
Scalable Data-Driven PageRank: Algorithms,
System Issues, and Lessons Learned

Joyce Jiyoung Whang(B), Andrew Lenharth,
Inderjit S. Dhillon, and Keshav Pingali

University of Texas at Austin, Austin, TX 78712, USA
{joyce,inderjit,pingali}@cs.utexas.edu

lenharth@ices.utexas.edu

Abstract. Large-scale network and graph analysis has received consid-
erable attention recently. Graph mining techniques often involve an iter-
ative algorithm, which can be implemented in a variety of ways. Using
PageRank as a model problem, we look at three algorithm design axes:
work activation, data access pattern, and scheduling. We investigate the
impact of different algorithm design choices. Using these design axes,
we design and test a variety of PageRank implementations finding that
data-driven, push-based algorithms are able to achieve more than 28x
the performance of standard PageRank implementations (e.g., those in
GraphLab). The design choices affect both single-threaded performance
as well as parallel scalability. The implementation lessons not only guide
efficient implementations of many graph mining algorithms, but also pro-
vide a framework for designing new scalable algorithms.

Keywords: Scalable computing · Graph analytics · PageRank · Multi-
threaded programming · Data-driven algorithm

1 Introduction

Large-scale graph analysis has received considerable attention in both the
machine learning and parallel programming communities. In machine learning,
many different types of task-specific algorithms have been developed to deal with
massive networks. In parallel computing, many different parallel programming
models and systems have been proposed for both shared memory and distributed
memory settings to ease implementation and manage parallel programs.

Recent research has observed that distributed graph analytics can have a sig-
nificant slowdown over shared-memory implementations, that is, the increase in
communication costs are not easily made up for by increase in aggregate process-
ing power or memory bandwidth. Furthermore, a remarkable number of “large”
graphs fit in the main memory of a shared memory machine; it is easy to fit
graphs with tens of billions of edges on a large workstation-class machine. Given
these factors, it is worth understanding how to efficiently parallelize graph ana-
lytics on shared-memory machines. A better understanding of how to implement
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 438–450, 2015.
DOI: 10.1007/978-3-662-48096-0 34

Scalable Data-Driven PageRank 439

fast shared-memory analytics both greatly reduces the costs and enables richer
applications on commodity systems. Better implementation strategies also help
distributed implementations, as they tend to use shared-memory abstractions
within a host.

Many graph mining techniques usually involve iterative algorithms where
local computations are repeatedly done at a set of nodes until a convergence
criterion is satisfied. Let us define active nodes to be a set of nodes where com-
putations should be performed. Based on how the active nodes are processed, we
can broadly classify these iterative graph algorithms from three different points
of view: work activation, data access pattern, and scheduling. In this paper,
we present general approaches for designing scalable data-driven graph algo-
rithms using a case study of the PageRank algorithm. In particular, using the
three different algorithm design axes (i.e., work activation, data access pattern,
and scheduling), we present eight different formulations and in-memory parallel
implementations of PageRank algorithm. We show that by considering data-
driven formulations, we can have more flexibility in processing the active nodes,
which enables us to develop work-efficient algorithms. We focus our analysis on
PageRank in this manuscript, but our approaches and formulations can be easily
extended to other graph mining algorithms.

2 Work Activation

We first classify algorithms into two groups based on work activation: topology-
driven and data-driven algorithms. In a topology-driven algorithm, active nodes
are defined solely by the structure of a graph. For example, an algorithm which
requires processing all the nodes at each iteration is referred to as a topology-
driven algorithm. On the other hand, in a data-driven algorithm, the nodes
are dynamically activated by their neighbors, i.e., the nodes become active or
inactive in an unpredictable way. In many applications, data-driven algorithms
can be more work-efficient than topology-driven algorithms because the former
allows us to concentrate more on “hot spots” in a graph where more frequent
updates are needed.

2.1 Topology-Driven PageRank

To explain the concepts in more detail, we now focus our discussion on PageRank
which is a key technique in Web mining [4]. Given a graph G = (V, E) with a
vertex set V and an edge set E , let x denote a PageRank vector of size |V|. Also,
let us define Sv to be the set of incoming neighbors of node v, and Tv to be the
set of outgoing neighbors of node v. Then, node v’s PageRank, denoted by xv, is
iteratively computed by x

(k+1)
v = α

∑
w∈Sv

x(k)
w

|Tw| + (1 − α), where x
(k)
v denotes the

k-th iterate, and α is a teleportation parameter (0 < α < 1). Algorithm 1 presents
this iteration, which is the traditional power method that can be used to compute
PageRank. Given a user defined tolerance ε, the PageRank vector x is initialized
to be x = (1 − α)e where e denotes the vector of all 1’s. The PageRank values are
repeatedly computed until the difference between x

(k)
v and x

(k+1)
v is smaller than ε

for all the nodes. Since the Power method requires processing all the nodes at each
round, it is a topology-driven algorithm.

440 J.J. Whang et al.

Algorithm1. Topology-driven PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1 − α)e
2: while true do
3: for v ∈ V do

4: x(k+1)
v = α

∑

w∈Sv

x(k)
w

|Tw|
+ (1 − α)

5: δv = |x(k+1)
v − x(k)

v |
6: end for
7: if ‖δ‖∞ < ε then
8: break;
9: end if
10: end while

11: x =
x

‖x‖1

Algorithm2. Data-driven PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1 − α)e
2: for v ∈ V do
3: worklist.push(v)
4: end for
5: while !worklist.isEmpty do
6: v = worklist.pop()

7: xnew
v = α

∑

w∈Sv

xw

|Tw|
+ (1 − α)

8: if |xnew
v − xv| ≥ ε then

9: xv = xnew
v

10: for w ∈ Tv do
11: if w is not in worklist then
12: worklist.push(w)
13: end if
14: end for
15: end if
16: end while

17: x =
x

‖x‖1

2.2 Basic Data-Driven PageRank

Instead of processing all the nodes in rounds, we can think of an algorithm which
dynamically maintains a working set. Algorithm 2 shows a basic data-driven
PageRank. Initially, the worklist is set to be the entire vertex set. The algorithm
proceeds by picking a node from the worklist, computing the node’s PageRank,
and adding its outgoing neighbors to the worklist. To see the convergence of
the data-driven PageRank, let us rewrite the problem in the form of a linear
system. We define a row-stochastic matrix P to be P ≡ D−1A where A is an
adjacency matrix and D is the degree diagonal matrix. We assume that there is
no self-loop in the graph. Then, the PageRank computation can be written as
the linear system of (I − αP T)x = (1 − α)e, and the residual is defined to be
r = (1 − α)e − (I − αP T)x. In this setting, it has been shown in [9] that each
local computation in Algorithm 2 decreases the residual. Indeed, when a node
v’s PageRank is updated, its residual rv becomes zero, and αrv/|Tv| is added to
each of its outgoing neighbors’ residuals. Thus, we can show that Algorithm 2
converges, and on termination, it is guaranteed that the residual ‖r‖∞ < ε.

From the next section, we will focus on the data-driven formulation of PageR-
ank, and build up various variations of the data-driven PageRank.

3 Data Access Pattern

Data access pattern (or memory access pattern) is an important factor one
should consider for designing a scalable graph algorithm. When an active node
is processed, there can be a particular data access pattern. For example, some
algorithms require reading a value of an active node and updating its outgoing
neighbors, whereas some algorithms require reading values from incoming neigh-
bors of an active node and updating the active node’s value. Based on these data

Scalable Data-Driven PageRank 441

Algorithm3. Pull-Push-based PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1 − α)e
2: Initialize r = 0
3: for v ∈ V do
4: for w ∈ Sv do

5: rv = rv +
1

|Tw|
6: end for
7: rv = (1 − α)αrv

8: end for
9: for v ∈ V do
10: worklist.push(v)
11: end for
12: while !worklist.isEmpty do
13: v = worklist.pop()

14: xv = α
∑

w∈Sv

xw

|Tw|
+ (1 − α)

15: for w ∈ Tv do
16: rold

w = rw

17: rw = rw +
rvα

|Tv|
18: if rw ≥ ε and rold

w < ε then
19: worklist.push(w)
20: end if
21: end for
22: rv = 0
23: end while

24: x =
x

‖x‖1

Algorithm4. Push-based PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1 − α)e
2: Initialize r = 0
3: for v ∈ V do
4: for w ∈ Sv do

5: rv = rv +
1

|Tw|
6: end for
7: rv = (1 − α)αrv

8: end for
9: for v ∈ V do
10: worklist.push(v)
11: end for
12: while !worklist.isEmpty do
13: v = worklist.pop()
14: xnew

v = xv + rv

15: for w ∈ Tv do
16: rold

w = rw

17: rw = rw +
rvα

|Tv|
18: if rw ≥ ε and rold

w < ε then
19: worklist.push(w)
20: end if
21: end for
22: rv = 0
23: end while

24: x =
x

‖x‖1

access patterns, we can classify algorithms into three categories: pull-based, pull-
push-based, and push-based algorithms.

3.1 Pull-Based PageRank

In pull-based algorithms, an active node pulls (reads) its neighbors’ values and
updates its own value. Note that pull-based algorithms require more read oper-
ations than write operations in general because the write operation is only per-
formed on the active node. In the PageRank example, Algorithms 1 and 2 are
both pull-based algorithms because an active node pulls (reads) its incoming
neighbors’ PageRank values and updates its own PageRank.

3.2 Pull-Push-Based PageRank

In pull-push-based algorithms, an active node pulls (reads) its neighbors’ values
and also pushes (updates) its neighbors’ values. When we consider the cost for
processing an active node, pull-push-based algorithms might be more expensive
than pull-based algorithms as they require both read and write operations on
neighbors. However, in terms of information propagation, pull-push-based algo-
rithms can have advantages because in pull-push-based algorithms, an active
node can propagate information to its neighbors whereas in pull-based algo-
rithms, an active node passively receives information from its neighbors.

442 J.J. Whang et al.

Now, we transform the basic data-driven PageRank into a pull-push-based
algorithm. Recall that in Algorithm 2, whenever a node’s PageRank is updated,
the residuals of its outgoing neighbors are increased. Thus, to guarantee that the
maximum residual is smaller than ε, all the outgoing neighbors of an active node
should be added to the worklist. However, if we explicitly compute and maintain
the residuals, we do not need to add all the outgoing neighbors of an active node,
instead, we only need to add the outgoing neighbors whose residuals are greater
than or equal to ε. In this way, we can filter out some work in the worklist.
In Algorithm 3, the initial residual r(0) is computed by r(0) = (1 − α)αP Te
(lines 3–8). For each active node, it pulls its incoming neighbors’ PageRank
values (line 14), and pushes residuals to its outgoing neighbors (line 17). Then,
an outgoing neighbor w of the active node v is added to the worklist only if the
updated residual rw is greater than or equal to ε and its old residual is less than ε.
The second condition allows us to avoid having duplicates in the worklist (i.e., we
add a node to the worklist only when its residual crosses ε for the first time). In
this algorithm, there is a trade-off between overhead for residual computations
and filtering out work in the worklist. We empirically observe that in many cases,
the benefit of filtering overcomes the overhead for residual computations.

3.3 Push-Based PageRank

In push-based algorithms, an active node updates its own value, and only pushes
(updates) its neighbors’ values. Compared to pull-based algorithms, push-based
algorithms can be more costly in the sense that they require more write oper-
ations. However, push-based algorithms invoke more frequent updates, which
might be helpful to achieve a faster information propagation over the network.
Compared to pull-push-based algorithms, push-based algorithms can be more
efficient because they only require write operations instead of read & write oper-
ations. To design a push-based PageRank, we need to notice that the (k+1)-th
PageRank update of node v is equivalent to the sum of the k-th PageRank of
v and its k-th residual. This can be derived from the linear system formulation
which is discussed in Sect. 2.2. Thus, we can formulate a push-based PageRank as
follows: for each active node v, its PageRank is updated by x

(k+1)
v = x

(k)
v + r

(k)
v .

Algorithm 4 shows the full procedure. Note that the only difference between
Algorithms 3 and 4 is line 14. In Algorithm 4, an active node updates its own
PageRank and the residuals of its outgoing neighbors.

4 Scheduling

Task scheduling, the order in which tasks are executed, can be very important
to graph algorithms [11]. For example, in a data-driven PageRank, we see that
whenever a node v’s PageRank is updated, the total residual is decreased at
least by rv(1 − α). This implies that if we process “large residual” nodes first,
the algorithm might converge faster. Thus, we can define a node v’s priority
pv to be the residual per unit work, i.e., pv = rv/dv where dv = |Sv| + |Tv|

Scalable Data-Driven PageRank 443

for the pull-push-based PageRank, and dv = |Tv| in the push-based algorithm.
Realizing the potential benefits in convergence requires priority scheduling. In
priority scheduling, each task is assigned a value, the priority, and scheduled in
increasing (or decreasing) order. More sophisticated schedulers allow modifying
the priority of existing tasks, but this is an expensive operation not commonly
supported in parallel systems. Practical priority schedulers have to trade off sev-
eral factors: efficiency, communication (and thus scaling), priority fidelity, and
set-semantics. In general, both priority fidelity and set-semantics require signifi-
cant global knowledge and communication, thus are not scalable. To investigate
the sensitivity of PageRank to different design choices in a priority scheduler,
we use two different designs: one which favors priority fidelity but gives up
set-semantics and one which preserves set-semantics at the expense of prior-
ity fidelity. We compare these with scalable non-priority schedulers to see if the
improved convergence outweighs the increased cost of priority scheduling.

The first scheduler we use is the scalable, NUMA-aware OBIM priority sched-
uler [7]. This scheduler uses an approximate consensus protocol to inform a per-
thread choice to search for stealable high-priority work or to operate on local
near-high-priority work. Various underlying data-structures and stealing pat-
terns are aware of the machine’s memory topology and optimized to maximize
information propagation while minimizing cache coherence cost. OBIM favors
keeping all threads operating on high priority work and does not support either
set-semantics or updating the priority of existing tasks. To handle this, tasks are
created for PageRank every time a node’s priority changes, potentially generat-
ing duplicate tasks in the scheduler. Tasks with outdated priorities are quickly
filtered out at execution time (a process which takes only a few instructions).

The second scheduler we use is a bulk-synchronous priority scheduler. This
scheduler operates in rounds. Each round, all items with priority above a thresh-
old are executed. Generated tasks and unexecuted items are placed in the next
round. The range and mean are computed for the tasks, allowing the threshold
to be chosen for each round based on the distribution of priorities observed for
that round. This organization makes allowing priority updates simple, priorities
are recomputed every round. Further, set-semantics may be trivially maintained.
However, to minimize the overhead of bulk-synchronous execution, each round
must have sufficient work to amortize the barrier synchronization. This produces
a schedule of tasks which may deviate noticeably from the user requested order.

We also consider FIFO- and LIFO-like schedules (parallel schedulers cannot
both scale and preserve exact FIFO and LIFO order). It is obvious that a LIFO
scheduler is generally bad for PageRank. Processing nodes after a single neigh-
bor is visited will process the node once for each in-neighbor. FIFO schedulers
provide time for a node to accumulate pending changes from many neighbors
before being processed. We use a NUMA-aware scheduler, similar to that from
Galois and QThreads, to do scalable, fast FIFO-like scheduling.

444 J.J. Whang et al.

5 Related Work

Our approaches of considering three different algorithm design axes are mainly
motivated by the Tao analysis [12] where the concepts of topology-driven and
data-driven algorithms have been studied in the context of amorphous data-
parallelism. While Tao analysis has been proposed for a general parallel pro-
gramming framework, our analysis is geared more towards designing new scalable
data mining algorithms.

For scalable parallel computing, many different types of parallel program-
ming models have been proposed, e.g., Galois [10], Ligra [13], GraphLab [8],
Priter [15], and Maiter [16]. Since PageRank is a popular benchmark for paral-
lel programming models, various versions of PageRank have been implemented
in different parallel platforms in a rather ad hoc manner. Also, in data min-
ing communities, PageRank has been extensively studied, and many different
approximate algorithms (e.g., [1,6]) have been developed over the years [3]. The
Gauss–Seidel style update of PageRank is studied in [9], and parallel distrib-
uted PageRank also has been developed [5]. Our PageRank formulations can be
considered as some variations of these previous studies. Our contribution in this
paper is to systematically analyze and discuss various PageRank implementa-
tions in the perspective of designing scalable graph mining methodologies.

Even though we have focused our discussion on PageRank in this
manuscript, our approaches can be easily extended to other data mining
algorithms. For example, in semi-supervised learning, label propagation is a well-
known method [2] which involves fairly similar computations as PageRank. We
expect that our data-driven formulations can be applied to the label propaga-
tion method. Also, it has been shown that there is a close relationship between
personalized PageRank and community detection [1,14]. So, parallel data-driven
community detection can be another interesting application of our analysis.

6 Experimental Results

Experimental Setup. To see the performance and scaling sensitivity of
PageRank to the design considerations in this paper, we implement a variety
of PageRank algorithms, trying different scheduling and data access patterns.
All implementations are written using the Galois System [10]. Table 1 summa-
rizes the design choices for each implementation. Pseudo-code and more detailed
discussions of each appear in previous sections. We also compare our results to
a third-party baseline, namely GraphLab, varying such parameters as are avail-
able in that implementation. For all experiments, we use α = 0.85, ε = 0.01. We
use a 4 socket Xeon E7-4860 running at 2.27 GHz with 10 cores per socket and
128 GB RAM. GraphLab was run in multi-threaded mode.

Datasets. We use four real-world networks, given in Table 2. Twitter and Friend-
ster are social networks, and pld and sd1 are hyperlink graphs. These graphs
range from about 600 million edges to 3.6 billion edges. These range in size
for in-memory compressed sparse row representations from 2.7 GB to 14 GB for

Scalable Data-Driven PageRank 445

Table 1. Summary of algorithm design choices

Algorithm Activation Access Schedule

dd-push Data-driven Push FIFOs w/ Stealing

dd-push-prs Data-driven Push Bulk-sync Priority

dd-push-prt Data-driven Push Async Priority

dd-pp-rsd Data-driven Pull-Push FIFOs w/ Stealing

dd-pp-prs Data-driven Pull-Push Bulk-sync Priority

dd-pp-prt Data-driven Pull-Push Async Priority

dd-basic Data-driven Pull FIFOs w/ Stealing

power-iter Topology Pull Load Balancer

the directed graph. Most of the algorithms require tracking both in-edges and
out-edges, making the effective in-memory size approximately twice as large.

Table 2. Input graphs

nodes # edges CSR size Source

pld 39M 623M 2.7G www.webdatacommons.org/hyperlinkgraph/

sd1 83M 1,937M 7.9G www.webdatacommons.org/hyperlinkgraph/

Twitter 51M 3,228M 13G www.twitter.mpi-sws.org/

Friendster 67M 3,623M 14G www.archive.org/details/friendster-dataset-201107

Results. Figure 1 shows runtime, self-relative scalability, and speedup against
the best single-threaded algorithm for the pld and twitter graphs. In Table 3, the
final speedups are shown on the other inputs. We note that GraphLab ran out of
memory for all but the smallest (pld) input. On pld, the serial GraphLab perfor-
mance was approximately the same as the closest Galois implementation, power-
iter, but GraphLab scaled significantly worse. Several broad patterns can be seen
in the results. First, all data-driven implementations outperform topology imple-
mentation. The best data-driven PageRank implementation is 28x faster than
GraphLab, and 10–20x faster than Galois power-iter, depending on the thread
count. Second, push-only implementations outperform pull-push implementa-
tions which outperform a pure pull-based version. Finally, priority-scheduled
versions scale better but perform worse than a fast, non-priority scheduler.

One surprising result is that pulling to compute PageRank and pushing
residuals outperforms a pure pull-based version (dd-pp-* vs. dd-basic). The read-
mostly nature of pull-based algorithms are generally more cache friendly. Push-
based algorithms have a much larger write-set per iteration, and writes to com-
mon locations fundamentally do not scale. The extra cost of the pushes, however,
is made up by a reduction in the number of tasks. Table 4 shows the number of

www.webdatacommons.org/hyperlinkgraph/
www.webdatacommons.org/hyperlinkgraph/
www.twitter.mpi-sws.org/
www.archive.org/details/friendster-dataset-201107

446 J.J. Whang et al.

Table 3. Speedup on 40 threads relative to best serial on sd1 and friendster (frd)

dd-push dd-push-prs dd-push-prt dd-
pp-rsd

dd-
pp-prs

dd-
pp-prt

dd-basic power-
iter

sd1 20.9 21.8 13.7 10.9 9.1 7.0 6.5 1.4

frd 18.5 17.1 9.0 14.7 11.5 6.2 9.2 6.1

10
0

10
1

10
2

10
1

10
2

10
3

10
4

no. of threads

ru
n

tim
e

(s
ec

.)

run time vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
GraphLab

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

sc
al

ab
ili

ty

scalability vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
ideal
GraphLab

0 10 20 30 40
0

5

10

15

20

25

no. of threads

sp
ee

du
p

speedup vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
GraphLab

10
0

10
1

10
2

10
2

10
3

10
4

10
5

no. of threads

ru
n

tim
e

(s
ec

.)

run time vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

sc
al

ab
ili

ty

scalability vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
ideal

0 10 20 30 40
0

5

10

15

20

25

no. of threads

sp
ee

du
p

speedup vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter

(a) pld run time (b) pld scalability (c) pld speedup

(d) twitter run time (e) twitter scalability (f) twitter speedup

Fig. 1. Runtime, scalability and speedup on pld and twitter graphs. Our data-driven,
push-based PageRank achieves the best speedup.

completed tasks for each algorithm, andwe see that pull-pushmethods (dd-pp-rsd)
lead to 70–80% reduction in the number of tasks executed (compared to dd-basic).
The pushing of residual allows a node to selectively activate a neighbor, and thus
greatly reduces the total work performed (effectively, PageRanks are only com-
puted when they are needed). On the other hand, the basic pull algorithm must
unconditionally generate tasks for each of a node’s neighbors when the node is
updated. It is more understandable, though, that the push-only version outper-
forms all others. The pushing of residual is equivalent to the computation of PageR-
ank deltas, thus, the pull can be eliminated, with no extra cost. This both reduces
the number of edges inspected for every node, from in and out to just out, and
reduces the total computation (instructions). Serially, a deterministic scheduler
processes the same nodes, thus it does not save on total number of tasks, as can be
seen in Table 4 rows for dd-push and dd-pp-rsd. The variation in those rows is due
to the variation in scheduling order, especially at higher thread counts, though the
variation is relatively minor.

Scalable Data-Driven PageRank 447

Table 4. The number of completed tasks (unit: 106)

pld sd1 Twitter Friendster

Threads 1 40 1 40 1 40 1 40

dd-push 134 133 282 273 393 417 476 581

dd-push-prs 330 319 758 740 888 850 1076 1069

dd-push-prt 246 244 538 535 395 418 504 619

dd-pp-rsd 131 130 279 271 386 410 473 540

dd-pp-prs 311 303 712 716 963 835 1239 1212

dd-pp-prt 138 136 289 286 394 419 489 611

dd-basic 655 536 1029 896 1629 1526 1482 1356

power-iter 2606 2606 6716 6716 4297 4297 3104 3104

In Table 4, all reported numbers include all tasks (nodes) considered to make
scheduling decisions. For *-prt methods, this includes the nodes which are dupli-
cates in the worklist. For *-prs methods, this includes each round’s examination
of all the nodes in the worklist to pick the priority threshold. Priority scheduling
favoring priority order, *-prt, shows the high cost of duplicate items in the work-
list. This priority scheduler must insert duplicate tasks every time a node moves
to a new priority bin. This means that many tasks are useless, they discover as
their first action that there is nothing to do and complete. Figure 1 shows that
this has a distinct time cost. Although filtering out duplicates is not expensive,
the total work doing so is significant. Priority scheduling favoring set semantics,
*-prs, also must examine a significant number of nodes to determine which tasks
to pick at each scheduling round. We observe that the total number of nodes
in the worklist decreases rapidly, making the working set after several rounds
significantly smaller than the entire graph. This boost in locality helps offset the
extra data accesses.

It is interesting to see that optimizing for cache behavior (pull-based) may not
always be as effective as optimizing for pushing maximum information quickly
(push-based). The push-only PageRank (dd-push-*) is entirely read-write access,
while the pull-only version (dd-basic) does one write per node processed. In
general, read-mostly access patterns are significantly more cache and coher-
ence friendly. From this perspective, the pull-push versions, dd-pp-*, should be
worst as they have the read set of the pull versions and the write set of the
push versions. The extra writes are not just an alternate implementation of the
PageRank update, but rather influence the scheduling of tasks. The extra writes
weigh nodes, allowing nodes to only be processed when profitable. This improved
scheduling makes up for the increased write load. Given the scheduling benefits
of the residual push, it is easy to see that the push-only version is superior to
the pull-push version as it reduces the memory load and work per iteration. We
do note that when looking at the self-relative scalability of the implementations,
the read-mostly algorithms, while slower, have better scalability than the push
and pull-push variants.

448 J.J. Whang et al.

Table 5. Runtime of different PageRank implementations on pld dataset

GraphLab Galois

Threads sync async-fifo async-qfifo async-sweep async-prt power-iter dd-basic dd-pp-prt dd-push

40 478 secs. 500 secs. 788 secs. 4,186 secs. > 4 hrs. 132 secs. 62 secs. 58 secs. 17 secs.

32 496 secs. 580 secs. 804 secs. 5,162 secs. > 4 hrs. 155 secs. 82 secs. 67 secs. 22 secs.

16 594 secs. 618 secs. 970 secs. 9,156 secs. > 4 hrs. 299 secs. 140 secs. 118 secs. 36 secs.

8 845 secs. 898 secs. 1,292 secs. > 4 hrs. > 4 hrs. 510 secs. 269 secs. 193 secs. 53 secs.

1 3,332 secs. 5,194 secs. 5,098 secs. > 4 hrs. > 4 hrs. 3,650 secs. 2,004 secs. 1,415 secs. 355 secs

Third Party Comparison. Table 5 shows a comparison between our data-
driven PageRank algorithms (implemented using Galois) and GraphLab’s
PageRank implementations when varying the scheduling on pld dataset.
GraphLab supports different schedulers, though we find the simple synchronous
one the best. We note that the GraphLab’s asynchronous method refers to a
Gauss–Seidel style solver, which still is a bulk-synchronous, topology-driven app-
roach. The power-iter version (in Galois) is actually a classic synchronous imple-
mentation in this sense, but still notably faster. While GraphLab’s topology-
driven synchronous implementation has similar single threaded performance to
the Galois topology-driven synchronous implementation, power-iter scales much
better than GraphLab. Also, all the data-driven implementations (dd-*) are
much faster than GraphLab’s PageRank implementations.

7 Discussion

Priority scheduling needs some algorithmic margin to be competitive as it is more
costly. While it is not surprising that priority scheduling is slower than simple
scalable scheduling, this has some important consequences. First, the benefit is
dependent on both algorithmic factors and input characteristics. When schedul-
ing changes the asymptotic complexity of an algorithm, there can be huge mar-
gins available. In PageRank, there is a theoretical margin available, but it is rel-
atively small. This limits the extra computation that can be spent on scheduling
overhead without hurting performance. Secondly, the margin available depends
on input characteristics. For many analytic algorithms, scheduling increases in
importance as the diameter of the graph increases. Since PageRank is often run
on power-law style graphs with low diameter, we expect a small margin available
from priority scheduling.

Good priority schedulers can scale competitively with general purpose sched-
ulers. We observe that multiple priority scheduler implementations scale well.
We implement two very different styles of priority schedulers which pick differ-
ent points in the design and feature space. This is encouraging as it leads us
to believe that such richer semantic building blocks can be used by algorithm
designers. PageRank updates priorities often, a use case which is hard to support
efficiently and scalably. Even many high-performance, serial priority queues do
not support this operation. Constructing a concurrent, scalable priority sched-
uler which maintains set semantics by adjusting priorities for existing items in

Scalable Data-Driven PageRank 449

the scheduler is an open question. The reason is simply one of global knowl-
edge. Knowing whether to insert an item or whether it is already scheduled and
thus only needs its priority adjusted requires global knowledge of the system.
Maintaining and updating global knowledge concurrently in a NUMA system is
rarely scalable. For scalability, practical implementations will contain multiple
queues, meaning that not only does one need to track whether a task is scheduled,
but on which queue the task is scheduled. The scheduler we produced for *-prs
stores set semantics information by marking nodes in the graph and periodically
rechecks priority. This essentially introduces latency between updating a priority
and having the scheduler see the new priority. The amount of latency depends
on how many iterations proceed before rechecking. This number determines the
overhead of the scheduler.

8 Conclusions

Although PageRank is a simple graph analytic algorithm, there are many
interesting implementation details one needs to consider to achieve a high-
performance implementation. We show that data-driven implementations are
significantly faster than traditional power iteration methods. PageRank has a
simple vertex update equation. However, this update can be mapped to the
graph in several ways, changing how and when information flows through the
graph, which vary significantly in performance. Within this space, one can also
profitably consider the order in which updates occur to maximize convergence
speed. While we investigate these implementation variants for PageRank, seeing
performance improvements of 28x over standard power iterations, these consid-
erations can apply to many other convergence-based graph analytic algorithms.

Acknowledgments. This research was supported by NSF grants CCF-1117055 and
CCF-1320746 to ID, and by NSF grants CNS-1111766 and XPS-1337281 to KP.

References

1. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using PageRank vec-
tors. In: FOCS, pp. 475–486 (2006)

2. Bengio, Y., Delalleau, O., Le Roux, N.: Label Propagation and Quadratic Criterion.
MIT Press, Cambridge (2006)

3. Berkhin, P.: A survey on PageRank computing. Internet Math. 2, 73–120 (2005)
4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.

Comput. Network. ISDN Syst. 30(1–7), 107–117 (1998)
5. Gleich, D.F., Zhukov, L., Berkhin, P.: Fast parallel PageRank: A linear system

approach. Technical report YRL-2004-038, Yahoo! Research Labs (2004)
6. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271–279

(2003)
7. Lenharth, A., Nguyen, D., Pingali, K.: Priority queues are not good concurrent

priority schedulers. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015.
LNCS, vol. 9233, pp. 209–221. Springer, Heidelberg (2015)

450 J.J. Whang et al.

8. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning and data mining in the
cloud. In: VLDB Endowment, pp. 716–727 (2012)

9. McSherry, F.: A uniform approach to accelerated PageRank computation. In:
WWW, pp. 575–582 (2005)

10. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph ana-
lytics. In: SOSP, pp. 456–471 (2013)

11. Nguyen, D., Pingali, K.: Synthesizing concurrent schedulers for irregular algo-
rithms. In: ASPLOS, pp. 333–344 (2011)

12. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem, R.,
Lee, T.H., Lenharth, A., Manevich, R., Mndez-Lojo, M., Prountzos, D., Sui, X.:
The Tao of parallelism in algorithms. In: PLDI, pp. 12–25 (2011)

13. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared
memory. In: PPoPP, pp. 135–146 (2013)

14. Whang, J.J., Gleich, D., Dhillon, I.S.: Overlapping community detection using seed
set expansion. In: CIKM, pp. 2099–2108 (2013)

15. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Priter: a distributed framework for priori-
tizing iterative computations. IEEE Trans. Parallel Distrib. Syst. 24(9), 1884–1893
(2013)

16. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Maiter: an asynchronous graph process-
ing framework for delta-based accumulative iterative computation. IEEE Trans.
Parallel Distrib. Syst. 25(8), 2091–2100 (2014)

	Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned
	1 Introduction
	2 Work Activation
	2.1 Topology-Driven PageRank
	2.2 Basic Data-Driven PageRank

	3 Data Access Pattern
	3.1 Pull-Based PageRank
	3.2 Pull-Push-Based PageRank
	3.3 Push-Based PageRank

	4 Scheduling
	5 Related Work
	6 Experimental Results
	7 Discussion
	8 Conclusions
	References

