Skip to main content

3D Objects Feature Extraction and Its Applications: A Survey

  • Conference paper
  • First Online:
Transactions on Edutainment XI

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 8971))

  • 1172 Accesses

Abstract

As large public repositories of 3D objects continue to grow, more and more feature extraction technologies for 3D objects spring up. On the basis of classical algorithm, new factors have been added to these emerging technologies. Feature extraction technologies, which are based on shape structure and geometry information, include semantics, kinematics and cognition, etc. While the technologies have been developing, using features to solve problem is more important than just extracting features from 3D objects. In this paper, we summarize several feature extraction technologies from different aspects. Then we aim at the applications of 3D object feature, not just the general 3D models retrieval, mainly about some specific applications and target on 3D CAD objects, non-rigid 3D objects and deformable objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Au, O., Tai, C., Chu, H., Cohen–Or, D., Lee, T.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27(3), 44:1–44:10 (2008)

    Article  Google Scholar 

  • Bai, J., Gao, S.M., Tang, W.H., Liu, Y.S., Guo, S.: Design reuse oriented partial retrieval of CAD models. Comput. Aided Des. 42, 1069–1084 (2010)

    Article  Google Scholar 

  • Bai, J., Liu, Y.S., Gao, S.M.: Multiresolutional retrieval of solid models based on local dilation. J. Comput. Aided Des. Comput. Graph. 19(4), 480–485 (2007). (in Chinese)

    MathSciNet  Google Scholar 

  • Baloch, S., Krim, H.: Object recognition through topo-geometric shape models using error-tolerant subgraph isomorphisms. IEEE Trans. Image Process. 19(5), 1191–1200 (2010)

    Article  MathSciNet  Google Scholar 

  • Blum, H.: A transformation for Extracting New Descriptors of shape, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  • Blum, H.: Biological shape and visual science: part I. J. Theor. Biol. 1973(38), 205–287 (1973)

    Article  Google Scholar 

  • Cao, T.Y., Yang, J.B., Zhang, W.X.: Potential balance-based image skeleton extraction algorithm 2003. J. SE Univ. (Nat. Sci. Ed.) 33(6), 724–727 (2003)

    Google Scholar 

  • Chaouch, M., Verroust-Blondet, A.: 3D gaussian descriptor for 3D shape retrieval. multimedia and Expo, 2009. ICME 2009, 834–837 (2009)

    Google Scholar 

  • Chaudhuri, S., Koltun, V.: Data-Driven suggestions for creativity support in 3D modeling. ACM Trans. Graph. 29(6), 183:1–183:9 (2010)

    Article  Google Scholar 

  • Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3d model retrieval. Compuet. Graph. Fourm 22(3), 223–232 (2003)

    Article  Google Scholar 

  • Chen, X., Gao, S.M., Guo, S., Bai, J.: A flexible assembly retrieval approach for model reuse. Comput. Aided Des. 44, 554–574 (2012)

    Article  Google Scholar 

  • Chen, X.F., Wang, R.S.: A multi-scale skeletonization algorithm based on non-ridge points lowering operation. J. Softw. 14(5), 925–929 (2003). (in Chinese)

    MATH  Google Scholar 

  • Cornea, N.D., Silver, D., Min, P.: Curve-Skeleton properties, applications, and algorithms. IEEE Transactiond Vis. Comput. Graph. 13(3), 530–548 (2007)

    Article  Google Scholar 

  • Cui, C.Y., Shi, J.Y.: Analysis of feature extraction in 3D model retrieval. J. Comput. Aided Des. Comput. Graph. 16(7), 882–889 (2004). (in Chinese)

    Google Scholar 

  • Daras, P., Axenopoulos, A.: A compact multi-view descriptor for 3D object retrieval. In: Seventh International Workshop on Content-Based Multimedia Indexing, pp. 115–119 (2009)

    Google Scholar 

  • Pickup, D., Sun, X., Rosin, P.L., et al.: SHREC 2014 track: shape retrieval of non-rigid 3D human models. In: Proceedings of the 7th Eurographics workshop on 3D Object Retrieval. Eurographics Association, 2014, 10 (2014)

    Google Scholar 

  • de Goes, F., Goldenstein, S., Desbrun, M., Velho, L.: Exoskeleton: curve network abstraction for 3D shapes. Comput. Graph. 35, 112–121 (2011)

    Article  Google Scholar 

  • Ding, Y., Liu, W.Y., Zheng, Y.H.: Hierarchical connected skeletonization algorithm based on distance transform. J. Infrared Millim. Waves 24(4), 281–285 (2005). (in Chinese)

    Google Scholar 

  • Fang, Y., Sun, M.T., Ramani, K.: Temperature distribution descriptor for robust 3D shape retrieval. In: 2011 IEEE Computer Society Conference Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–16 (2011)

    Google Scholar 

  • Gao, W., Gao, S.M., Liu, Y.S.: 3D CAD model similarity assessment and retrieval using DBS. In: Proceeding of ASME DETC 2005 Computers and Information in Engineering(CIE) Conferenee (2005)

    Google Scholar 

  • Gao, Y., Tang, J.H., Hong, R.C., Yan, S.C., Dai, Q.H.: Camera constraint-free view-based 3-D object retrieval. IEEE Trans. Image Process. 21(4), 2269–2281 (2012)

    Article  MathSciNet  Google Scholar 

  • Gao, Y., Tang, J.H., Li, H.J., Dai, Q.H., Zhang, N.Y.: View-based 3D model retrieval with probabilistic graph model. Neurocomputing 73, 1900–1905 (2010)

    Article  Google Scholar 

  • Jain, A., Thormählen, T., Ritschel, T., Seidel, H.: Exploring shape variations by 3D-model decomposition and part-based recombination. In: Paper presented at the EUROGRAPHICS 2012 (2011)

    Google Scholar 

  • Kalogerakis, E., Chaudhuri, S., Koller, D., Koltun, V.: A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31(4), 55:1–55:11 (2012)

    Article  Google Scholar 

  • Lavoué, G.: Bag of words and local spectral descriptor for 3D partial shape retrieval. In: Eurographics Workshop on 3D Object Retrieval (3DOR 2011), pp. 41–48 (2011)

    Google Scholar 

  • Lee, C., Shih, J., Yu, K., Chang, H.: Projection of shape features for 3D model retrieval. In: International Conference of the Multimedia Technology (ICMT), pp. 634–637 (2011)

    Google Scholar 

  • Lombaert, H., Grady, L., Polimeni, J.R., et al.: FOCUSR: feature oriented correspondence using spectral regularization–a method for precise surface matching. Pattern Anal. Mach. Intell. IEEE Trans. 35(9), 2143–2160 (2013)

    Article  Google Scholar 

  • Li, M., Zhang, Y.F., Fuh, J.Y.H.: Retrieving reusable 3D CAD modelsretrieving reusable 3D CAD models using knowledge-driven dependency graph partitioning. Comput. Aided Des. Appl. 7(3), 417–430 (2010)

    Google Scholar 

  • Li, P.J., Ma, H.D., Ming, A.L.: View-based 3D model retrieval with topological structure. In: 2011 IEEE International Multimedia and Expo (ICME), pp. 1–6 (2011a)

    Google Scholar 

  • Li, P.J., Ma, H.D., Ming, A.L.: Non-rigid 3D model retrieval using multi-scale local features. In: MM 2011 Proceedings of the 19th ACM International Conference on Multimedia, pp. 1425–1428 (2011b)

    Google Scholar 

  • Lian, Z.H., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., et al.: A comparison of methods for non-rigid 3D shape retrieval. Appear Pattern Recognit. 46, 449–461 (2013)

    Article  Google Scholar 

  • Lin, J., Li, Z., Jin, X.G., Li, L.: Skeleton extraction method based on convex hull and OBB. J. Comput. Aided Des. Comput. Graph. 24(6), 793–798 (2012). (in Chinese)

    Google Scholar 

  • Liu, J.T., Liu, W.Y., Wu, C.H., et al.: A new method of extracting objects’ curve-skeleton. Acta Automatica Sinica 34(6), 617–622 (2008). (in Chinese)

    Article  Google Scholar 

  • Liu, Y.J., Zheng, Y.F., Lv, L., Xuan, Y.M., Fu, X.L.: 3D model retrieval based on color + geometry signatures. Vis. Comput. 28, 75–86 (2012)

    Article  Google Scholar 

  • Liu, Y.J., Luo, X., Joneja, A., Ma, C.X., Fu, X.L., Song, D.W.: User-adaptive Sketch-based 3D CAD model retrieval. In: To appear in IEEE Transactions on Automation Science and Engineering (2012b)

    Google Scholar 

  • Liu, Y.J., Zhang, X.D., Li, Z.M., Li, H.: 3D model feature extraction method based on the projection of principle plane. Comput. Aided Des. Comput. Graph. 10(11), 463–469 (2009)

    Google Scholar 

  • Liu, W.Y., Bai, X., Zhu, G.X.: A skeleton-growing algorithm based on boundary curve evolution. Acta Automatica Sinica 32(2), 256–262 (2006). (in Chinese)

    Google Scholar 

  • Lmaati, E.A., Oirrak, A.E., Aboutajdine, D., Daoudi, M., Kaddioui, M.N.: A 3-D Search engine based on Fourier series. Comput. Vis. Image Underst. 114, 1–7 (2010)

    Article  Google Scholar 

  • Mahmoudi, S., Benjelloun, M.: 3D objects retrieval using curvature scale space and zernike moments. J. Pattern Recogn. Res. 1, 75–95 (2011)

    Article  Google Scholar 

  • Osada, R., Funkhouser, T., Chazelle, B., et al.: Shape distributions. ACM Trans. Graph. 21(4):807–823 (2002)

    Article  Google Scholar 

  • Ovsjanikov, M., Li, W., Guibas, L., Mitra, N.J.: Exploration of continuous variability in collections of 3D shapes. ACM Trans. Graph. 30(4), 33:1–33:10 (2011)

    Article  Google Scholar 

  • Ohkita, Y., Furuya, T., Ohbuchi, R.: Sets of local 3D shape descriptors for 3D model retrieval. In: Proceedings of the Visual Computing Symposium (2009)

    Google Scholar 

  • Pan, X., You, Q., Liu, Z., Chen, Q.H.: 3D shape retrieval by Poisson histogram. Pattern Recogn. Lett. 32, 787–794 (2011)

    Article  Google Scholar 

  • Pang, B., Ma, H.M.: An effective way of 3D model representation in recognition system. In: International Conference on Multimedia and Signal Processing, pp. 107–111 (2011)

    Google Scholar 

  • Paquet, E., Rioux, M..: A content-based search engine for VRML databases management. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, California, USA, pp. 541–546 (1998)

    Google Scholar 

  • Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2014)

    Article  Google Scholar 

  • Emanuele, R., Rota, B.S., Thomas, W., et al.: Dense non-rigid shape correspondence using random forests. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4177–4184 (2014)

    Google Scholar 

  • Ruggeri, M.R., Patane, G., Spagnuolo, M., Saupe, D.: Spectral-Driven isometry-invariant matching of 3D shapes. Int. J. Comput. Vis. 89, 248–265 (2010)

    Article  Google Scholar 

  • Sfikas, K., Pratikakis, I., Theoharis, T.: 3D Object retrieval via range image queries based on SIFT descriptors on panoramic views. In: Eurographics Workshop on 3D Object Retrieval, pp. 9–15 (2012)

    Google Scholar 

  • Sfikas, K., Theoharis, T., Pratikakis, I.: Non-rigid 3D object retrieval using topological information guided by conformal factors. In: Eurographics Workshop on 3D Object Retrieval, pp. 25–32 (2011)

    Google Scholar 

  • Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 249–259 (2008)

    Article  Google Scholar 

  • Sipiran, I., Bustos, B.: A fully hierarchical approach for finding correspondences in non-rigid shapes. In: 2013 IEEE International Conference on Computer Vision (ICCV), IEEE, pp. 817–824 (2013)

    Google Scholar 

  • Stavropoulos, G., Moschonas, P., Moustakas, K.: 3-D model search and retrieval from range images using salient features. IEEE Trans. Multimedia 12(7), 692–704 (2010)

    Article  Google Scholar 

  • Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Trans. Graph. 28(3), 71:1–71:9 (2009)

    Article  Google Scholar 

  • Tang, J., Miller, S., Singh, A., Abbeel, P.: A textured object recognition pipeline for color and depth image data. In: 2012 IEEE International Conference of the Robotics and Automation (ICRA), pp. 3467–3474 (2012)

    Google Scholar 

  • Tao, S.Q., Huang, Z.D., Zuo, B.Q., Peng, Y.P., Kang, W.R.: Partial retrieval of CAD models based on the gradient flows in Lie group. Pattern Recogn. 45, 1721–1738 (2012)

    Article  MATH  Google Scholar 

  • Wang, F., Zhang, S.S., Bai, X.L., Wang, H.S.: 3D model retrieval based on both the topology and shape features. J. Comput. Aided Des. Comput. Graph. 20(1), 99–103 (2008a). (in Chinese)

    Google Scholar 

  • Wang, F., Zhang, S.S., Bai, X.L., Chen, S.Q.: Local matching of 3D CAD models based on subgraph isomorphism. J. Comput. Aided Des. Comput. Graph. 20(8), 1076–1084 (2008b). (in Chinese)

    Google Scholar 

  • Wang, H.S., Zhang, S.S., Bai, X.L., Zhang, K.X.: 3D CAD surface model retrieval algorithm based on distance and curvature distributions. J. Comput. Aided Des. Comput. Graph. 22(5), 762–770 (2010). (in Chinese)

    Article  Google Scholar 

  • Wang, X.L., Zha, H.B.: Contour canonical form an efficient intrinsic embedding approach to matching non-rigid 3D objects. In: ICMR 2012 Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, pp. 31:1–31:8 (2012)

    Google Scholar 

  • Xu, K., Zhang, H., Cohen-Or, D., Chen, B.Q.: Fit and diverse set evolution for inspiring 3D shape galleries. ACM Trans. Graph. 31(4), 57:1–57:10 (2012)

    Article  Google Scholar 

  • Xu, K., Zheng, H.L., Zhang, H., Cohen-Or, D., Liu, L.G., Xiong, Y.S.: Photo-inspired model-driven 3D object modeling. ACM Trans. Graph. 30(4), 80:1–80:10 (2011)

    Google Scholar 

  • Yang, Y.B., Lin, H., Zhu, Q.: Content-Based 3D model retrieval: a survey. Chin. J. Comput. 27(10), 1297–1310 (2004). (in Chinese)

    MathSciNet  Google Scholar 

  • Ye, L., Liu, J., Shan, G.H., Chi, X.B.: Skeletonization of grayscale volumes for shape description. In: 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization, pp. 337–342 (2009)

    Google Scholar 

  • Yu, Z., Liu, J.T., Bai, X.: Research and perspective on shape matching. Acta Automatica Sinica 38(6), 889–910 (2012). (in Chinese)

    Article  MathSciNet  Google Scholar 

  • Zhang, K.X., Zhang, S.S., Li, L.: A method of 3D CAD model retrieval based on ant colony algorithm. J. Comput. Aided Des. Comput. Graph. 23(4), 633–639 (2001). (in Chinese)

    Google Scholar 

  • Zhang, K.X., Zhang, S.S., Bai, X.L.: Automatic extraction of common reusable partial structures in 3D CAD models. J. Comput. Aided Des. Comput. Graph. 23(9), 1512–1519 (2011). (in Chinese)

    MathSciNet  Google Scholar 

  • Zheng, B.C., Peng, W., Zhang, Y., Ye, X., Zhang, S.Y.: A survey on 3D model retrieval techniques. J. Comput. Aided Des. Comput. Graph. 16(7), 873–881 (2004). (in Chinese)

    Google Scholar 

  • Zhu, K.P., Wong, Y.S., Lu, W.F., Fuh, J.Y.H.: A diffusion wavelet approach for 3-D model matching. Comput. Aided Des. 41, 28–36 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Basic Research Program of China (973 Program) 2012CB821200 (2012CB821206), and the open funding project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University (Grant No. BUAA-VR-14KF-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H., Liu, X., Cai, Q., Du, J. (2015). 3D Objects Feature Extraction and Its Applications: A Survey. In: Pan, Z., Cheok, A., Mueller, W., Zhang, M. (eds) Transactions on Edutainment XI. Lecture Notes in Computer Science(), vol 8971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48247-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48247-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48246-9

  • Online ISBN: 978-3-662-48247-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics