numerous aborts; such issues do not
arise with isolated statements. isolated statements can be nested, and inner
statements can add to the set of objects acquired. No total order is imposed
on the nested isolated object list. This capability allows for the expression of
“non-cautious” concurrency patterns® [21].

3.1 isolated Statements

Listing 1.3. Classic bank transaction exam- The motivation for OBI is that
ple using isolated blocks with read and there are many cases when the
write privileges. programmer knows the shared or
1 class BankTransactionIsolated { exclusive mode for the set of
2 def trySafe(from, to, amount) { . . .
. isolated (read(from)) { objects that will be accessed in
4 if from.balance() > amount the bOdy of an isolated state-
5 transfer (from, to, amount) . .

. return true ment. The specification of these
7 else modes in the isolated argument
8 f . .
Doy e atse object set helps the runtime by
10 def transfer(from, to, amount) { explicitly stating the objects that
11 isolated(write (from), write(to)) { .. .
N from.debit (amount) need to be tracked. Listing 1.3 dis-
13 to.credit (amount) plays the bank transaction exam-
4} r}

ple from Sect. 2.1 using isolated
statements. As with Java’s synchronized construct, isolated is reentrant and
scoped guaranteeing the absence of dangling unlock operations. Like RWLs,
isolated statements can acquire (R/W) access privileges on the argument

! Cautious patterns require all reads to shared data to performed before mutations to
any of them.

430 S. Imam et al.

object. Unlike Java’s RWLs, object sets in nested isolated blocks allow pro-
motion of an object’s access privilege from shared mode to exclusive mode
(Sect. 3.3). For nested isolated constructs we follow open nested semantics [9],
they do not enforce atomicity. Our prevention scheme (Sect. 3.4) avoids deadlock
while acquiring privileges. While sequential composition of transactions to form
a single, larger transaction can cause deadlocks [16], composition of isolated
statements can never cause a deadlock.

3.2 Execution Mechanism

Since we allow free composition of isolated statements, we cannot guarantee
an order in the acquisition of privileges by isolated statements. Similarly, it is
impossible to prevent scenarios where a read privilege needs to be promoted to
a write privilege. As mentioned in Sect. 2.1, both these behaviors are prone to
deadlocks. As a result, our approach dynamically detects and resolves deadlocks
by allowing instances of isolated statements to abort by rolling back and re-
executing with possibly modified privileges when it is safer to do so.

Roll backs during the execution of a
thread can leave shared data in an incon-
sistent state. Two key observations help
resolve this concern. Firstly, the inconsis-
tency occurs only due to objects that were

Listing 1.4. Simple Counter that sup-
ports the clone-merge protocol. For
simple data structures, these can be
automated by a compiler.

1 class Counter (var value) {

> def increment (amount) { being modified, i.e. those objects execut-
Ly value += amount ing with a write privilege. We resolve this

def clone() { issue by employing a clone-merge proto-
S return new Counter(value) col where a clone of the object is created
s def merge(other: Counter) { and used inside the body of the isolated.
BN this.count = other.count; When the isolated statement completes

successfully, this private clone is trivially
merged back into the source object since only one isolated gets to run with
write privileges. If an isolated statement aborts, the clone is not merged and
discarded. Listing 1.4 displays a simple integer counter class that supports
cloning and merging. Relying on the clone-merge protocol limits the applica-
bility of our approach on classes for which the source code is not available and a
clone method is cannot be generated automatically. The other approaches, such
as transactional memory and locks, do not suffer from this limitation.
Secondly, we need a scheme to dynamically identify the target program points
when a computation is rolled back. To address this concern, we use delimited
continuations (DeCont) [6] to roll back the computation. Each isolated state-
ment executes as a DeCont and the call stack is recursively unwound from nested
isolated statements to a target isolated statement during rollback. Since our
approach works on clones and only commits the results when successful, we can
handle roll backs very easily. When re-executing an isolated statement, a new
DeCont is created and executed.
With OBI, tracking every read and write is obviated as the programmer
explicitly declares the read and write object sets. Unlike transactions where

A Composable Deadlock-Free Approach to Object-Based Isolation 431

every mutated object is committed at the end of the transaction, only object sets
opened in write mode are committed at the end of an isolated statement. We
employ a pessimistic control policy [9], where isolated statements only execute
their statements once they are guaranteed it is safe to do so. While the likelihood
of intervening conflicting commits increases in longer running transactions, such
situations do not arise with isolated statements. The guarantee relies on the
use of read-write lock semantics where an isolated statement is forced to wait
until it successfully acquires the desired read-write privilege.

In traditional transactions, a conflict is resolved by aborting and re-executing
or delaying one of the conflicting transactions. Similarly in conflicting scenarios,
at least one isolated statement aborts and re-executes later. However, the
difference with transactions lies in the situations identified as conflicts. With
our OBI, there are two scenarios that can cause conflicts. The first is when we
dynamically detect that a nested isolated statement is attempting to acquire
a write privilege for a previously acquired read privilege. The second is when
isolated statements participate in a deadlock cycle while attempting to obtain
a privilege as is possible in the bank transaction example.

3.3 Read-to-Write Promotion

It is not safe to simply promote a read privilege to a write privilege. Even if the
write privileges are promoted serially without rollback, the invariants that were
true while executing with read privileges may no longer hold due to intervening
writes. To address this issue, we recursively roll back the computation to the
outermost isolated statement that acquired the read privilege on the object.
The privilege for that instance of the isolated statement is dynamically updated
to a write privilege, and the statement re-executed. Listings 1.5 and 1.6 display
an example of the transformation that happens dynamically at runtime before
and after the read-to-write promotion, respectively. The read privilege for x in
the outermost isolated on line2 is promoted to a write, and the statements in
lines 3 to 7 re-executed.

Listing 1.5. Snippet with nested Listing 1.6. Snippet with nested
isolated statements that require read- isolated statements after read-to-write
to-write promotion. Note that these promotion. Note that this promotion
promotions could occur across deeply happens to the dynamic instance being
nested blocks within different function executed and not to the static version of

calls. the code.

1 isolated (write(w)) { 1 isolated (write(w)) {

2 isolated (read(x)) { 2 isolated (write(x)) { //promoted

3 isolated (read(y)) { 3 isolated (read(y)) {

1 isolated (read(x)) { 1 isolated (read(x)) { //
isolated (write(x)) { unchanged

5 isolated (write(x)) {
7} Y} 6
7}

432 S. Imam et al.

3.4 Deadlock Resolution

While executing nested isolated statements, we rely on dynamically detecting
and resolving deadlocks. We associate unique ids with threads to prioritize them:;
these priorities are used to resolve conflicts. When a thread acquires a read or
write privilege on an object, the thread is registered as an owner of the privilege
on the object. When another thread attempts to acquire the same privilege and
fails, it compares its priority with the owner of the lock. If it has a lower priority,
it aborts by rolling back its computation releasing any read or write privileges it
had acquired. If the failed thread has a higher priority order, it re-attempts to
acquire the lock. The lower priority thread will eventually release the lock, either
by aborting as mentioned above (Sect.3.2) or by completing successfully, and
allow the higher priority thread to continue with its execution. This prioritization
strategy introduces unfairness in its scheduling policy but allows livelocks to be
ruled out in our isolated construct.

4 Implementation

In this section, we discuss our implementation of OBI presented in Sect. 3.
Despite any productivity promises, an abstraction must be implementable in
an efficient and scalable fashion for it to be accepted by programmers. The
isolated construct must incur a sufficiently low overhead to be useful in prac-
tice, especially for small transactions. Our implementation [12] is a Java-based
task-parallel runtime that supports async-finish style computations, though
our ideas can also be implemented in other thread-based languages including
C/C++. Our implementation conforms to the constraints imposed by a stan-
dard Java Virtual Machine (JVM). In particular, standard JVMs do not provide
support for DeConts or for storing and restoring the stack. The DeConts created
are thread independent and can be resumed on any worker thread.

We use an extended version of the open source bytecode weaver provided by
the Kilim framework [23] to support DeConts. The Kilim bytecode weaver works
by transforming the code of methods which can trigger rollback. It recognizes
such methods by the presence of a SuspendableException exception in the
method signature. It is important to note that no actual exceptions are thrown
or caught which minimize the overhead of capturing and resuming continuations.
Instead, the transformation performed is similar to a continuation passing style
transformation, except that only methods that can suspend are transformed.

The runtime maintains a pool of custom RWLs, this pool can be extended to
be one per user object. However, for ease of implementation we maintain a fixed
size list and hash objects to one of the locks. When an isolated block requires
a read or write privilege on an object, it hashes the object to a read-write lock
and attempts to acquire the read or write privilege. During a deadlock or a
read-to-write promotion conflict, the computation is rolled back by capturing
the continuation. In other failed attempts, the task suspends and registers itself
on a wait list and is resumed by moving itself into the work queue when the

A Composable Deadlock-Free Approach to Object-Based Isolation 433

lock is available. Using continuations allows the worker thread to execute other
ready tasks while suspended tasks are stored away in a separate queue.

5 Experimental Results

In this section, we present an experimental evaluation of the isolated construct
introduced in this paper. We compare it against existing mutual-exclusion con-
structs available in the JDK - synchronized statement, JDK’s ReentrantLock,
and JDK’s ReentrantReadWriteLock [13]. The JDK variants of the benchmarks
were written to ensure there is no conflict (deadlock or read—to-write promo-
tion) scenario during execution. We also compare our implementation on micro-
benchmarks against the Multiverse library [18] whose STM implementation is
based on [3]. We ran the benchmarks on four eight-core IBM POWERT proces-
sors running at 3.8 GHz each. Each node contains 256 GB of RAM; the software
stack includes IBM Java SDK Version 7. The JVM configuration flags used were
(-XX:-UseGCOverheadLimit -Xmx16384m -XX:+UseParallelGC -XX:+UseParalleloldec). Each bench-
mark was configured to run using 32 worker threads and run for thirty iterations
in six separate JVM invocations. The arithmetic mean of the best fifty execu-
tion times (from the hundred and eighty iterations) are reported. Using the best
execution time allows us to minimize the effects of JVM warm up, just-in-time
compilation, and garbage collection.

5.1 Micro-Benchmarks

First, we compare the performance of the isolated construct on four
microbenchmarks. The first microbenchmark uses Bank Transaction (BT) like
those shown in Listings 1.1, 1.2, and 1.3. The second is an integer counter (CTR)
microbenchmark where the increments to the counter are protected in mutual-
exclusion blocks. The last two microbenchmarks are a concurrent read-write
benchmarks on dictionary (CD) and sorted linked list (CSLL) data structures
where the write percent is kept at 10 percent. The read and write operations
in the CD benchmark takes O(1) time while in the CSLL benchmark they take
O(N) time. All four lock variants perform similarly in BT, CTR, and CD as the
critical section blocks are relatively short. The Multiverse STM version performs
poorly compared to the other variants in the nested transactions BT benchmark.
In CSLL, the critical section blocks take O(N) time, hence the read-write lock
version performs better than the reentrant lock version. The synchronized ver-
sion performs better than the lock versions. The isolated version performs
better as its use of continuations avoids blocking the worker threads allows all
available read requests to be processed when there are no pending writes. The
performance benefit comes from avoiding the need to context switch threads.
Multiverse STM performs best on CSLL with a single transaction encapsulating
the entire read or write operation (Fig.1).

434 S. Imam et al.

<t
<
~—~ [a]
n -}
O —
(5] p—
2]
g B o8 *
o e i
=
=
5 N
[}
&
0 © ®
% « - =
< _— S
T
BankTransaction Counter Dictionary SortedList

’ [[] Reentrant Lock [] ReadWrite Lock [| synchronized [l Transverse STM [l isolated

Fig. 1. Bank Transaction involves 6 million transactions on 8 thousand bank accounts.
Counter includes 6 million increment operations each on 8 counter objects. The Dic-
tionary benchmark 1 million operations with a write percent of 20 (split equal in put
and remove) and remaining as read get operations. The SortedList benchmark 100
thousand operations with a write percent of 20 (split equal in add and remove) and
remaining as read get operations. The y-axis represents program execution time, hence,
smaller is better.

5.2 Macro-Benchmarks

We consider two larger benchmarks: Labyrinth and Parallel Breadth-First Search
(BFS). The Labyrinth benchmark from the STAMP suite [17] is characterized by
long transaction lengths, large read-sets, large write-sets, long transaction times,

0
40 [T T T T] 8
w0
it | £
Na¥ [-
30 43
E
H
20 | 15 ol i
Q
&
or | g .\.\'\0—0—0
\ \ \ \ % Ul \ \ L
0 10 20 30 0 10 20 30
Number of Worker Threads Number of Worker Threads
—@— Reentrant Lock —jll— ReadWrite Lock —@— Reentrant Lock —jll— ReadWrite Lock
—@— synchronized —%— isolated —@— synchronized —%— isolated

(a) (b)

Fig. 2. Labyrinth (left) using the configuration 512 randomly generated inputs on
dimension of 512 x 512 x 7. Simple BFS (right) on a randomly generated connected
graph with 500 thousand nodes and 5 million edges. The y-axis represents program
execution time, hence, smaller is better.

A Composable Deadlock-Free Approach to Object-Based Isolation 435

and very high contention. The high contention causes the reentrant lock and
synchronized versions to perform poorly with very low scalability. The read-
write lock and isolated versions show improved performance as they allow
multiple read requests to proceed in parallel. Simple BFS is a naive parallel
implementation of the sequential BFS algorithm. In the BFS benchmark, the
read-write lock, reentrant lock, and synchronized variants allocated one lock per
graph node. The isolated version in our implementation shows higher overheads
as it relies on the runtime to allocate a handful of locks (256 to be exact) and
hashes on them (Fig.2).

Note that the Java VM provides native support for synchronized state-
ments and locks, but not for continuations. Our implementation of isolated
uses DeConts without modifying the VM; the performance of our implemen-
tation would be greatly improved by using native support for DeConts in the
VM. Work by Stadler et al. [24] to provide such native support in a Java VM
reported over two orders magnitude speedup on micro-benchmarks compared to
a bytecode transformation approach.

6 Related Work

Most of the state-of-art lock-free language constructs are based on transactional
memory (TM) systems [10]. Both hardware transactional memory (HTM) [10]
and software transactional memory (STM) [9] guarantee lock-free and dead-
lock avoidance by employing a rollback. By using TM, users can employ both
coarse-grain and fine-grain parallelism, but have to pay for the overhead of roll-
back, especially for contention intensive (i.e. high conflict rate) critical sections.
Recently, Aida [15] provides a high-level minimalistic programming model simi-
lar to Transactional Memory [10], with a single construct (async isolated) to
define blocks of code to be executed concurrently and in isolation. Aida guaran-
tees deadlock-freedom and livelock-freedom. Both STM and Aida need compiler
support to instrument the memory accesses and enable the rollback mechanism.

Galois [19] is a runtime library-based approach, it provides library constructs
called optimistic iterators for packaging optimistic parallelism as iterations over
sets and for specifying the scheduling policy, and uses runtime scheme for detect-
ing the conflicting shared data accesses and recovering from those unsafe access
(i.e. rollback). Rajwar and Goodman based their technique on the observation
that programmers often used coarse-grained locking to be sure “all bases are
covered” and that programs can often run correctly even if the lock is never
acquired [22]. Hence, the conservative locking strategies that programmers often
use to ensure the correctness can frequently be elided dynamically, provided that
one can detect and roll back concurrent updates that would have been prevented
had the locking been performed. They built this work on speculative lock elision
by automatically wrapping transactions around the critical sections of sequences
of instructions detected at runtime as locks.

Lock inference [1,11] is a compiler-assisted approach to building efficient crit-
ical sections while also ensuring correctness. The basic idea is to employ compile-
time analysis to identify the “really necessary” locks for the given critical section.

436 S. Imam et al.

The efficiency depends on whether the static program analysis can precisely iden-
tify the lock set that should be applied to the critical section, i.e. in the presence
of ambiguous object references a coarse-grain locking has to be chosen.

In this paper, we introduced the object-based isolation that is a runtime
based mechanism provided to the user to efficiently build parallel application
with guaranteed deadlock avoidance and livelock-freedom. The user interface is
a language construct-like API, the advantage of this approach is that it provides
the user a simple interface to build fine-grain locking based parallel applications,
i.e. users can explicitly specifiy the mutual-excluded objects via our APIs. This
is also a lightweight isolation support compared with Aida [15] and STM [10]
which backups all objects within the language constructs specified scope. The
user does not need to specify task scheduling strategies like Galois, our parallel
runtime implicitly supports efficient scheduling mechanism (i.e. work-stealing).

Other approaches have exploited using lock-based implementation to improve
the efficiency of STM. Ennals utilizes a hybrid policy where a pessimistic app-
roach is used for write privileges, whereas an optimistic approach is used for read
accesses [5]. Dice and Shavit used an optimistic control policy and only obtain
locks before committing their writes, aborting the transaction if necessary [4].
Object-based isolation employs a pessimistic control policy for both read and
write privileges (i.e. obtain the read or write privileges eagerly). In [5], dead-
locks are detected while acquiring locks and a transaction can request another
transaction to abort. [4] employs timeouts (for acquiring process) to abort a
transaction and avoid deadlocks. Our approach does not require signaling the
other task, a lower priority task cooperatively aborts its transaction to allow
another task to make progress. The rollbacks of isolated statements happen
only till the relevant outer boundary (for example, as shown in the example
in Listing 1.6), unlike the above mentioned transaction approaches where the
outermost transaction needs to be aborted.

7 Summary

We introduced a new composable approach to object-based isolation that is guar-
anteed to be deadlock-free, while still retaining the rollback benefits of trans-
actions. Further, our approach differentiates between read and write accesses
in its concurrency control mechanisms. Our construct incurs a cost for creat-
ing and merging clones which may, for some (large) data structures, require
effort to implement efficiently by the programmer. We are currently exploring
the possibility of implementing the isolated construct with native VM sup-
port to extract more performance. We, ambitiously, envision a scenario where
the synchronized statement is replaced by the isolated construct semantics
in modern programming languages.

Acknowledgments. We are very grateful to the anonymous reviewers, John Mellor-
Crummey, Karthik Murthy, and Rishi Surendran for their insightful comments on early
drafts that substantially improved the paper.

A Composable Deadlock-Free Approach to Object-Based Isolation 437

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Cherem, S., Chilimbi, T.M., Gulwani, S.: Inferring locks for atomic sections. In:

PLDI 2008, pp. 304-315 (2008)

Demsky, B., Lam, P.: Views: synthesizing fine-grained concurrency control. ACM
Trans. Softw. Eng. Methodol. 22(1), 4:1-4:33 (2013)

Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194-208. Springer, Heidelberg (2006)

Dice, D., Shavit, N.: Understanding tradeoffs in software transactional memory.
In: CGO 2007, pp. 21-33. IEEE Computer Society, Washington (2007)

Ennals, R.: Software transactional memory should not be obstruction-Free. Tech-
nical report, Intel Research Cambridge (2006)

Felleisen, M.: The theory and practice of first-class prompts. In: POPL 1988, pp.
180-190 (1988)

Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. In: POPL 2004, pp. 256-267. ACM (2004)

Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: PLDI 1998, pp. 212-223 (1998)

Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan and
Claypool Publishers, San Rafael (2010)

Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: ISCA 1993, pp. 289-300. ACM Press (1993)

Hicks, M., Foster, J.S., Pratikakis, P.: Lock inference for atomic sections. In:
TRANSACT 2006, Ottawa, Canada, May 2006, pp. 95-102 (2006)

Imam, S., Sarkar, V.: Habanero-java library: a java 8 framework for multicore
programming. In: PPPJ 2014, pp. 75-86. ACM (2014)

Lock (Java platform SE 7), September 2014. http://docs.oracle.com/javase/7/
docs/api/java/util/concurrent /locks/Lock.html

Larus, J., Kozyrakis, C.: Transactional memory. Commun. ACM 51(7), 1364800,
80-88 (2008)

Lublinerman, R., Zhao, J., Budimli¢, Z., Chaudhuri, S., Sarkar, V.: Delegated
isolation. In: OOPSLA 2011, pp. 885-902 (2011)

Martin, M., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity
semantics. IEEE Comput. Archit. Lett. 5(2), 17-17 (2006)

Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: stanford transac-
tional applications for multi-processing. In: IISWC, pp. 35-46. IEEE (2008)
Multiverse: software transactional memory for Java and the JVM, April 2012.
http://multiverse.codehaus.org/overview.html

Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph ana-
lytics. In: SOSP 2013, pp. 456-471. ACM (2013)

OpenMP API, version 4.0, July 2013. http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf

Pingali, K., et al.: The tao of parallelism in algorithms. In: PLDI 2011, pp. 12-25.
ACM (2011)

Rajwar, R., Goodman, J.R.: Speculative lock elision: enabling highly concurrent
multithreaded execution. MICRO 34, 294-305 (2001)

Srinivasan, S., Mycroft, A.: Kilim: isolation-typed actors for java. In: Vitek, J. (ed.)
ECOOP 2008. LNCS, vol. 5142, pp. 104-128. Springer, Heidelberg (2008)
Stadler, L., Wimmer, C., Wiirthinger, T., Mossenbock, H., Rose, J.: Lazy contin-
uations for java virtual machines. In: PPPJ 2009, pp. 143-152 (2009)

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/Lock.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/Lock.html
http://multiverse.codehaus.org/overview.html
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

	A Composable Deadlock-Free Approach to Object-Based Isolation
	1 Introduction
	2 Background and Motivating Example
	2.1 Motivating Example

	3 Object-Based Isolation as a High-Level Construct for Concurrent Programming
	3.1 isolated Statements
	3.2 Execution Mechanism
	3.3 Read-to-Write Promotion
	3.4 Deadlock Resolution

	4 Implementation
	5 Experimental Results
	5.1 Micro-Benchmarks
	5.2 Macro-Benchmarks

	6 Related Work
	7 Summary
	References

