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Abstract. The deployment of larger and larger HPC systems chal-
lenges the scalability of both applications and analysis tools. Performance
analysis toolsets provide users with means to spot bottlenecks in their
applications by either collecting aggregated statistics or generating loss-
less time-stamped traces. While obtaining detailed trace information is
the best method to examine the behavior of an application in detail, it
is infeasible at extreme scales due to the huge volume of data generated.

In this context, knowing the application structure, and particularly
the nesting of loops in iterative applications is of great importance as it
allows, among other things, to reduce the amount of data collected by
focusing on important sections of the code.

In this paper we demonstrate how the loop nesting structure of an
MPI application can be extracted on-line from its event flow graph with-
out the need of any explicit source code instrumentation. We show how
this knowledge on the application structure can be used to compute post-
mortem statistics as well as to reduce the amount of redundant data
collected. To that end, we present a usage scenario where this structure
information is utilized on-line (while the application runs) to intelligently
collect fine-grained data for only a few iterations of an application, con-
siderably reducing the amount of data gathered.

Keywords: Application structure detection · Flow graph analysis ·
Performance monitoring · Online analysis · Automatic loop detection

1 Introduction

Computer simulations are nowadays an important method of scientific discov-
ery. By using computers, scientists can model processes that would be difficult
or impossible to reproduce and study in a real-world scenario. Moreover, the
deployment of larger and larger High Performance Computing (HPC) systems
provides scientists with an opportunity to solve problems which could not be
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tackled before. However, scientific applications have to be tuned and highly opti-
mized to effectively use all the computational power provided by current HPC
infrastructures.

In our previous work we have explored the use of event flow graphs as a
novel method for MPI monitoring and analysis, demonstrating that graphs are
a good compressed representation of MPI event traces due to the iterative nature
of MPI parallel applications [1,8]. Event flow graphs retain the temporal order
of the events executed during the lifetime of a program without saving explicit
timestamps. Thus, graphs can be used to reconstruct the full ordered sequence
of events performed by the application.

In this paper we present how event flow graphs can be used beyond trace
compression and reconstruction. Our approach for automatic analysis of event
flow graphs sheds light on the inherent structure of parallel applications, for
instance, revealing the nesting loop structure present in the program.

Knowledge of the application structure can be very useful both for post-
mortem and for on-line performance analysis. On one hand, this structural
knowledge can be utilized to automatically generate reports that show the user
where and how time is spent among loops, and how the performance character-
istics of those loops evolve over the lifetime of an application. This can be done
without the need of recompilation, access to the source code, or user involve-
ment at all. On the other hand, knowing the structure of a program while it
runs can benefit how data is collected and aggregated. For instance, data can be
aggregated at a loop level instead of keeping every event, or redundant informa-
tion can be reduced by keeping fine-grained data for a few loop iterations only.
Furthermore, this structural knowledge can also be used, for example, to help a
dynamic runtime system with its decision making process, or to feed an external
monitoring tool that decides the grain of the performance data collected.

The contributions of this paper include:

– We develop a simple mechanism to extract the structure of applications with
very low overhead and without the need to have access to the source code.

– We present a real usage scenario in which the structure of an application is
detected automatically while the application runs to intelligently select the
performance data collected.

– We demonstrate that the overall performance behavior of an iterative MPI
application is still captured with our approach by selecting only a few repre-
sentative iterations.

The remainder of this paper is organized as follows: Sect. 2 provides
background on our previous work on event flow graphs. Section 3 describes
the mechanisms implemented for application structure detection, and its on-line
application. Section 4 presents a real usage scenario where the on-line detection
of an application’s structure is used to intelligently select the amount of per-
formance data generated. Section 5 surveys related work. Finally, Sects. 6 and 7
discuss future work and conclusion, respectively.
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2 Background: IPM and Event Flow Graphs

The work presented in this paper builds on top of the Integrated Performance
Monitoring (IPM) tool [13]. In [1,8], IPM was extended to capture and generate
event flow graphs of MPI parallel applications. Upon program termination, IPM
generates for each MPI process a weighted directed graph in which nodes are
the different1 MPI calls performed by that process, and edges are the transitions
between those calls. In other words, edges are the computational parts between
two MPI calls. Therefore, event flow graphs keep the temporal order of the events
performed by the application. In addition, metrics such as timers and hardware
counters can be associated with the nodes and edges of the graph, increasing
thereby the usability of such graphs.

3 Automatic Analysis of Event Flow Graphs

3.1 Loops in Event Flow Graphs

It is commonly accepted conventional wisdom that the vast majority of HPC
scientific parallel codes are iterative and spend most of their time in loops. These
scientific applications are usually composed of a large outer loop, which controls
the simulation time-steps, and which contains several inner loops with different
nesting levels. Since most of the application time is spent in loops, they become
one of the main targets when analyzing and optimizing programs.

Most MPI parallel programs contain MPI operations in some of their loops,
as data needs to be shared among processes across loop iterations. In those
cases, the generated event flow graphs will contain cycles. Thus, by detecting
those cycles, we are detecting the actual loops that drive the simulation process
in the application. Loops without MPI calls are not detected with this approach,
however, their behavior gets captured in the edges of the graph as these loops
are just pure computational parts between two MPI calls.

Figure 1 shows the basic cycle shapes that can appear in our event flow
graphs. Each one of the loops is accompanied with a source code example that
generates such a loop structure. Calls to A, B, C and D represent any MPI
routine. As can be seen in the picture, loops can range from single node cycles,
through several nesting structures, to cycles with multiple tails. In addition, all
these basic loop structures can be combined to form more complex ones. At the
moment, our work focuses in reducible loops [23], that is, loops with just one
entry point. Formally, given a loop L with header h (h dominates all the nodes
in the loop L) and an edge < u, v >, if u /∈ L and v ∈ L − {h}, then v is a
re-entry point and the loop is irreducible.

Irreducibility in our event flow graphs can be caused by two different factors:
the application’s source code structure, and the event signatures used for the
1 What constitutes different MPI calls for recording our event flow graphs is governed

by a configurable event signature in IPM. The signature usually consists of the name
of the call and its call site and can optionally also include the communication partner
rank and the transfer size.
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Fig. 1. Different cycle shapes in event flow graphs.

nodes of the graph. Irreducibility caused by unstructured programming (e.g.,
the use of goto), however, is nowadays rare and will become even rarer in the
future due to the adoption of more structured programming practices [22]. On
the other hand, irreducibility caused by the event signature used can always be
solved by changing the signature. If transfer size is used in the signature for
example, one single MPI call in the source code can be translated into different
nodes in the graph if such a call has different transfer sizes at runtime. Thereby,
generating sometimes irreducible cycles. However, this situation is also rare, and
the graph usually becomes reducible again by using the call name and call site
as event signature, because then each graph node maps exclusively to only one
MPI call in the source code.

Algorithms for graph cycle detection have been studied and used in the field
of compilers for years [12,20,21]. Our framework for graph analysis implements
the algorithm from [24]. This algorithm traverses the graph using a depth-first
search (DFS) and runs in almost linear time. It does not require any complicated
data structures as other cycle detection algorithms, and thus, it is much easier
to implement. After running the algorithm, loop header nodes (entry node in a
graph cycle) are identified and all loop nodes are labeled with their corresponding
header. If multi-entry loops (irreducible loops) are found, the graph is marked
as irreducible and the process ends.

Once nodes have been labeled, our framework knows for every graph node to
which loop it belongs, which loops are outermost, which are nested, etc. Thereby,
our analysis tool can provide detailed exclusive and inclusive loop metrics such
as percentage of MPI time over total loop time. Figure 2 shows the percentage
of MPI time across ranks in the main simulation loop for MiniFE, a finite-
element code. The MPI time is the inclusive total time for this outermost loop,
that is, the time for its nested loops is also included. The picture shows that
MiniFE suffers of imbalance in this loop as some processes spend around 20 %
of their time in MPI whereas some others less than 5 %. It is important to
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Fig. 3. Change in the number of nodes
in graphs from several applications
during their execution time.

remark that the statistics on loops provided by our approach are automatically
obtained without any user involvement or source code modification. Our solution
utilizes the PMPI interface to intercept MPI calls, and the libunwind library to
determine their call sites.

The use of event flow graphs together with automatic loop detection opens
many possibilities for post-mortem performance analysis of MPI parallel appli-
cations. However, this topic is out of the scope of this article. More details in
the use of graphs for visual performance analysis of MPI applications can be
found in [2].

3.2 Runtime Loop Detection

The previous section has focused on the automatic post-mortem analysis of
graphs to detect the structure of an application, however, our mechanism can
also be used in real-time while applications run.

In order to minimize the amount of overhead introduced into the application,
our on-line loop detection mechanism is performed only once when the appli-
cation has reached a stable state. The application is considered stable when it
enters into an iterative phase in which its performance behavior presents minor
fluctuations. Most scientific applications arrive into this state when they start
executing their main simulation loop, which is executed for most of the running
time. In our case, this situation is reflected in the number of nodes in the event
flow graph. In other words, once the application reaches an iterative stable state,
the number of nodes in the graph does not change since the same MPI calls are
repeated over and over again. Figure 3 shows the number of nodes in the graph
during application execution for one process of different MPI applications. It can
be seen, for instance with MiniGhost, that after some short initialization time,
the number of nodes in the graph does not change during most of the execution
time since the application has entered its stable state. At the end of its execution,
the number of nodes in the graph increases again as the application exits the
main loop and performs some new MPI calls before finalizing. However, these
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Table 1. Overhead introduced by IPM over total application running time.

Metrics MiniGhost MiniFE GTC MiniMD BT LU

Ranks 96 144 64 192 144 128

% Overhead 0.9 % 0.65 % 1.06 % 1.10 % 0.81 % 1.2 %

new final nodes represent a minimal percentage over the total running time, and
thus, they are not important for performance analysis purposes.

To detect when an application becomes stable, IPM checks at regular inter-
vals if the graph has changed since the last time it was checked. When the graph
remains the same for a certain number of times, the graph is considered stable
and the loop detection mechanisms are triggered. This graph sampling interval
used by IPM as well as the number of times the graph has to remain identical
are configured by the user.

4 Experiments

In this section we demonstrate the ability of our system to automatically identify
the structure of an application while it runs. Moreover, we demonstrate how this
knowledge can be used to reduce the amount of tracing data collected by only
keeping information from a few representative iterations.

To this end, we run six different applications that represent typical scientific
codes: MiniGhost, MiniFE and MiniMD from the Mantevo project [17]; BT and
LU from the NAS Benchmarks [4]; and the GTC code [15]. The applications
were run in a Cray XE6 machine with 2 twelve-core AMD MagnyCours CPUs
at 2.1 GHz per node. The nodes had a total of 32 GB DDR3 memory and were
interconnected through a Cray Gemini network. The benchmarks were compiled
using Intel 12.1.5.

4.1 Overhead

Table 1 shows for each benchmark the percentage of overhead introduced by
IPM over the total application running time. This overhead includes intercept-
ing every MPI call, building the graph, and detecting the cycles in it. As can
be seen in the table, the applications are not perturbed much since the over-
head is very small, being always under 2 %. In addition, this overhead does not
increase with the number of cores used as the graph creation and structure detec-
tion mechanism are performed locally without any inter-process communication
required.

4.2 Usage Scenario

Collecting fine-grained information with tracing tools avoids the loss of micro-
scopic information that can occur with other summarization methods such as
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Fig. 4. Event flow graph and its hierarchical tree representation after loop detection.

profiling. However, detailed trace-based analysis for the whole lifetime of an
application is infeasible due to the scalability problems caused by the amount of
data generated.

Nevertheless, most MPI scientific applications are usually iterative algorithms
that repeat the same operations over time as the simulation evolves. Given this
iterative nature, applications exhibit a similar performance behavior across iter-
ations during their lifetime. Thus, keeping information on only a few iterations
of such a stable region should be sufficient to capture the overall application
behavior.

By means of detecting the application structure, we aim to identify at run-
time the repetitive pattern of the program, thereby, collecting information on a
few representative iterations only. This process works as follows. First, the corre-
sponding event flow graphs are built when the application reaches a stable state.
In other words, when the number of graph nodes remains stable and does not
change. Once the event flow graph has been built for each process, each graph
is analyzed to automatically detect and label its cycles. Then, IPM creates for
each graph one tree that depicts the hierarchical relation of the loops detected.
The root of the tree represents the process and every internal tree node corre-
sponds to a loop or an event in such a process. If two loops are nested, they
will be parent and child in the tree. These trees model naturally the hierarchical
relations among loops and allow IPM to check easily, among other things, if an
event belong to a certain loop, if a loop is nested within another, or if two loops
are nested within the same loop. Figure 4 presents an event flow graph with two
loops and how this information would be represented within IPM after the loop
detection.

As previously stated, the loop detection mechanisms are triggered once the
application enters into a stable state, that is, when the application starts iterating
over its main simulation loop. Therefore, in order to monitor some iterations of
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Table 2. Size comparisons between full traces and traces with 10 selected iterations.

Metric MiniGhost MiniFE GTC MiniMD BT LU

Ranks 96 144 64 192 144 128

Total iterations 60 200 200 2000 250 300

Total trace size 26 MB 77 MB 48 MB 555 MB 717 MB 7.7 GB

10 iterations size 4.4 MB 4.1 MB 1.3 MB 788 KB 29 MB 267 MB

% reduced 83 % 94.7 % 97.3 % 99.8 % 96 % 96.53 %

that main loop, IPM only has to wait for the event that is the loop header of
the current outermost loop being executed. In other words, an event that is the
header of a loop that hangs from the root of the constructed tree. Once this
event is intercepted, IPM starts the tracing to collect detailed information for
a certain number of iterations defined by the user. Afterwards, IPM stops the
tracing and the application continues its execution normally.

Table 2 shows a comparison of sizes between a full trace and a trace with a
few selected iterations for our various test applications. The table contains the
number of processes used, the total number of iterations for the full test case,
the total trace size for the full test, the trace size when tracing automatically
only 10 iterations, and the percentage of trace size reduction achieved. As can
be observed in the table, by keeping information on only a few iterations, we
can reduce the final trace size up to several orders of magnitude.

The current approach leaves room for some improvements though. For
instance, IPM could take into account some loop performance metrics before
turning on the tracing. Checking metrics such as instructions per cycle (IPC)
across iterations of the outermost loop could guarantee even more that the appli-
cation has reached its stable state. At the moment, the loop detection mechanism
and the selective tracing are triggered only once during the whole lifetime of the
application. Therefore, in cases where applications have several phases or various
outermost loops, our methodology will trace only one of them. It is planned in
our future work to solve this issue by triggering the selective tracing few times
during the execution, as well as providing the possibility to trigger the loop
detection explicitly with an API.

Although tracing just a few iterations provides detailed information while
reducing the amount of data collected, it always comes with an inevitable data
loss. Specially in punctual variations between iterations. Therefore, we performed
several experiments to measure the quality of our results, that is, we examined
how representative from the overall execution are the iterations automatically
selected by IPM. With that in mind, we used the CrayPat performance tool to
collect several statistics about the most important functions in MiniGhost. Then
we computed the same statistics from the reduced trace that contained only 10
iterations. Those statistics are the percentage of time spent in each call, and the
average of instructions and cycles per call. Table 3 compares the measurements
obtained with Craypat for the whole run with the measurements obtained from
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Table 3. Statistics per call for the most relevant functions in MiniGhost.

CrayPat IPM Trace

Function name Time % Kinstr KCycles Time % Kinstr KCycles

MG BSPMA DIAGS 5.70 % 401,476 558,737 5.42 % 394,140 552,064

MG STENCIL 3D27PT 80.8 % 120,886 199,126 79 % 120,864 199,397

MG ALLREDUCE SUM 12.10 % 14,052 29,822 12.96 % 14,432 29,818

the automatically reduced trace. As can be seen in the table, the differences
are very small (always under 2 %) and could be explained due to the different
overheads introduced by both tools, or by small variances between executions
or even across iterations. In any case, the results demonstrate that the trace
containing only a few selected iterations is representative of the overall behavior
of the application.

5 Related Work

Detection and analysis of parallel application structure is the topic of sev-
eral related works. The ScalaTrace [18] framework provides on-the-fly lossless
trace compression of MPI communication traces by detecting loops, or repeat-
ing events, and encoding them using RSDs [11]. Our approach differs in the fact
that whereas ScalaTrace detects loops for trace compression, our on-line loop
detection has more general purposes, from statistic aggregation to data filtering.
Our solution is highly customizable, allowing the generation of compressed full
traces and small uncompressed fine-grained traces.

The work of Gonzalez et al. [9,10] works on two-dimensional hardware counter
data derived from computational bursts, and employs a density based cluster-
ing approach to identify the SPMD structure of the application. Although this
approach allows to reduce the size of traces by collecting only relevant infor-
mation from a few iterations, it has no precise control over which part of the
code corresponds to a certain traced region. In contrast, our approach provides
fine-grained precision in delimiting loops within the application. In addition, the
use of burst clustering demands a more complex parallel software infrastructure
to be used in an on-line scenario [16].

The work of Casas et al. [6,7] utilizes spectral analysis techniques such as
wavelets to unveil the inner structure of parallel programs in performance traces.
Thereby, generating sub-traces that only contain a few representative iterations.
In addition, the tool can also find regions within the trace that are not usable
due to tool perturbation, e.g. flushing of tracing buffers to disk. Although this is
a good approach that helps the user to focus in relevant parts of the application
while reducing the trace size, it still requires the whole original post-mortem
trace. In contrast, our approach can be performed on-line while the applica-
tion runs.
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An approach that puts more focus on the communication structure is followed
by [3,19]. Repeated communication patterns are here first identified locally (on
a single process) and then grown globally by using string processing techniques
such as n-gram detection and suffix trees. The work of Alawneh et al. [3] further
attempts to group repeated patterns into homogeneous phases using information
theory concepts.

AutomaDeD [5,14] has similarities to our approach in that the application
execution is also represented as a set of states and the transitions between them.
However, AutomaDeD focuses on debugging and only records transition propa-
bilities between the states to create a Semi-Markov Model (SMM) of the appli-
cation execution. In contrast, our event flow graphs record the actual program
execution, allowing us to reproduce exactly the full sequence of events ordered
in time.

6 Future Work

Our current implementation captures information from several consecutive
iterations only once during the lifetime of an application. Nevertheless, this
mechanism can be easily extended to acquire information with more advanced
strategies. For instance, every time a certain condition such as the variation of
a particular performance parameter is fulfilled. IPM could keep track of metrics
such as instructions per cycle (IPC) on an iteration basis, and then trigger the
tracing every time there is a noticeable change of such a metric. Thereby, if an
application degrades during a long job we can have fine-grained snapshots at
several points in time. Furthermore, we want to extend the iteration selection
mechanism in order to automatically detect when an application has irregular
loop behavior or combined repetitive loop patterns. That is, the sequence of
events executed by the application is not regular and it changes from time to
time regarding current loop iteration, program state, or simulation phase. Our
current solution for selective tracing generates always a fixed number of consec-
utive iterations, therefore, we can lose irregular loop patterns if their frequency
of appearance is smaller than the fixed number of iterations traced.

In the present work, we have shown how we discover the structure of an
application across the time dimension, that is, detecting patterns (loops) in the
sequence of events performed by each process. However, our ongoing work is also
directed towards investigating the structure of applications across the process
dimension. We are studying the utilization of graphs to build a process signature
that could be clustered to detect processes with the same program behavior.
Thereby, we could reduce even more the amount of data collected as only data
from a few representative tasks could be kept.

Our current event flow graphs are focused in pure MPI applications, how-
ever, with the increase in the number of cores within computer nodes, hybrid
approaches such as MPI+OpenMP or MPI+PGAS are becoming more usual.
Thus, we want to provide our graphs with extensions to model such situa-
tions, for instance, having new graph nodes that represent OpenMP regions,
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or PGAS operations. Moreover, we want to study the utilization of graphs with
non-iterative applications, for instance, recursive codes or applications with task-
based parallelism.

7 Conclusion

This paper presents the use of event flow graphs together with cycle detection
algorithms to automatically detect the loop nesting structure of MPI parallel
applications. This loop structure can be extracted from any MPI program with-
out recompilation or modification of the source code.

We demonstrate how our work can be used, for instance, to automatically
compute post-mortem statistics that help users to better understand their appli-
cations, e.g., the distribution of time across loops, or the percentage of MPI
time spent in a certain loop. Nevertheless, the greatest strength of our structure
detection approach is that it can be performed with very low overhead while the
application runs. To that end, we present a test case where the structure of a
stencil code is extracted on-line while the program runs to intelligently filter the
performance data collected. By knowing the loop structure of an application, our
framework traces automatically only a small fraction of representative iterations,
reducing considerably the amount of data collected while keeping the overall per-
formance behavior of the application. Furthermore, the overhead introduced by
our mechanism is very small, being always under 2 % in our experiments.
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