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Abstract. An increasingly large number of HPC systems rely on het-
erogeneous architectures combining traditional multi-core CPUs with
power efficient accelerators. Designing efficient applications for these sys-
tems has been troublesome in the past as accelerators could usually
be programmed only using specific programming languages – such as
CUDA – threatening maintainability, portability and correctness. Several
new programming environments try to tackle this problem; among them
OpenACC offers a high-level approach based on directives. In OpenACC,
one annotates existing C, C++ or Fortran codes with compiler directive
clauses to mark program regions to offload and run on accelerators and
to identify available parallelism. This approach directly addresses code
portability, leaving to compilers the support of each different accelerator,
but one has to carefully assess the relative costs of potentially portable
approach versus computing efficiency. In this paper we address precisely
this issue, using as a test-bench a massively parallel Lattice Boltzmann
code. We implement and optimize this multi-node code using OpenACC
and OpenMPI. We also compare performance with that of the same
algorithm written in CUDA, OpenCL and C for GPUs, Xeon-Phi and
traditional multi-core CPUs, and characterize through an accurate time
model its scaling behavior on a large cluster of GPUs.

Keywords: OpenACC · OpenMPI · Lattice Boltzmann methods ·
Accelerator computing · Performance analysis

1 Introduction and Background

Lattice Boltzmann (LB) methods are widely used in computational fluid dynam-
ics, to simulate flows in two and three dimensions. From the computational point
of view, LB methods have a large degree of available parallelism so they are suit-
able for massively parallel systems.

Over the years, LB codes have been written and optimized for large clusters
of commodity CPUs [1], for application-specific machines [2–4] and even for
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FPGAs [5]. More recently work has focused on exploiting the parallelism of
powerful traditional many-core processors [6], and of power-efficient accelerators
such as GPUs [7,8] and Xeon-Phi processors [9].

As diversified HPC architectures emerge, it is becoming more and more
important to have robust methodologies to port and maintain codes for sev-
eral architectures. This need has sparked the development of frameworks, such
as the Open Computing Language (OpenCL), able to compile codes efficiently
for several accelerators. OpenCL is a low level approach: it usually obtains
high performances at the price of substantial changes in the code and large
human efforts, seriously posing a threat to code correctness and maintainability.
Other approaches start to emerge, mainly based on directives: compilers generate
offload-functions for accelerators, following “hints” provided by programmers as
annotations to the original – C, C++ or Fortran – codes [12]. Examples along this
direction are OpenACC [13] and OpenMP4 [14]. Other proposals, such as the
Hybrid Multi-core Parallel Programming model (HMPP) proposed by CAPS,
hiCUDA [15], OpenMPC [16] and StarSs [17] follow the same line. OpenACC
today is considered the most promising approach. In many ways its structure
is similar to OpenMP (Open Multi-Processing) [18]: both frameworks are direc-
tive based, but while OpenMP is more prescriptive, e.g. one maps work-loads
explicitly using distribute constructs, OpenACC is more descriptive. Indeed,
with OpenACC the programmer only specifies that a certain loop should run
in parallel on the accelerator and leaves the exact mapping to the compiler.
This approach leaves more freedom to the compiler and the associated runtime
support, offering in principle more space for performance portability.

So far very few OpenACC implementations of LB codes have been described
in literature: [19] focus on accelerating through OpenACC a part of a large
CFD application optimized for CPU; several other works describe CUDA [21]
or OpenCL [10,11] implementations; also scalability on GPU clusters has been
rarely addressed [22]. In this paper we focus on the design and optimization
of a multi-GPU LB code analyzing performances between a portable high level
approach like OpenACC and lower level approaches like CUDA.

This paper is structured as follows: Sect. 2 gives a short overview of LB meth-
ods; Sect. 3 describes in details our OpenACC implementation, and Sect. 4 ana-
lyzes performance results and compares with similar codes written in CUDA,
OpenCL and C for GPUs, Xeon-Phi accelerators and traditional multi-core CPUs.

2 Lattice Boltzmann Models

Lattice Boltzmann methods (LB) are widely used in computational fluid dynam-
ics, to describe flows in two and three dimensions. LB methods [23] are discrete
in position and momentum spaces; they are based on the synthetic dynamics of
populations sitting at the sites of a discrete lattice. At each time step, populations
hop from lattice-site to lattice-site and then incoming populations collide among
one another, that is, they mix and their values change accordingly. Over the
years, many different LB models have been devised, in 2 and 3 dimensions with
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different degrees of accuracy [24]. LB models in n dimensions with y populations
are labeled as DnQy; in this paper, we consider a state-of-the-art D2Q37 model
that correctly reproduces the thermo-hydrodynamical equations of motion of a
fluid in two dimensions and automatically enforces the equation of state of a
perfect gas (p = ρT ) [25,26]; this model has been extensively used for large scale
simulations of convective turbulence (see e.g., [27–29]).

From a computational point of view this physically very accurate LB scheme
is more complex than simpler LB models; this translates into higher requirements
in terms of storage (each lattice points has 37 populations), memory bandwidth
and floating-point throughput (at each time step, ≈ 7600 double-precision float-
ing point operations are performed per lattice point).

Populations (fl(x, t) l = 1 · · · 37) are defined at the sites of a discrete and
regular 2-D lattice; each fl(x, t) has a given lattice velocity cl; populations evolve
in (discrete) time according to the following equation:

fl(x, t + Δt) = fl(x − clΔt, t) − Δt

τ

(
fl(x − clΔt, t) − f

(eq)
l

)
(1)

Macroscopic quantities, density ρ, velocity u and temperature T are defined
in terms of the fl(x, t) and of the cls (D is the number of space dimensions):

ρ =
∑
l

fl, ρu =
∑
l

clfl, DρT =
∑
l

|cl − u|2 fl; (2)

the equilibrium distributions (f (eq)
l ) are known function of these macroscopic

quantities [23], and τ is a suitably chosen relaxation time. In words, (1) stip-
ulates that populations drift from lattice site to lattice site according to the
value of their velocities (propagation) and, on arrival at point x, they inter-
act among one another and their values change accordingly (collision). One
can show that, in suitable limiting cases and after appropriate renormalizations
are applied, the evolution of the macroscopic variables defined in (2) obey the
thermo-hydrodynamical equations of motion of the fluid.

An LB code takes an initial assignment of the populations, in accordance
with a given initial condition at t = 0 on some spatial domain, and iterates (1)
for all points in the domain and for as many time-steps as needed; boundary-
conditions at the edges of the integration domain are enforced at each time-step
by appropriately modifying population values at and close to the boundaries.

The LB approach offers a huge degree of easily identified parallelism. Indeed,
(1) shows that the propagation step amounts to gathering the values of the
fields fl from neighboring sites, corresponding to populations drifting towards
x with velocity cl; the following step (collision) then performs all mathematical
processing needed to compute the quantities in the r.h.s. of (1), for each point
in the grid. One sees immediately from (1), that both steps above are fully
uncorrelated for different points of the grid, so they can be executed in parallel
according to any schedule, as long as step 1 precedes step 2 for all lattice points.

In practice, an LB code executes a loop over time steps, and at each iterations
applies three kernels: propagate, bc and collide.
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Fig. 1. Left: LB populations in the D2Q37 model, hopping to nearby sites during the
propagate phase. Right: populations fl are identified by an arbitrary label; for each l
population data is stored contiguously in memory.

propagate moves populations across lattice sites according to the pattern of
Fig. 1, collecting at each site all populations that will interact at the next phase
(collide). In our model populations move up to three lattice sites per time
step. Computer-wise, propagate moves blocks of memory locations allocated at
sparse addresses, corresponding to populations of neighbor cells.

bc executes after propagation and adjusts populations at the edges of the
lattice, enforcing appropriate boundary conditions (e.g., constant temperature
and zero velocity at the top and bottom edges of the lattice). For the left and
right edges, we usually apply periodic boundary conditions. This is conveniently
done by adding halo columns at the edges of the lattice, where we copy the
rightmost and leftmost columns (3 in our case) of the lattice before starting the
propagate step. After this is done, points close to the boundaries are processed
as those in the bulk.

collide performs all mathematical steps needed to compute the population
values at each lattice site at the new time step, as per (1). Input data for this
phase are the populations gathered by the previous propagate phase. This step
is the most floating point intensive part of the code.

3 Implementation and Optimization of the D2Q37 Model

Our implementation uses CUDA-aware MPI and start one MPI rank per GPU
to have GPU-to-GPU transfers transparently handled by the MPI library. The
lattice is copied on the accelerator memory at the beginning of the loop over
time-steps, and then all three kernels – propagate, bc and collide – run on
the accelerator. Data is stored in memory in the Structure-of-Array (SoA) format
scheme, where arrays of all populations are stored one after the other. This helps
exploit data-parallelism and enables data-coalescing when accessing data needed
by work-items executing in parallel. On each MPI-rank the physical lattice is
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// processing of bulk

propagateBulk ( f2 , f1 ) ; // async execution on queue (1)

bcBulk ( f2 , f1 ) ; // async execution on queue (1)

collideInBulk ( f2 , f1 ) ; // async execution on queue (1)

// execution of pbc step

#pragma acc host_data use_device ( f2 ) {
for ( pp = 0 ; pp < 37 ; pp++ ) {

MPI_Sendrecv ( &(f2 [ . . . ] ) , 3∗NY , . . . ) ;
MPI_Sendrecv ( &(f2 [ . . . ] ) , 3∗NY , . . . ) ;

} }
// processing of the three leftmost columns

propagateL ( f2 , f1 ) ; // async execution on queue (2)

bcL ( f2 , f1 ) ; // async execution on queue (2)

collideL ( f1 , f2 ) ; // async execution on queue (2)

// processing of the three rightmost columns

propagateR ( f2 , f1 ) ; // async execution on queue (3)

bcR ( f2 , f1 ) ; // async execution on queue (3)

collideR ( f1 , f2 ) ; // async execution on queue (3)

Fig. 2. Scheduling of operations started by the host at each time step. Kernels process-
ing the lattice bulk run asynchronously on the accelerator, and overlap with MPI com-
munications executed by the host.

surrounded by halo columns and rows: for a physical lattice of size Lx × Ly, we
allocate NX ×NY points, with NX = Hx +Lx +Hx and NY = Hy +Ly +Hy.

We split our 2-D physical lattice of size Lx × Ly on N accelerators along the
X dimension; GPUs are connected in a ring-scheme and each one hosts a sub-
lattice of Lx/N × Ly points. With this splitting, halo-columns are allocated at
successive memory locations, so we do not need to gather halo data on contiguous
buffers before communication. At the beginning of each time-step left- and right-
halos are updated: we copy population data coming from the three adjoining
physical columns of the neighbor nodes in the ring to the left and right halos.
This is done by an MPI node-to-node communication step that we call periodic
boundary condition (pbc). Once this is done, all remaining steps are local to each
MPI-rank so they run in parallel.

At each iteration of the loop over time steps, each MPI-rank first update its
halo columns using pbc(), and then runs in sequence propagate(), bc() and
collide() on its local lattice.

As lattice data is stored in the SoA format, pbc exchanges 37 buffers, each
of 3 columns, with its left and right neighbors. It executes a loop over the
37 populations and each iteration performs two MPI send-receive operations,
respectively for the left and the right halo (see Fig. 2). On GPUs, we exploit
CUDA-aware MPI features, available in the OpenMPI library and use data
pointers referencing GPU-memory buffers as source and destination, making the
code more compact and readable. In OpenACC this is controlled by the #pragma
acc host data use device(p) clause, that maps a GPU memory pointer p into
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inline void propagate (
const data_t∗ restrict prv , data_t∗ restrict nxt ) {
int ix , iy , site_i ;
#pragma acc kernels present ( prv ) present ( nxt )
#pragma acc loop gang independent

for ( ix=HX ; ix < ( HX+SIZEX ) ; ix++) {
#pragma acc loop vector independent

for ( iy=HY ; iy<(HY+SIZEY ) ; iy++) {
site_i = ( ix∗NY ) + iy ;
nxt [ site_i ] = prv [ site_i−3∗NY+1] ;
nxt [ NX∗NY+site_i ] = prv [ NX∗NY+site_i−3∗NY ] ;
. . . .

} } }

Fig. 3. OpenACC pragmas in the body of the propagate() function; pragmas before
the loops instruct the compiler to generate corresponding accelerator kernel and con-
figure the grid of threads and blocks.

host space, so it can be used as an argument of the MPI send and receive func-
tions. Also, communications between GPUs are optimized in the library and
implemented according to physical location of buffers and the capabilities of
the devices involved, also enabling peer-to-peer and GPUDirect RDMA features.
Figure 3 shows the code of the propagate function. For each lattice site we update
the values of the populations, copying from the prv array onto the nxt array.
The body of propagate is annotated with several OpenACC directives telling the
compiler how to organize the kernel on the accelerator. #pragma acc kernels
present(prv) present(nxt) tells the compiler to run the following instruc-
tions on the accelerator; it also carries the information that the prv and nxt
arrays are already available on the accelerator memory, so no host-accelerator
data transfer is needed; #pragma acc loop gang independent states that each
iteration of the following loop (over the X-dimension) can be run by different
gangs or block of threads; #pragma acc loop vector independent tells the
compiler that iterations of the loop over Y-dimension can likewise be run as
independent vectors of threads. Using these directives the compiler structures
the thread-blocks and block-grids of the accelerator computation such that: one
thread is associated to and processes one lattice-site; each thread-block processes
a group of lattice sites lying along the Y-direction, and several blocks process
sites along the X-direction. This allows to expose all available parallelism.

We split bc() in two kernels, processing the upper and lower boundaries.
They run in parallel since there is no data dependencies among them. We have
not further optimized this step because its computational cost is small compared
to the other phases of the code.

The collide() kernel sweeps all lattice sites and computes the collisional
function. The code has two outer loops over X and Y dimensions of the lattice,
and several inner loops to compute temporary values. We have annotated the
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Fig. 4. Profiling of one time step. pbc (yellow line marked as “MPI”) and the kernels
processing the bulk of the lattice (blue line marked as “Bulk”) fully overlap (Color
figure online).

outer loops as we did for propagate(), making each thread to process one lattice
site. Inner loops are computed serially by the thread associated to each site.

Performance wise, pbc() is the most critical step of the code, since it involves
node-to-node communications that can badly affect performance and scaling. We
organize the code so node-to-node communications are (fully or partially) over-
lapped with the execution of other segments of the code. Generally speaking,
propagate, bc and collide must execute one after the other, and they cannot
start before pbc has completed. One easily sees however that this dependency
does not apply to all sites of the lattice outside the three leftmost and rightmost
border columns (we call this region the bulk of the lattice). The obvious conclu-
sion is that processing of the bulk can proceed in parallel with the execution of
pbc, while the sites on the three leftmost and rightmost columns are processed
only after pbc has completed. OpenACC abstracts concurrent execution using
queues; function definitions flagged by #pragma acc async(n) directive enqueue
the corresponding kernels asynchronously on queue n, leaving the host free to
perform other tasks concurrently. In our case, this happens for propagateBulk,
bcBulk and collideBulk, which start on queue 1 (see Fig. 2), while the host con-
currently executes the MPI transfers of pbc. After communications complete, the
host starts three more kernels on two different queues (2 and 3) to process the
right and left borders, so they can execute in parallel if sufficient resources on
the accelerator are available. This structure allows to overlap pbc with all other
steps of the code, most importantly with collideBulk, which is the most time
consuming kernel, giving more opportunities to hide communication overheads
when running on a large number of nodes.

Figure 4 shows the profiling of one time step on one GPU on a lattice of
1080 × 2048 points split across 24 GPUs. MPI communications started by pbc
are internal (MemCopy DtoD), moving data between GPUs on the same host,
or external (MemCopy DtoH and HtoD) moving data between GPUs on dif-
ferent hosts. The actual scheduling is as expected: both types of GPU-to-GPU
communications fully overlap with propagate, bc and collide on the bulk.

4 Results and Conclusions

We start our performance analysis comparing OpenACC code with CUDA,
OpenCL and C implementations of the same LB algorithm developed for NVIDIA
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Table 1. Performance comparison between single (1CPU) and dual (2CPU) Intel 18-
core CPUs (Haswell-v3 micro architecture), NVIDIA K40 GPUs and Intel Xeon-Phi
7120; the lattice size is 1920 × 2048 points. All quantities are defined in the text.

Tesla K40 Xeon-Phi 7120 E5-2699-v3

Code Version CUDA OCL OACC OCL 1CPU C 2CPU C

TPbc+Prop [msec] 13.78 15.80 13.91 30.46 120.71 61.40

GB/s 168.91 147.33 167.37 76.42 19.53 37.91

Ep 59 % 51 % 58 % 22 % 29 % 28 %

TBc [msec] 4.42 6.41 2.76 3.20 1.62 0.80

TCollide [msec] 39.86 136.93 78.65 72.79 136.24 67.95

Ec 45 % 13 % 23 % 34 % 34 % 34 %

TWC/iter [msec] 58.07 159.14 96.57 106.45 259.79 131.88

MLUPS 68 25 41 37 15 30

GPUs, Intel Xeon-Phi and Intel traditional multi-core CPUs. For OpenACC we
have used PGI compiler version 14.10, while for GPUs we have used CUDA
version 6.5, and for Xeon-Phi and multicore-CPUs the Intel compiler version 14.

We started with an early version for Intel commodity CPUs, using OpenMP
to handle parallelism over all available cores (18 in this case) of each CPU, and
controlling vectorization via intrinsics functions [30]. We then developed a CUDA
version [20,21], optimized for Fermi and Kepler architectures, and an OpenCL
version that we have run on NVIDIA and Intel Xeon-Phi accelerators [11,31].

Table 1 summarizes performance figures on a reference lattice of 1920 × 2048
sites. The first lines refer to the propagate kernel; we show the execution time,
the effective bandwidth, and the efficiency Ep computed w.r.t. the peak mem-
ory bandwidth; the table then lists execution times of the bc function; For the
collide kernel, we show the execution time and the efficiency Ec as a fraction
of peak performance. Finally, we show the wall-clock execution time (WcT) and
the corresponding Millions Lattice UPdate per Second (MLUPS) – counting the
number of sites handled per second – of the full production-ready code. For
propagate, which is strongly memory bound, the CUDA and OpenACC ver-
sions run at ≈ 60% of peak, while the OpenCL version is 10% slower. For the
collide kernel – the most computationally intensive part of the code – the
OpenACC code has an efficiency of 23% while the CUDA version doubles this
figure, running at 45% of peak. The lower performance of the OpenACC code
can likely be explained by latency overheads caused by two factors: (i) popu-
lation values are used several times within the computation of the collide, and
repeatedly read from global-memory; (ii) constant values like the coefficients of
the Hermite polynomial expansion are stored on global memory. On the other
hand the CUDA version [21] is more performing because explicit control with
cudaMemcpyToSymbol allows to store constant values on low-latency constant-
memory; OpenACC is not able to do that due to the large number of terms and
their dependencies and then they are computed at run time. CUDA also uses
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Fig. 5. Ta and Tb for the time model defined in the text on a lattice of 1080 × 5736
points as a function of the number of GPUs. The black points are the execution times
of the code with all asynchronous steps enabled.

registers more efficiently, allowing to fully unroll inner loops, while on OpenACC
this has a negative effect. A CUDA version which does not use these two opti-
mizations matches the performance of the OpenACC code.

The OpenCL version is respectively 2X and 3X slower than OpenACC and
CUDA. This reflects that the current version of the NVIDIA OpenCL driver
does not optimize for the Kepler architecture (it can not exploit features intro-
duced with the Kepler architecture, e.g. the capability to address 255 registers
per thread) [11]. Comparing performances of our code across all architectures –
CPUs, GPUs and Xeon-Phi accelerators – we see that on GPUs, using CUDA,
collide runs ≈ 3.5X faster than on a single-CPU and 1.7X than on a dual-CPU
using C, and ≈ 1.8X faster than the Xeon-Phi using OpenCL.

We now discuss in details the scaling behaviour of our implementation for a
large number of GPUs. We model the execution time of the whole program as
T ≈ max{Ta, Tb}, with Ta and Tb defined as:

Ta = Tbulk + TborderL + TborderR, Tb = TMPI + TborderL + TborderR

and Tbulk, TborderL, TborderR are respectively the sums of the execution times of
propagate, bc and collide on the bulk, and on the left and right halos, while
TMPI refers to MPI communications.

This model is in good agreement with data measured on an Infiniband-
interconnected cluster with 6 GPUs on each node: we first profile the execu-
tion time of each kernel and MPI communication running them in sequence, i.e.
without any overlap, and then measure the execution time of the whole pro-
gram with all asynchronous steps enabled. Figure 5 shows the values of Ta and
Tb for a lattice of 1080 × 5736 points. The histograms show the times taken by
each part of the code when running serially while the black dots show the time
taken by the asynchronous code. For this choice of the lattice size, we see that
T ≈ Ta up to 24 GPUs as communications are fully hidden behind the execution
of the program on the bulk; as long as this condition holds, the code enjoys full
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Fig. 6. Strong scaling behavior of the OpenACC code as a function of the number of
GPUs (n) for several lattice sizes. Points are experimental data and dashed lines are
the predictions of our timing model.

scalability. As we increase the number of GPUs (≥ 30) T ≈ Tb, communications
become the bottleneck and the scaling behavior necessarily degrades.

We further characterize the execution time assuming, to first approximation,
that bulk processing is proportional to (Lx × Ly), boundary conditions scale as
Lx, and communication and borders processing scales as Ly; so, on n GPUs

T (Lx, Ly, n) = max
{

α
Lx

n
Ly + β

Lx

n
, γLy

}
+ δLy

We extract the parameters (α, β, γ and δ) from the profiling data of Fig. 5, and
define the function Sr(Lx, Ly, n) = T (Lx,Ly,1)

T (Lx,Ly,n) to predict the relative speedup for
any number of GPUs and any lattice size. Figure 6 shows the (strong) scaling
behaviour of our code for several lattice sizes relevant for physics simulations;
dots are measured values and dashed lines are plots of Sr() for different values
of Lx and Ly. Values of Sr() are in good agreement with experimental data, and
predict the number of GPUs for which the code does not scale any more. For
large lattices (5040 × 10752) the code has an excellent scaling behavior up to
48 GPUs, slightly underestimated by our model as constants are calibrated on
smaller lattices and then more sensitive to overheads.

In conclusion, we have successfully ported, tested and benchmarked a com-
plete lattice Boltzmann code using OpenACC, and characterized its perfor-
mances through an accurate time model. Our experience with OpenACC is very
positive from the point of view of porting and programmability. The effort to port
existing codes to OpenACC is reasonably limited and easy to handle; we started
from an existing C version and marked through pragmas regions of code to offload
and run on accelerators instructing the compiler to identify and exploit available
parallelism. However, major changes in the structure of the code cannot be han-
dled by compilers, so the overall organization must be (at least partially) aware
of the target architectures; for example, in our case it is crucial to organize data
as Structure of Arrays to allow to coalesce performance-critical memory accesses.
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Concerning performance results, one is ready to accept that the use of a high level
programming model trades better programmability with computing efficiency:
we consider a performance drop of ≤ 20% a satisfactory result. While the per-
formance is not as good as we would like, we understand the reasons behind
this gap and expect that compiler improvements will be able to narrow it. We
believe that our analysis provides important feedbacks to help improve the per-
formance of OpenACC. As an interim step, interoperability between OpenACC
and CUDA allows to foster the high productivity of OpenACC and still get full
performance by using CUDA for the most performance critical kernels.
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