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Abstract. Intel Many Integrated Core (MIC) architectures have been
playing a key role in modern supercomputing systems due to the fea-
tures of high performance and low power consumption. This makes them
become an attractive choice to accelerate HPC applications. MPI-3 RMA
is an important part of the MPI-3 standard. It provides one-sided seman-
tics that reduce the synchronization overhead and allow overlapping of
communication with computation. This makes the RMA model the first
target for developing scalable applications with irregular communica-
tion patterns. However, an efficient runtime support for MPI-3 RMA
with simultaneous use of both processors and co-processors is still not
well exploited. In this paper, we propose high-performance and scalable
runtime-level designs for MPI-3 RMA involving both the host and Xeon
Phi processors. We incorporate our designs into the popular MVAPICH2
MPI library. To the best of our knowledge, this is the first research work
that proposes high-performance runtime designs for MPI-3 RMA on Intel
Xeon Phi clusters. Experimental evaluations indicate a reduction of 5X
in the uni-directional MPI Put and MPI Get latency for 4 MB mes-
sages between two Xeon Phis, compared to an out-of-the-box version
of MVAPICH2. Application evaluations in the symmetric mode show
performance improvements of 25 % at the scale of 1,024 processes.

1 Introduction

The emerging co-processors such as Intel Many Integrated Cores (MICs) [2] and
accelerators such as NVIDIA GPUs have been widely used to accelerate scien-
tific applications. The features of high performance and low power consumption
per watt they offer have made them as key components in modern HPC sys-
tems. In the recent Top500 list [16] (November 2014), 75 systems in total are
using either accelerator or co-processor technology, including Tianhe-2, Titan,
and Stampede in the top 10 supercomputers. Networking technologies, such as
InfiniBand (IB) [1], have also rapidly evolved over the years to offer low latency
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and high bandwidth communication to address the increasing communication
requirements of current generation peta-scale applications.

Intel’s Xeon Phi co-processor, based on the Many Integrated Core (MIC)
architecture, packs up to 1 TFLOP of double precision performance in one
chip. Several programming models, including MPI, OpenMP and others, used
on multi-core architectures can run on Xeon Phi. So applications developed for
multi-core systems could be easily ported to Xeon Phi. Xeon Phi also offers three
usage modes for application developers: (1) Offload mode: It can be used as an
accelerator to offload compute intensive regions of an application, using compiler
directives. (2) Native mode: It can also be used in a many-core hosted mode to
run applications. (3) Symmetric mode: It also offers a Symmetric mode where
processes can be launched on both the co-processor and host.

Several scientific applications have already been successfully ported to lever-
age the compute power offered by Xeon Phi [7,8]. To maximize the performance
of applications, several studies have optimized runtime systems for the send-recv
based communication using new features available on Xeon Phi clusters. One-
sided communication has been seen as a suitable model for Exascale Comput-
ing especially for applications with irregular communication patterns [5]. MPI-3
RMA provides one-sided semantics that reduce the synchronization overhead
and allow overlapping of communication with computation. However, an effi-
cient runtime support for MPI-3 RMA with simultaneous use of both processors
and co-processors is still not well exploited.

To design a high-performance runtime for MPI-3 RMA, we need to cover win-
dow creation, communication and synchronization operations with existing and
new channels available on Xeon Phi Clusters. For applications running in Native
or Symmetric modes, different communication paths can be involved in MPI
processes, such as Intra-MIC (MIC-MIC), Intra-Node (HOST-MIC), Inter-Node
(HOST-MIC), Inter-Node (MIC-MIC), etc. To maximize the utilization of com-
pute resources on MIC-based systems, it is imperative that all these operations
are efficiently designed. In this work, we propose efficient and truly one-sided
MPI-3 RMA designs to address the following important challenges:

– What are the bottlenecks involved in optimizing data transfers inside a node
or across nodes with processor and co-processor?

– Can all the communication operations be implemented in a truly one-sided
manner?

– What are the potential benefits of such a runtime design on the performance
and scalability of parallel applications?

In this paper, we present a high-performance and scalable design of MPI-3
RMA on Intel Xeon Phi clusters. We also carry out a detailed analysis of our
designs and evaluate them with various micro-benchmarks and applications. Our
experimental evaluations show that our proposed design could reduce the uni-
directional MPI Put and MPI Get latency for 4 MB messages from Xeon Phi
to Xeon Phi by 5X. The design improves the performance of MPI-3 RMA based
Graph500 by 25 % with 1,024 processes in symmetric mode. To the best of our
knowledge, this is the first research work that proposes high-performance runtime
designs for MPI-3 RMA on Intel Xeon Phi clusters.
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2 Background

In this section, we briefly discuss MPI-3 RMA programming model. Later, we
describe the communication channels available on Xeon Phi Clusters.

2.1 MPI-3 RMA

The MPI one-sided interface enables direct access to the memory of other
processes through a window. Window is a memory region which can be accessed
by processes in the same communicator. MPI-3 RMA introduces six communi-
cation routines to access windows. Synchronization modes provided by MPI-3
can be classified as passive (no explicit participation from the target) or active
(involves both origin and target). All of these communication operations are non-
blocking and are not guaranteed to complete, either locally or remotely, until a
consequent synchronization operation (e.g. MPI Win unlock) occurs.

2.2 Communication Channels on Intel Xeon Phi Clusters

For processes running on MIC Clusters, there are three modes of inter-process
communication: the shared-memory channel, the Symmetric Communication
Interface (SCIF) channel, and the IB-verbs channel. SCIF is a socket-like API
for communication between processes on the MIC and host within the same sys-
tem [4]. The Intel Manycore Platform Software (MPSS) for MIC provides two
ways of using IB verbs for communications on MIC clusters. A direct OFED
communication stack is provided to support the Symmetric mode of communi-
cation on just the MIC or between the MIC and host. Alternatively, the MPSS
also provides implementation of IB verbs over the SCIF API, called IB-SCIF, for
intra-node communications. Our previous study showed that the current genera-
tion processor chipsets from Intel have a limited peak bandwidth when the HCA
is directly accessing the accelerator memory. A Proxy-based approach is usu-
ally used to overcome this limitation [13]. Our work differentiates from previous
design in that we implement MPI-3 RMA communications with truly one-sided
schemes. Detailed description of the designs is presented in Sect. 3.3.

3 Proposed Designs

RMA runtime

Window management Synchronization

Communication

IB SCIF
Shared

memory

MPI RMA programing model

Fig. 1. Overview of MVAPICH2
MPI-3 RMA over Xeon Phi Clus-
ters

In this section, we present efficient MPI-
3 RMA communication runtime designs for
Intel MIC clusters. Figure 1 gives an overview
of our proposed designs including window
management, communication and synchro-
nization operations.
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3.1 Designs for Window Creation

In the window creation phase, each process discovers its neighbors and its loca-
tion whether it is running on the MIC or HOST. The process with the lowest
MPI rank of all running processes on the same MIC is assigned as the MIC leader
process. The window is registered with the IB HCA and PCIe device to enable
both IB verbs and SCIF communications. After registrations, all MPI processes
call MPI Allgather to get other processes’ window information (window base,
remote descriptor for IB network, remote offset for SCIF, etc.). Then, the MIC
leader process sends all the window information to a helper process running
on the host. The purpose of this helper process and this message exchange is
mainly for the truly one-sided implementation which will be discussed in detail in
later subsection. To provide high-performance one-sided communications, SCIF
requires the source and target buffers to be 64-bit aligned. Thus, we align win-
dows inside the library if the start address given by the user is not aligned. Fur-
ther, as the registration is an expensive operation, we enhance the registration
cache scheme used by MVAPICH2, to enable caching SCIF registration han-
dlers. The whole procedure used for MPI Win allocate is shown in Algorithm 1.
For a traditional window that is created by MPI Win create, each process needs
to store address information of all other processes for data transfers. For newly
introduced window routines in MPI-3 RMA, each process only needs to store
per node address information instead of per process. The MPI-3 RMA window
can also be implemented as a symmetric heap where the window base on all
processes is the same. In this case, each process only needs to store one window
address which can be used for all processes.

3.2 Designs for Intra-node Communication

In this subsection, we propose designs for the intra-node MIC-MIC, HOST-
MIC and MIC-HOST communications. Here we focus on MPI Get and MPI Put
operations.

Intra-node MIC-MIC Communication. For RMA communications operat-
ing on windows created by MPI Win create, the communication is implemented
over the two-sided based shared memory channel. The origin process copies a
header and the data into a shared memory region allocated during MPI Init and
the receiver process keeps polling for any incoming messages, detects the header
and copies the data into the destination buffer. For RMA communications oper-
ating on a window backed by shared memory, the origin process could directly
access the remote process window and finish the transfer by just one copy from
the origin to the target buffer. These two designs work well for small messages.
For large messages, relatively weak performance of single core on the MIC incurs
high overhead with memcpy operation for data transfers. An alternative design
is to use the SCIF channel to transfer large messages. The MPI Put is mapped to
scif writeto which transfers the data from its source buffer to the target process’s
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window. The MPI Get is mapped to scif readfrom to read the data from a target
process’s window into its own buffer.

Intra-node MIC-HOST and HOST-MIC Communication. There are
two design alternatives for each of these two communication paths. One design is
going through the native IB channel, and the other one is using the SCIF channel.
We find that a single channel could perform the best for all message sizes, so we
introduce a hybrid design which automatically chooses the best channel based
on the communication pattern and message sizes. For small messages, the native
IB channel always delivers better performance than the SCIF channel, so we use
native IB channel for small messages in this scenario. For large message transfers,
IB reads from the MIC memory will hit the bandwidth limitation introduced
in [13]. This limitation adds significant overhead for MIC-HOST MPI Put and
HOST-MIC MPI Get operations. To avoid this bottleneck, we take advantage of
the SCIF channel for these two transfers. In our experiments, we find that SCIF
transfers also deliver better bandwidth than HOST initialized IB transfers for
large messages. So our design uses the low latency IB channel for small messages
and the SCIF channel for large messages.

Algorithm 1. Details of MPI Win allocate

1 /* MPI Process running on the HOST or MIC */
2 if local rank = 0 then
3 shm open(size)
4 Bcast(node comm, shm hnd)

5 else
6 Bcast(node comm, shm hnd)
7 win base ← mmap()

8 end
9 rkey ← ib register(win base)

10 scif off ← scif register(win base)
11 /* MPI processes exchange window info */
12 Allgather(comm, {rkey, scif off, win base})
13 if on mic & local rank = 0 then
14 /* Send information to helper process */
15 Send(helper process, {rkey, scif off, win base})
16 end
17 /* Helper process running on Host */
18 Recv({rkey, scif off, win base})
19 for k = 0; k < node size; k++ do
20 buffer.scif off[k] ← scif off[k]
21 buffer.win base[k] ← win base[k]

22 end
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3.3 Designs for Inter-node Communication

In this subsection, we present design alternatives for inter-node MIC-MIC,
HOST-MIC and MIC-HOST communications.

Inter-node MIC-MIC Communication. For small messages, the IB channel
could be used for data exchange between MICs sitting on different nodes. For
large data transfers between MICs, the IB transfer reading from a remote MIC
will hit the same bandwidth limitation. To overcome this limitation, a two step
based approach is proposed. The first step transfers the data from the MIC to
the HOST, and then the HOST initializes IB transfers to the remote target in the
second step. In order to achieve this two-step based transfer, we need to launch
a helper process on the HOST to take care of the intermediate transfer. To
implement this design in a truly one-sided manner, there are several challenges:

– Which communication channel should be used for each step?
– How can the helper process directly read/write from/to the window of MPI

processes?
– How to avoid an active participation of the target process, to achieve best

computation/communication overlap?

For the first step, we choose the SCIF channel that always performs the best
for intra-node large message transfers. There are two alternative designs for the
first step: (1) The MIC process sends the first handshake message to notify the
helper process. The helper process responds with an intermediate address after
receiving the notification. The real data transfer starts in the third step. (2) The
other way is that the MIC process sends its source address and the SCIF offset
together with the notification message. When the helper process receives the
data, it could directly read the source buffer via the SCIF channel. In order
to reduce the participation of the source and target to the minimum and thus
achieve the best overlap, we choose the second way in our design. For the second
step, we choose the IB channel to transfer data from the helper process to the
remote target process. There are also two alternative designs here: (1) The helper
process explicitly exchanges address and other window related information with
the target process. In other words, this approach requires the participation of the
target and an explicit synchronization during the data transfer. (2) The helper
process stores all window related information during the window creation phase
as indicated in Sect. 3.1. In this way, the helper process could directly access the
remote target process window. With the objective of achieving a truly one-sided
design and avoid a synchronization with the target process, our solution uses the
second design.

In addition to ensure the one-sided semantics, the selected paths offer the
best performance as they involve the DMA SCIF read initiation from the Host
to the remote MIC. However, we still need to manage data transferred in each
channel to get the peak bandwidth. Congestion in either channel will hurt the
overall performance. To make the overall transfer work efficiently, we transfer
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Fig. 2. Detailed designs of inter-node MIC-MIC communications

the data in a pipelined manner. The data is moved block by block from the
MIC process to the helper process via PCIe bus using SCIF and from the helper
process to the target process via the IB channel. As long as the helper process
receives one complete block from the MIC process, it issues RDMA write to the
remote target process. When the helper process finishes writing all blocks, it will
send a FIN message to the origin process. This two-step pipeline based design
is shown in Fig. 2(a) and (b).

Inter-node MIC-HOST and HOST-MIC Communication. For small
message transfers, the native IB channel always performs the best, so our design
takes advantage of the native IB channel for small messages. For large messages,
an MPI Put from an MIC to a HOST or an MPI Get from a HOST to an MIC
both will hit the bandwidth limitation if directly using the IB native channel. To
avoid this bottleneck, we use the same two-step pipeline based design to stage
the data to a helper process first, then initializing IB transfers. For the MIC-
HOST MPI Get and HOST-MIC MPI Put, we use direct IB channel transfers
for all message sizes.

3.4 Design for Atomic Operations

Since the IB HCA has already supported the fetch and add and com-
pare and swap operations with 64 bits element size, our first design takes advan-
tage of this hardware feature. We use this feature for MPI atomic operation with
64 bits element size. This design only involves the origin process for the atomic
operations. For other message sizes which are not supported by the IB hardware,
MPI atomic operations are implemented over two-sided based communications.
When the origin process issues an atomic operation to the target process, it
sends out a packet including a header and the data to the target process. After
the target process receives the packet, it uses the kernel based atomic support
to do the operation and returns the final result to the origin process. We do not
need to consider the two-step based pipeline design here, since atomic operations
only involve small messages.
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3.5 Synchronization

Synchronization operations ensure that window regions are ready to be accessed
by other processes and all previous communication operations have been com-
pleted. In this work, we keep the same control messages and designs used for
both active synchronization and passive synchronization in the Host. Our work
extends current design by ensuring that the data transmission going through our
proposed channels also completes when the synchronization operation returns.
For transfers via SCIF channel, we call SCIF APIs to ensure that all issued
SCIF operations have completed in synchronization routines. For transfers via
the two-step based pipeline channel, we check the FIN message returned from
the helper process to ensure that the data has been received by target process.
Note that waiting for the FIN message involves only a memory polling which
leads to the best performance.

4 Experimental Evaluation

In this section, we describe the experiments to evaluate the efficacy of the pro-
posed design.

4.1 Experimental Setup

We use the TACC Stampede [15] system for experiments. Each Stampede
node has a dual socket containing Intel Sandy Bridge (E5-2680) dual octa-core
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Fig. 5. Communication computation overlap evaluation

processors running at 2.70 GHz. It has 32 GB of memory, a SE10P (B0-KNC)
coprocessor and a Mellanox IB FDR MT4099 HCA. The host processors are run-
ning CentOS release 6.3 (Final), with kernel version 2.6.32-431.17.1.el6.x86 64.
The KNC runs MPSS 2.1.4346-16. The compiler suite used is Intel com-
poser xe 2013.2.146. Our designs are integrated in the popular MVAPICH2 [12]
MPI library. We use OSU Micro-Benchmarks (OMB) 4.4 for evaluation perfor-
mance of point-to-point communication. We then present evaluation using an
RMA based LU kernel and MPI-3 RMA based Graph500 benchmark [9].

In this section, we first present experiments studying the impact of our
designs for intra-node and inter-node communication on performance of point-to-
point operations. ‘MV2-Def’ is the default version of MVAPICH2-MIC using the
shared memory channel and native IB interface for MPI-3 RMA communication
operations. ‘MV2-Proposed’ represents our proposed designs using the shared
memory, SCIF and IB channels for inter-node and intra-node communications.

4.2 Micro-Benchmark Level Evaluation

We present the performance results of MPI Put and MPI Get uni-directional
latency benchmarks in Figs. 3 and 4, respectively. For the intra-node MIC-MIC
communication, MV2-Def uses the shared memory channel for all message sizes,
whereas MV2-Proposed uses the shared memory channel for small messages
and the SCIF channel for large messages. From the results, we see that the
SCIF channel helps reduce the large message latency significantly. For the intra-
node MIC-HOST MPI Put and HOST-MIC MPI Get results, MV2-Def uses IB
channels for all message sizes, whereas our proposed design uses the IB channel
for small messages and the SCIF channel for large messages. The HOST-MIC
MPI Get operation latency for 4 MB messages are 3949.6 and 721 µs respectively
for MV2-Def and MV2-Proposed, which is a 5X reduction.

The Inter-node MPI Put and MPI Get performance results are presented in
Figs. 6 and 7, respectively. For the inter-node MIC-HOST MPI Put and HOST-
MIC MPI Get, MV2-Def uses the IB channel for all message sizes, which has
overhead for large messages; MV2-Proposed uses the SCIF channel staging
data from the MIC to the Host, then the HOST issues IB transfer to the
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destination process. For the MIC-HOST MPI Put of 4 MB message sizes, the
latencies are 3947.9 and 700 µs for MV2-Def and MV2-Proposed, respectively,
which is a 5X reduction. For the inter-node HOST-MIC MPI Put and MIC-
HOST MPI Get, both MV2-Def and MV2-Proposed use direct IB transfer for
all messages, because th Host initialized IB transfer doesn’t have bandwidth
limitation. For the inter-node MIC-MIC results, MV2-Def uses the IB channel
for all message sizes, where MV2-Proposed uses two-step based transfers. That
is why we also see big improvements in this case.

Figure 5 demonstrates the impact of the proposed design on communication
computation overlap. The overlap benchmark is a two process test that measures
the latency observed at the origin MPI process for MPI Get and MPI Win flush
on the window at the target process. During this time, the target process goes
into a busy loop (mimicking computation) which is increased in each step.
In Fig. 5, Send-recv-based means implementing communication over two-sided
based designs, which involves both the origin and the target process in the com-
munication. Our proposed design is a truly one-sided based implementation. By
achieving near 98 % communication-computation overlap, the communication
time of our proposed design is constant when the computation time increases,
whereas the communication time keeps increases for the two-sided based design.

4.3 Application Level Evaluation

We use a modified version of the SPLASH LU benchmark written with MPI
RMA to demonstrate the benefits of our proposed designs. This experiment
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Fig. 8. Application evaluations

uses 16 MPI processes per Xeon Phi in the native mode. The SPLASH LU
benchmark does dense LU factorization. The dense 8192× 8192 matrix is divided
into blocks of size 128× 128 each. Figure 8(a) shows the execution time of the
benchmark for the proposed design from 32 to 128 processes. We observed that
MV2-Proposed outperforms the MV2-Def by a factor of 24 % on 128 processes.
The improvement seen by our design is due to the overlapping of the computation
and communication time and efficient inter-node and intra-node Xeon Phi to
Xeon Phi communication.

We also show the impact of our designs using an MPI-3 RMA based Graph500
benchmark [9] with processes running across MICs and hosts. In this experiment,
we run 16 processes on each host and Xeon Phi. The results are presented in
Fig. 8(b). We run the test with increasing number of processes on the MIC and
Host from 128 to 1,024. We use scale 22 and edge factor 16 for the evaluation.
We see that MV2-Proposed consistently delivers benefits compared to MV2-
Def. The performance benefits come from our proposed design which optimizes
all these communications. With 1,024 processes (512 on the host and 512 on
the MIC), the execution times are 15.1 and 11.3 s, respectively, which is a 25 %
improvement.

We then present the performance evaluation results of the same Graph500
benchmark for native mode. In this experiment, each node is running 16 Xeon Phi
processes, and the total number of processes varies from 128 to 1,024. We present
the BFS kernel time in Fig. 8(c). We can see that the proposed design performs
better than MV2-Def at all system scales. MV2-Proposed performs better than
MV2-Def because of two reasons: (1) The low latency and high bandwidth SCIF
channel benefits intra-node large message sizes. (2) Our proposed two-step based
design benefits inter-node data transfers. One thing we noticed was that the
execution time increases with the increase in system size. This could mean that
the Graph500 has some scalability limitations on native mode.

5 Related Work

Many researchers have explored different ways to utilize computing power of
Xeon Phi. Currently, most explorations have tried to make use of the architec-
ture’s offload mode of computation [7]. Larry Meadow’s work investigates the
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performance of WRF on the Xeon Phi using symmetric mode of computation
and shows significant speedup [8]. MPICH-3.1 also has supports for MIC archi-
tecture using shared memory, TCP/IP, and SCIF based communication [11].
Direct communication between MIC accelerators across nodes is supported by
DCFA-MPI [14] and Intel MPI [3]. Potluri et al. address efficient communication
between processes within a single node or across different nodes for MPI two-
sided communications [13]. Luo et al. [10] present studies supporting UPC on
MIC architecture. Gerstenberger et al. have shown their work of implementing
MPI-3 One-sided interface over RDMA networks with buffer-less protocols [6].
However, our work differentiates from previous work in that we propose truly
one-sided and high-performance designs for MPI-3 RMA for symmetric and
many-core hosted mode over InfiniBand networks.

6 Conclusion

In this work, we propose truly one-sided and high-performance designs for MPI-
3 RMA on Intel Xeon Phi clusters. We present our designs for the window
creation, communication and synchronization routines in MPI-3 RMA. We take
advantage of Intel’s low level communication API, SCIF, in addition to the
standard communication channels like shared memory and IB verbs to efficiently
support all possible data movement paths in the Native/Symmetric mode. Our
proposed designs improve the point-to-point latency of intra-node and inter-node
Xeon Phi to Xeon Phi uni-directional MPI Put and MPI Get by 5X compared
to an out-of-the-box version of MVAPICH2-MIC. We also evaluate our designs
with a SPLASH LU application kernel and MPI-3 RMA based Graph500. The
MPI RMA based SPLASH LU benchmark indicates a reduction of 24 % at 128
processes with the native mode. The Graph500 benchmark shows improvements
of up to 25 % improvement with 1,024 processes. As part of our future work,
we plan to re-design MPI applications with MPI-3 RMA over Xeon Phi and
evaluate the impact of our designs on a broader range of applications.
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