
SJS: A Type System for JavaScript with Fixed
Object Layout

Wontae Choi1, Satish Chandra2, George Necula1, and Koushik Sen1

1 University of California, Berkeley
{wtchoi, necula, ksen}@cs.berkeley.edu

2 Samsung Research America
schandra@acm.org

Abstract. We propose a static type system for a significant subset of
JavaScript, dubbed SJS, with the goal of ensuring that objects have a
statically known layout at the allocation time, which in turn can en-
able an ahead-of-time (AOT) compiler to generate efficient code. The
main technical challenge we address is to ensure fixed object layout,
while supporting popular language features such as objects with proto-
type inheritance, structural subtyping, and method updates, with the
additional constraint that SJS programs can run on any available stan-
dard JavaScript engine, with no deviation from JavaScript’s standard
operational semantics. The core difficulty arises from the way standard
JavaScript semantics implements object attribute update with prototype-
based inheritance. To our knowledge, combining a fixed object layout
property with prototype inheritance and subtyping has not been achieved
previously.

1 Introduction

JavaScript is the most popular programming language for writing client-side web
applications. Over the last decade it has become the programming language for
the web, and it has been used to write large-scale complex web applications
including Gmail, Google docs, Facebook.com, Cloud9 IDE. The popularity of
JavaScript is due in part to the fact that JavaScript can run on any platform
that supports a modern web browser, and that applications written in JavaScript
do not require to go through an installation process.

Given the breadth of applications written nowadays in JavaScript, significant
effort has been put into improving JavaScript execution performance. Modern
JavaScript engines implement just-in-time (JIT) compilation techniques com-
bined with inline caching, which rely, among other things, on the fact that
the layouts of most JavaScript objects do not change often. These optimization
heuristics are ineffective when new fields and method are added to an object [16].

A promising alternative to JIT optimization is to use an ahead-of-time (AOT)
compiler backed by a static type system. asm.js [2] pioneered this direction in
the domain of JavaScript. asm.js is a statically-typed albeit low-level subset of
JavaScript designed to be used as a compiler target, not by a human program-
mer. One of the lessons learned from asm.js is that a promising strategy for



2 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

improving JavaScript is to design a subset of JavaScript that has strong type-
safety guarantees, so that it can be compiled into efficient code if a compiler is
available, and yet, in the absence of a compiler, can also be run with the same
semantics on any standard JavaScript engine.

Recently, we started to design a new subset of JavaScript [12], dubbed SJS,
that can be compiled efficiently by AOT compilers. Unlike asm.js, our design in-
cludes popular high-level features of JavaScript, such as objects with prototype-
based inheritance, structural subtyping, closures, and functions as first-class ob-
jects. Like asm.js, an important goal is to enable an AOT compiler to translate
attribute accesses into direct memory accesses, which requires that objects have
statically known layouts.

The first major technical challenge that we face is how to ensure fixed object
layout, in the presence of a rich set of high-level language features, while also re-
taining the operational semantics as given by standard JavaScript engines. The
challenge is due in large part to the way standard JavaScript semantics imple-
ments object attribute update. JavaScript allows writing to attributes that are
unknown at object creation; a new attribute can be inserted into an object sim-
ply by writing to it, thereby altering the object’s layout. Even if we addressed
this issue, e.g. by having a type system disallow writes to unknown attributes,
the problem does not go away, due to JavaScript’s treatment of prototype in-
heritance. For read operations, an attribute that cannot be found in the object
itself is looked-up recursively in the object’s prototype chain. However, when up-
dating an attribute, a new attribute is created in the inheritor object itself, even
if the attribute is present in the prototype chain. Essentially, attribute updates
do not follow the prototype chain. This can lead to objects changing their layout
even for programs that update attributes that seemingly are already available for
reading. We elaborate in Section 2 how this particular semantics interacts with
high-level features such as structural subtyping and method updates.

Contributions. In this paper, we propose the underlying type system of SJS,
with the following main contributions:

– The type system of SJS supports many attractive and convenient high-level
features, such as prototype-based inheritance, closures, structural subtyp-
ing, and functions as first-class objects, and ensures that all objects have a
statically known attribute layout once initialized. This makes SJS a good
candidate for AOT compilation and optimization. As far as we know, this
is the first type system ensuring fixed object layout for JavaScript programs
with this combination of features.

– The type system of SJS is described as a composition of a standard base
type system for records, along with qualifiers on object types designed to
ensure the fixed object layout. This presentation of the type system high-
lights the design of the type qualifiers for fixed object layout, which is a novel
contribution of this type system.

In this paper we focus on the design of the type system and the type check-
ing algorithm. The paper also includes a brief summary of implementation and



SJS: A Type System for JavaScript with Fixed Object Layout 3

1: var o1 = { a : 1, f : function (x) { this.a = 2 } }
2: var o2 = { b : 1, __proto__ : o1 }
3: o1.a = 3 //OK
4: o2.a = 2 //BAD
5: o2.f() //BAD

Fig. 1. Example JavaScript program to demonstrate dynamic object layout.

evaluation results. We refer to the companion technical report [12] for the other
interesting aspects of the SJS language, such as type inference, typing declara-
tions, type-directed compilation. The full details of the preliminary performance
evaluation results and how the top-level language (SJS) integrates the proposed
type system into JavaScript are also available in the technical report.

Comparison with Related Designs. A number of efforts are underway to
design statically-typed languages for the web where programs could be type-
checked statically and maintained easily. TypeScript [4, 21] is a typed superset
of JavaScript designed to simplify development and maintenance. Unlike SJS’s
type system, TypeScript’s type system does not guarantee the fixed object layout
property. Therefore, TypeScript programs cannot be compiled into efficient code
ahead of time in the way SJS programs can.

As mentioned earlier, asm.js [2] is a statically-typed subset of JavaScript
aimed at AOT compilation. If a program is written in asm.js, it can run effi-
ciently in the Firefox browser with performance comparable with equivalent C
programs. A key advantage of asm.js, is that being a strict subset of JavaScript,
it can run on any JavaScript engine, even if the engine is not tuned for asm.js,
albeit at a regular JavaScript speed. However, since asm.js only supports primi-
tive types and operations, the language is not suitable for regular object-oriented
programming. SJS intends to offer the same kind of performance advantage,
while mostly retaining the expressivity of JavaScript.

RPython [6] is a typed subset of Python designed for AOT compilation to
efficient low-level code. Like SJS, RPython fixes object layouts statically in order
to enable optimization. However, RPython’s type system does not face the same
challenges that we address in SJS, because Python does not use prototype-based
inheritance. For a language not using a delegation-based prototype inheritance,
a traditional notion of object type is sufficient to ensure the fixed object layout
property.

2 Design Rationale for the SJS Type System

To illustrate the issues with dynamic object layout in JavaScript as well as our
proposed type system, we consider the example program shown in Figure 1.

In this example, in line 1 we create an object o1 with a field a and a method
f. In line 2 we create another object with a field b and with the prototype o13.
According to JavaScript semantics, the object o2 will include a reference to the
prototype object o1, as shown in Figure 2(a). The value of o2.a in this state

3 Good programming practices of JavaScript discourage the use of non-standard
proto field; however, we use this field to keep our examples concise.



4 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Fig. 2. Program state diagrams for Figure 1. The dotted line is the prototype reference.
The asterisk (*) is a function value

would be 1, which is found by searching for the nearest definition of the field
a in the prototype chain for o2. Furthermore, since the value of the field a is
aliased between o1 and o2, the update to o1.a from line 3 results in the state
shown in Figure 2(b), and is immediately visible to o2.a.

The interesting behavior in this program is in line 4. According to JavaScript
semantics, when an inherited field is updated in an object, the field is added to
the object itself, and the update happens in the newly added field, resulting in
the state shown in Figure 2(c).

Note that the same effect of object changing its layout would happen at line 5
with the method call o2.f(). This method call would first resolve the method
o2.f to the method f inherited from the prototype o1, and would then invoke
the method with the implicit parameter this set to o2. We say that o2 is the
receiver object for this method invocation.

This example illustrates that in general we cannot assign fixed offsets rela-
tive to the location of the object in memory where to find attributes (e.g. o2.a
refers to different locations at different times.) This poses challenges to efficient
execution of JavaScript. A naive implementation would use potentially multiple
memory accesses to retrieve the intended attribute value. Modern JavaScript
JIT-compilers attempt to optimize attribute lookup computation by caching
lookup computation for frequently appearing object layouts at each object op-
eration.4 Without statically known offset, an AOT compiler would have to ei-
ther generate inefficient code for attribute lookup, or encode a JIT-compiler-like
strategy at runtime.

2.1 Type System for Enforcing Static Object Layout
We propose a type system for a subset of JavaScript to ensure that well-typed
programs have the following properties (hereon, we use the term attribute to
refer to either a field or a method. In standard JavaScript, the term property is
used instead of the term attribute.):

– Prop. 1. All accesses must be to attributes that have been previously defined (in
self or in a prototype.)

– Prop. 2. The layout of objects does not change after allocation, both in terms of
the set of attributes, and in terms of their types.

4 This representation is called hidden class representation and the caching technique is
called inline caching [11]. As noted before, this optimization can fail to apply under
certain conditions [16].



SJS: A Type System for JavaScript with Fixed Object Layout 5

– Prop. 3. Allow prototype inheritance as a language feature, as implemented in
standard JavaScript runtime systems.

– Prop. 4. Allow subtyping in assignments, so a subtype instance can be used in
contexts in which a base type instance can be used.

In addition, primitive operations do not result in runtime type errors. We
believe that these properties are important for program maintainability, as well
as for performance on modern JavaScript runtimes. At the same time we believe
that it is important to enforce these properties without changes to JavaScript in-
terpreters and just-in-time compilers, so we designed SJS as a subset of JavaScript
that preserves standard behavior.

The safety of accessing an attribute (Prop. 1) can be enforced with standard
static typing techniques that assign fixed static types to variables and attributes.
The type of an object must mention the attributes inherited from the prototype
chain to allow access to them. However, such a type system would be too forgiv-
ing: it would accept the program shown in Figure 1, violating the fixed layout
requirement (Prop. 2).

To support fixed layout (Prop. 2) and prototype inheritance (Prop. 3),
while using the standard JavaScript execution model, we need to ensure that:
for any field update statement, e1.a = ..., the object denoted by e1 must define
the field a. We say that an object owns the attributes that are defined in the
object itself, as opposed to those that are inherited from a prototype. To enforce
this property, the types of objects will include the list of attributes guaranteed
to be owned by the object, in addition to the list of all attributes guaranteed to
be accessible in the object.

Returning to the example from Figure 1, the type of o1 will mention that
the field a and f are owned, while the type of o2 will mention only b as owned.
Based on these types, the assignment o2.a = 2 from line 4 will be ill-typed, as
we intended.

However, this is not enough to ensure static object layout. Consider replacing
line 4 with the method invocation o2.f(). This would also attempt to set the
field a for object o2, and should be disallowed. The problem is, however, that
the body of the method f is type checked in the context of the receiver object
o1, where it is defined, and in that context the assignment this.a is allowed.

There are several options here. One is to require that an object must own
all attributes owned by its prototype, such that a function inherited from the
prototype can assume that all attributes it may want to update are owned. In
the context of our example, this would force us to redefine the fields a and f

in o2. This is not a good option because it essentially disables completely the
prototype inheritance mechanism and the flexibility it gives.

We therefore decided to allow the set of owned attributes to be different
for an object and its prototype. The option that we propose is based on the
observation that only a subset of the owned attributes are updated in methods
using the receiver syntax, i.e., this.a. These are the only attributes that must
be owned by all inheriting objects. We therefore propose to maintain a second
set of attribute names for an object type: the subset of the owned attributes that



6 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

must be owned also by its inheritors. We call these attributes inheritor-owned
attributes. For the example in Figure 1, the attribute a of o1 is updated using
receiver syntax, i.e., this.a, which means that a should be an inheritor-owned
attribute of o1. This means that a should be an owned attribute for inheritors,
e.g., o2. This, in turn, means that we should disallow the definition of o2 in
line 2.

We can summarize the requirements of our type system as follows. Object
types are annotated with a set of owned attributes and a set of inheritor-owned
attributes, with the following rules:

– Rule 1: Owned attributes are defined directly in an object.
– Rule 2: Only owned attributes of an object can be updated.
– Rule 3: Methods can only update inheritor-owned attributes of their receiver

object (using this.a notation).
– Rule 4: Inheritor-owned attributes are among the owned attributes.
– Rule 5: The inheritor-owned attributes of an object include all the inheritor-owned

attributes of the prototype object.

Applying these ideas to our example program, we assign the following type
to variable o1:

o1 : {a : Int, f : Int⇒ Int}P({a,f},{a})

This type is composed of the base record type and the object-type qualifier
written as superscript. The base record type says that the attributes a and f are
all the accessible attributes. The double arrow in the type Int⇒ Int marks that
this is the type of a method (i.e., a function that takes an implicit receiver object
parameter), and distinguishes the type from Int → Int, which we reserve for
function values; we do not make the receiver type a part of the method type.5 The
object-type qualifier part of o1 says that the object is precisely typed (marked
as P, explained later), is guaranteed to own the attributes a and f, and all of
its inheritors must own at least attribute a.

In our type system line 2 is ill-typed because it constructs an object that owns
only the attribute b, yet it inherits from object o1 that has an inheritor-owned
attribute a (Rule 5). This is reasonable, because if we allow the definition of o2,
say with type {a : Int, b : Int, f : Int⇒ Int}P({b},{}), then it would be legal to
invoke o2.f(), which we know should be illegal because it causes the layout of
o2 to change. To fix this type error we need to ensure that o2 also owns a. Note
that the assignment in line 3 (o1.a = 3) is well-typed, as it should, because a

is among the owned fields mentioned in the static type of o1.

2.2 Subtyping
Consider again the example in Figure 1 with the object layouts as shown in
Figure 2(a). The assignment o1.a = 3 from line 3 is valid, but the assignment
o2.a = 2 from line 4 is not, even though o2 inherits from its prototype o1. This
shows that inheritance does not automatically create a subtype relationship when
fixed object layout is a concern.

5 This is to allow comparison of method attribute types in subtyping.



SJS: A Type System for JavaScript with Fixed Object Layout 7

6 : var o3 = { a : 11, c : 12, f : function (x) { this.c = 13 } }
7 : o1 = o3; //BAD

8 : var o4 = { a : 14, __proto__ : o1 }
9 : o4.f (); //BAD

10: var o5 = { a : 1, b : 2, f : function (x) { this.a = 2 } }
11: var o6 = { a : 1, b : 3, f : function (x) { this.b = 3 } }
12: o6.f = function (x) { this.b = 4 } // OK
13: var o7 = if ... then o5 else o6
14: o7.f = function (x) { this.b = 4 } // BAD
15: console.log(o7.a); // OK

16: var o8 = if ... then o1 else o3 // OK
17: o8.f(3); // OK
18: o8.c = 2; // OK
19: var o9 = { a: 14, __proto__: o8} // BAD

Fig. 3. Example JavaScript program (continued from Figure 1).

In the spirit of a dynamic language like JavaScript, we propose to use a
structural subtyping relationship between types, generated by the structure of
the types and not by their prototype relationships.

Consider, for example, a new object o3 such that the assignment o1 = o3 is
safe. The object o3 would have to contain the attributes a and f. Furthermore,
o3 must own all the attributes owned by o1, so that it can be used in all the
attribute-update operations where o1 can be used. An example is available in
line 6-7 of Figure 3. The type of o3 is

o3 : {a : Int, c : Int, f : Int⇒ Int}P({a,c,f},{c})

To support subtyping (Prop. 4), the general rule is that an object type A
is a subtype of B, if and only if (a) A contains all the attributes of B with the
same type (as in the usual width subtyping), and (b) the owned attributes of A
include all the owned attributes of B. However, this is still not enough to support
fixed layout (Prop. 2), in presence of prototype inheritance as implemented in
JavaScript (Prop. 3), and subtyping (Prop. 4).

Challenge: subtyping and prototype inheritance. In our example, after
the assignment o1 = o3 the static type of o1 suggests that the set of inheritor-
owned attributes is {a}, while the true inheritor-owned attributes of the runtime
object are {c}. This suggests that it would be unsafe to use the object o1 as
a prototype in a new object creation, as in the continuation of our example in
line 8-9 of Figure 3. If the object creation in line 8 is well typed, with the type:

o4 : {a : Int, f : Int⇒ Int}P({a},{a})

then, when executing line 9 the field c would be added to the receiver object o4.

One way to get out of this impasse is to restrict the subtype relationship to
pay attention also to the inheritor-modified attributes. In particular, to allow
the assignment o1 = o3 followed by a use of o1 as a prototype, we must ensure
that the static type of o1 includes all the inheritor-owned attributes from the
type of o3. This would mean that the inheritor-owned attributes in a supertype
must be a superset of the inheritor-owned attributes in the subtype.



8 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

However, we show next that this is not enough if we want to allow method
updates.

Challenge: subtyping and method update. It is common in JavaScript to
change the implementation of a method, especially on prototype objects, e.g.,
in order to change the behavior of a library. This technique is sometimes called
monkey patching. Consider the code fragment in line 10-15 of Figure 3. In our
type system, the types of o5 and o6 can be:

o5 : {a : Int, b : Int, f : Int⇒ Int}P({a,b,f},{a})

o6 : {a : Int, b : Int, f : Int⇒ Int}P({a,b,f},{b})

The method update in line 12 is safe because it updates the method f of o6,
with a method that modifies the same set of receiver fields, which are owned by
o6 and all objects that may be inheriting from it. This can be verified statically
by comparing the receiver attributes that may be changed by the new method
(b) with the list of inheritor-owned fields listed in the type of o6.

In this example, subtyping arises in line 13. Notice that the type of o7 must
be a supertype of the type of both o5 and o6. The access in line 15 is safe.
However, the assignment in line 14 is unsafe, because it may associate with
object o5 a method that changes the field b of the receiver object. This is unsafe
since b is not listed as inheritor-owned, so the updated method is not safe for
inheritance.

This example suggests that one way to ensure soundness of the assignment
of o5 to o7 is to ensure that the inheritor-owned attributes in a supertype (e.g.,
type of o7, which is used for checking statically the safety of method update)
must be a subset of the inheritor-owned attributes in the subtype, e.g., type of
o5. In this particular case, the inheritor-owned attributes of the static type of o7
must be empty, i.e. a strict subset of that of the static types of o5 and o6. This is
exactly opposite of the inclusion direction between the inheritor-owned attributes
in a subtype relation proposed in the previous section to handle subtyping and
prototype inheritance.

Solution: subtyping with approximate types. We saw that a type system
that supports fixed layout (Prop. 2) and prototype inheritance (Prop. 3) must
reject the use of subtyping in line 13. We feel that this would be extremely
restrictive, and not fulfill subtyping (Prop. 4). Moreover, prototype inheritance,
method update, and the inheritor-owned fields, are about inheriting and sharing
implementations, while subtyping is about interface compatibility. There are
many more occurrences in practice of subtyping in assignments and method
calls than there are prototype assignments and method updates.

Therefore, we propose to relax the subtyping relation to make it more flexible
and more generally usable, but restrict the contexts where it can be used. In
particular, for prototype definition or method update, we only allow the use of
objects for which we know statically the dynamic type.

To implement this strategy, we use two kinds of object types. The precise
object type that we used so far (marked as P), which includes a set of all



SJS: A Type System for JavaScript with Fixed Object Layout 9

attributes and their types, along with a set of owned attributes, and a set of
inheritor-owned attributes. A precise object type means that the static type of
the object is the same as the dynamic type, i.e., no subtyping has been used since
the object construction. Expressions of precise type can appear in any context
where an object is expected.

We also introduce an approximate object type, written as {Attr}A({Own}),
also including a set of attributes and their types, and a set of owned attribute
names, but no inheritor-owned attributes. Approximate types allow subtyping,
and are only an approximate description of the actual dynamic type of the
object. These objects can be used for read/write attribute access and for method
invocation, but cannot be used as prototypes or for method updates. Therefore,
we do not need to track the inheritor-owned attributes for approximate types.

We can summarize the additional rules in our type system for dealing with
subtyping

– Rule 6: There is no subtyping relation on precise object types.

– Rule 7: An approximate object type is a supertype of the precise object type with
the same attributes and the same owned attributes.

– Rule 8: An approximate object type A is a subtype of another approximate object
type B as long as the subtype A has a superset of the attributes and a superset of
the owned attributes of the supertype B (as in standard width subtyping).

– Rule 9: Only objects with precise type can be used as prototypes.

– Rule 10: Method update can only be performed on objects of precise type, and
only when the method writes only inheritor-owned attributes of the object (exten-
sion of Rule 3)

Returning to our motivating example, both o1 and o3 have precise distinct
types, which do not allow subtyping, so the assignment o1 = o3 from line 6 is
ill-typed. However, the assignment at line 16 of Figure 3 will be legal if the static
type of o8 is the following approximate type:

o8 : {a : Int, c : Int, f : Int⇒ Int}A({a,c,f})

Moreover, we can perform attribute lookup and method invocation via o8 as
shown in line 17-18 of Figure 3, because these operations are allowed on approx-
imate types. However, it would be illegal to use o8 as prototype, as in line 19 of
Figure 3. This is because an object with approximate type cannot be used as a
prototype.

With approximate types, the subtyping assignment at line 13 can be well-
typed: by giving the static type of o7 the approximate type

o7 : {a : Int, b : Int, f : Int⇒ Int}A({a,b,f})

The method update from line 14 will still be ill-typed because method update
cannot be applied to an object with approximate type. This shows how the
introduction of approximate types supports subtyping in certain contexts, while
avoiding the unsoundness that can arise due to interaction of subtyping and
prototype inheritance.



10 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Expressions
e ::= n | x | x = e1 | var x : T=e1 in e2 | {a1 :e1 . . . an :en}T | e.a | e1.a=e2
| function(x : T ){e} | e1(e2) | e1.a(e2) | this | {a1 :e1 . . . an :en}T prototype ep

Type
Type T ::= Int | O | T → T | T ⇒ T | >

ObjTy O ::= ρ
q

ObjBase ρ ::= {. . . ai : Ti . . . }
RcvTy R ::= > | O
TyEnv Γ ∈ Var→ Type

ObjQual q ::= P(own, iown) | A(own)

OwnSet own ⊆ Attr
ModSet iown ⊆ Attr

Attr set of atributes (a,b . . . )
Var set of variables (x,y . . . )

Fig. 4. Syntax: Expressions and Types. The highlighted items are specific to our object-
type qualifiers.

We have shown informally a type system that fulfills all of access safety
(Prop. 1), fixed layout (Prop. 2), prototype inheritance (Prop. 3), and sub-
typing (Prop. 4), while placing few restrictions. We discuss this type system
formally in Section 3.

3 A Formal Account of the Type System

This section provides a formal definition of the type system of SJS and a proof
of the fixed object layout property. Throughout this section, we use a simplified
core language that is designed to capture the essence of the prototype-based
object-oriented programming in JavaScript. The language supports mutable ob-
jects, prototype inheritance, dynamic method updates, higher-order functions,
and local variable bindings. To simplify the presentation, we do not include in the
language: functions as objects, constructor functions, accessing undefined vari-
ables, and lookup of fields by dynamic names (e.g, obj["key"]). Furthermore,
we postpone the introduction of a number of other features to the companion
technical report [12]: first-class method functions, recursive data types, and ac-
cessing this in a non-method function.

3.1 Expression

The syntax definition of the core language expressions is shown in Figure 4.
We are going to use the metavariables e for an expression, n for an integer
number, x for a variable identifier, and a for an attribute identifier. A few ex-
pression types have type annotations in order to simplify type checking. The
expression {a1 :e1, . . . , an :en}T defines a new object with attributes a1, . . . , an
initialized with expressions e1, . . . , en, respectively. T is the type of the result-
ing object. The expression e1.a=e2 updates attribute a of the object e1 with
the value of e2. The expression e1.a(e2) invokes method a of object e1 with
argument e2. The expression this accesses the receiver object. The expression
{a1 :e1, . . . }T prototype ep creates a new object with prototype ep. T is the
expected type of the resulting object.6

6 Please note that deviating from JavaScript (prototype expression) is for the clear
presentation. The SJS language itself supports the usual prototyping mechanism of
JavaScript, which is based on a prototype attribute of constructors. We refer to the
companion technical report [12] for more details.



SJS: A Type System for JavaScript with Fixed Object Layout 11

Well-formed Types

[TW-EObj]
∀a ∈ dom(ρ) ` ρ(a) iown ⊆ own own ⊆ dom(ρ)

` ρ
P(own, iown)

[TW-Fun]
` T1 ` T2

` T1 → T2

[TW-AObj]
∀a ∈ dom(ρ) ` ρ(a) own ⊆ dom(ρ)

` ρ
A(own)

[TW-Method]
` T1 ` T2

` T1 ⇒ T2

[TW-Top]
` >

Subtyping

[ObjPA<:]
∀dom(ρ2).ρ1(a) ≡ ρ2(a) dom(ρ1) = dom(ρ2) own1 = own2

ρ
P(own1, iown1)

1 <: ρ
A(own2)

2

[ObjAA<:]
∀a ∈ dom(ρ2).ρ1(a) ≡ ρ2(a) dom(ρ2) ⊆ dom(ρ1) own2 ⊆ own1

ρ1
A(own1)

<: ρ2
A(own2)

[Trans<:]

T1 <: T2

T2 <: T3

T1 <: T3

[Refl<:]
T <: T

[Fun<:]
T3 <: T1 T2 <: T4

T1 → T2 <: T3 → T4

[Top<:]
T <: >

Fig. 5. Well-formed types and Subtyping. The highlighted items are specific to our
object-type qualifiers.

3.2 Types and Qualifiers

Figure 4 also defines the types. The novel elements in this type system are the
object-type qualifiers (q). If we erase the object-type qualifiers we are left with
a standard object type system [5] with few modifications. Object-type qualifiers
track the layout information required to constrain object operations in order to
guarantee the fixed layout property in the presence of the JavaScript operational
semantics.

Types (T ) include the integer type (Int), object types (O), function types
(T → T ), method types (T ⇒ T ), and the top type (>). A receiver type (R) is
either the top type, when typing a non-method function, or an object type, when
typing a method function. A type environment (Γ ) is a map from variables to
types. Object types are composed of a base object type (ρ) and an object-type
qualifier (q). Object types can have either a precise qualifier (P(own, iown)) or
an approximate qualifier (A(own)). Owned attribute sets (own), and inheritor-
owned attribute sets (iown) are subsets of corresponding objects’ attributes.

Operations on object types. dom(ρ) denotes all attributes of the base object
type ρ. We write own(q) to denote the owned attribute set of the qualifier q
We similarly define iown(q) to denote the inheritor-owned attribute set of the
qualifier q when q is precise. We are also going to use ρ(a) to denote the type of
attribute a in ρ.

Well-formed Types Figure 5 defines the rules to check well-formedness of a
type, especially for object types. An object type with a precise qualifier is well-
formed if all the inheritor-owned attributes are among the owned attributes,
all owned attributes are among the attributes, and all attributes have well-
formed types. The well-formedness check for an object type with an approximate
qualifier is similarly defined without the check for inheritor-owned attributes.



12 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Expression Typing

[T-Var]
Γ (x) = T

R, Γ ` x : T
[T-VarUpd]

Γ (x) = T1 R, Γ ` e :T2 T2 <: T1

R, Γ ` x = e : T1

[T-LetVar]

R, Γ ` e1 :T1 ` T T1 <: T
R, Γ [x 7→ T ] ` e2 : T2

R, Γ ` var x :T=e1 in e2 : T2

[T-FCall]

R, Γ ` e1 : T1 → T2

R, Γ ` e2 : T3 T3 <: T1

R, Γ,` e1(e2) : T2

[T-Fun]
>, Γ [x 7→ T1] ` e : T2 ` T1

R, Γ ` function(x : T1){e} : T1 → T2

[T-This]
ρ
q
, Γ ` this : ρ

q

[T-Attr]

ρ = {. . . a : T . . . }
R, Γ ` e : ρ

q
T 6= T1 ⇒ T2

R, Γ ` e.a : T
[T-AttrUpd]

R, Γ ÀU ρ
q
.a=e2

a ∈ own(q) R, Γ ` e1 : ρ
q

R, Γ ` e1.a=e2 : >

[T-MCall]
R, Γ ` e1 : ρ

q
ρ = {. . . a : T1 ⇒ T2 . . . } R, Γ ` e2 : T3 T3 <: T1

R, Γ ` e1.a(e2) : T2

[T-Obj]
` ρq dom(ρ) = {a1 . . . an} ∀i ∈ [1, n].R, Γ ÀU ρ

q
.ai=ei q = P(own, iown)

R, Γ ` {a1 : e1 . . . an : en}ρq : ρ
q

[T-Proto]

` ρq R, Γ ` ep : ρp
qp dom(ρ) = dom(ρp) ∪ {a1, . . . , an}

∀i ∈ [1, n].R, Γ ÀU ρ
q
.ai=ei ∀a ∈ dom(ρp).ρ(a) ≡ ρp(a) iownp ⊆ iown

q = P(own, iown) qp = P(ownp, iownp) own = {a1, . . . , an}

R, Γ ` {a1 : e1 . . . an : en}ρq prototype ep : ρ
q

Attribute-Update Typing

[T-AttrUpdV]
ρ = {. . . a : T . . . } T 6= T1 ⇒ T2 R, Γ ` e : T

′
T

′
<: T

R, Γ ÀU ρ
q
.a=e

[T-AttrUpdM]

O = ρ
q

ρ = {. . . a : T1 ⇒ T2 . . . } ρ
q′
, Γ [x 7→ T1] ` e : T2

q = P(own, iown) q
′
= A(own

′
) own

′
= iown

R, Γ ÀU O.a=function(x : T1){e}

Fig. 6. Type system. The highlighted items are specific to object-type qualifiers.

Subtyping and Type Equality Figure 5 also defines the subtyping rela-
tion.There is no subtyping between precise objects. However, precise objects
can be relaxed to an approximate object having the same base object type and
owned set ([ObjPA<:]). This ensures that any read and write operation that is
allowed by a precise type is still available after relaxed to an approximate type.
Subtyping between approximate objects ([ObjAA<:]) is defined as a traditional
width-subtyping extended with an additional inclusion check between own sets:
a subtype should own strictly more than a supertype. This ensures that any read
and write operation allowed by a supertype can be safely performed on an object
with a subtype. 7 We also have transitivity ([Trans<:]), function ([Fun<:]).We
do not need subtyping among method types because that method types only ap-
pears as an attribute type (we will see this in the type system section), and only
the equivalence of attributes are checked. Type equivalence (≡) is a syntactic
equivalence check.

3.3 Typing Rules
The static typing rules are defined in Figure 6. The type system is composed
of two kinds of rules: expression typing judgment and attribute-update typing
judgment.
7 Allowing depth-subtyping between mutable objects will make the type system un-

sound. We refer to Abadi and Cardell’s work [5] for more details.



SJS: A Type System for JavaScript with Fixed Object Layout 13

Expression Typing. The expression typing judgment R,Γ ` e : T means that
expression e under receiver type R and type environment Γ has type T .

Variables and Functions. Rules [T-Var], [T-VarUpd], and [T-LetVar] handle
variable lookup, variable update, and local binding. [T-This] applies to the
this expression when the current receiver type is an object type. this cannot
be used when the current receiver type is >.

Functions. [T-Fun] extends the traditional typed lambda calculus with a re-
ceiver type in the context. Since functions, unlike methods, are invoked without
a receiver object, the function body is type checked with the receiver type set
to the top type (>). As a consequence, accessing the this variable within a
function is not allowed.

Objects. [T-Obj] types an object literal without inheritance. The created object
has a well-formed type ρq as annotated in the expression. Each attribute of ρq

should be an owned attribute and should appear in the object literal expression.
The safety of initialization expressions and initialization operations are delegated
to the attribute-update typing judgments, [T-AttrUpdV] and [T-AttrUpdM] de-
scribed in the next section. [T-Attr] types an attribute read access. The rule
restricts the reading of a method attribute. It is well-known that subtyping along
with escaping methods can break the soundness of a type system [5]. [T-MCall]
handles method calls. The rule checks only the parameter type and the return
type since the safety of passing the receiver object is already discharged when the
method is attached. [T-AttrUpd] types an attribute update. The rule requires
the target attribute to be owned by the base object type. The determination
of the type and type safety of the attribute-update operation is delegated to
the attribute-update typing judgments. Note that the attribute-update typing
judgment does not provide a type for the assignment result to prevent methods
from escaping an object.

Inheritance. [T-Proto] types an object literal with inheritance. The rule is ba-
sically an extension of [T-Obj], with the following new checks: (1) attributes
should be either owned fields of ρq or fields inherited from ρ

qp
p , (2) the type of

an attribute defined in prototype should remain the same in the newly defined
object, and (3) inheritor-owned attributes of the newly defined object should
include all the inheritor-owned attributes of the prototype object. The rule also
requires ρ

qp
p to be a precise object type. Like in [T-Obj], the type safety of initial-

ization expressions and initialization operations are delegated to the attribute-
update typing rules.

Attribute-Update Typing. Attribute updates are handled by a different set of
judgment rules. The attribute-update typing judgment R,Γ ÀU O.a=e means

that “expression e is well typed under receiver type R (for the current method
or function body) and type environment Γ , and the value of e can be safely
assigned to attribute a of an object of type O. The judgment has two rules.



14 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Field update. If a non-method attribute is updated ([T-AttrUpdV]), the rule
just typechecks the expression e.

Method update. The method-update rule ([T-AttrUpdM]) requires the right-
hand side expression to be a function literal8 and the base object type to be
a precise object type (we can only perform method update on objects whose
type is known precisely, and in particular whose inheritor-owned set is known).
This rule addresses the situations when the method is inherited and the receiver
object is some subtype of the receiver type O. The method body is checked with
an approximate version of the receiver type O whose owned attributes set is
restricted to the inheritor-owned attributes of O. This ensures that the function
body can only update the iown attributes of the receiver object.

3.4 Properties of the Type System
Theorem (Fixed Object Layout) A well-typed program never modifies object
layouts after object construction.

Proof. (Sketch) To show this property, we first define an operational semantics
of the core language such that any attempt to modify an object layout will result
in the execution getting stuck. Then we show the usual type soundness property,
i.e., a well-typed program never gets stuck. The fixed object layout property is a
corollary of the soundness theorem. The full version of the proof and necessary
definitions, such as operational semantics and value typing, are available in the
companion technical report [12] (Section B).

4 Summary of Implementation and Evaluation
We have implemented a proof-of-concept type checker and compiler for SJS to
evaluate the language. The SJS prototype supports the core type system de-
scribed in this paper, along with typed arrays, hash tables, integer and float-
ing point numbers, first-class methods, and recursively-defined object types. We
evaluate the usability of the language and the feasibility of type-based compila-
tion. This section provides a short summary of the evaluation. The full details
are in the companion technical report [12]. The programs used in this section
can be found at http://goo.gl/nBtgXj.

Usability. We considered two programs from the octane benchmark suite [3]
and two webapps from 01.org [1] to evaluate the usability of the type system.
Programs are moderate-sized (about 500 to 2000 lines of code) and use objects
extensively. We managed to typecheck all four programs, after commenting out
small portions of code handling Ajax communication, because we do not have
enough contextual information to decide the types for this part.

SJS requires programmers to provide type annotations to infer the base type
(type qualifiers are inferred without any user interaction). For the benchmarks,

8 This syntactic restriction is posed to keep the presentation simple. The companion
technical report [12] (Section A.2) extends the type system to remove this restriction.



SJS: A Type System for JavaScript with Fixed Object Layout 15

one type annotation is required per 8.34 lines of code. The majority of the an-
notations (86.5%) are for function parameters, since SJS requires every function
parameter to be annotated. The rest of the annotations are for local variables,
this variables, attributes, returns, and some assignments when there is an ambi-
guity that the type inference engine cannot handle. Overall, we found that only
2.8% of expressions and local variables need annotations.

Performance. We wrote a prototype ahead-of-time compiler to translate SJS
to C. The compiler uses a flat object representation, which ensures at most two
indirections when accessing an object attribute. Then it invokes an off-the-shelf C
compiler to produce an executable binary. Besides the flat object representation,
and the standard optimizations performed by the C compiler, the SJS compiler
does not perform any high-level optimizations.

In our experiment, we used eight programs to evaluate the potential per-
formance benefits of statically-known object layout. We compared the execution
time of the output of our compiler with the execution time when using the just-in-
time compiler from node.js version 0.10.29. On programs using prototype-based
inheritance and subtpying, the executables produced by the SJS compiler showed
notably better performance (1.5–2.5x). For programs using objects without in-
heritance, the binaries generated by the SJS compiler showed some improvement
(1.02–1.25x). Finally, SJS showed poorer performance (0.65–0.87x) than node.js

on programs with mostly numeric and array operations. We refer to the compan-
ion technical report [12] for more details on the evaluation. Considering the fact
that the prototype SJS compiler does not perform any high-level optimizations,
we believe that the results show that knowing statically the layout of objects
can allow an ahead-of-time compiler to generate faster code for programs that
use objects extensively.

5 Related Work
Inheritance Mechanism and Object Layout. There is a strong connection
between the inheritance mechanism a language uses and the way a language
ensures a fixed object layout property, which enables static compilation. Com-
mon inheritance mechanisms include class-based inheritance (e.g., SmallTalk,
C++, Java, and Python), cloning-based prototype inheritance (Cecil [10])9, and
delegation-based prototype inheritance (e.g., Self [11], JavaScript, and Cecil).

Plain object types can be used to ensure fixed object layout property for a
language using either class-based inheritance or cloning/sharing-based prototype
inheritance. In both cases, it is impossible to change the offset of an attribute
of an object once it is computed. Therefore, the type system only needs to
ensure the following two requirements: (i) all objects generated using the same

9 A cloning-based inheritance approach populates inherited attributes to an inheritor
object when extending the inheritor object with a prototype. After that, all read and
write operations are performed local to the inheritor object, without consulting the
prototype object. This approach has an effect of fixing object layout at the object
creation time.



16 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

constructor should have the same layout, and (ii) an attribute cannot be added
or removed once an object is created. Indeed, statically-typed languages in this
category exactly implements these restrictions through their type system. Even
static type systems proposed to enable static compilation of dynamic languages,
such as StrongTalk [9] and RPython [6], impose these requirements.

However, these requirements are not enough for a language using a delegation-
based inheritance mechanism, as we discussed in Section 2. Cecil solves this
problem by making delegation explicit. When inheritance happens, attributes
to be delegated to the prototype are marked with the keyword share. Then,
updating a delegated attribute of an inheritor object changes the original owner
of the attribute, rather than adding the attribute to the inheritor object.

Object Calculus. Our base type system borrows several ideas from the typed
imperative object calculus of Abadi and Cardelli [5], especially subtyping of
object types and how to handle method detachment in the existence of sub-
typing. Unfortunately, we could not use the type system as is because it uses
cloning-based inheritance rather than prototype-based inheritance. Our notion
of method type is also different from theirs in that ours exclude a receiver type
from attached method types to have a simple formalism at the cost of not sup-
porting recursive data types. We refer to the companion technical report [12]
(Section A.1) for an extension of SJS to support recursive data types.

The type system proposed by Bono and Fisher [8], based on Fisher et al.’s
earlier work [14], separates objects into prototype objects and proper objects sim-
ilar to precise objects and approximate objects in SJS. Prototype/proper objects
are similar to precise/approximate objects except in the context of subtyping.
Despite the similarity, the two systems achieve opposite goals: Bono and Fisher’s
calculus is designed to support extensible (i.e., flexible) objects, while our type
system tries to ensure that objects have a fixed layout. Moreover, their notion
of prototyping is not based on delegation. Thus, the calculus is not suitable for
JavaScript programs.

Type Systems for Dynamically Typed Language. Several static type sys-
tems for dynamically typed languages have been proposed [6,9,15,24,25] as well
as for JavaScript [2,4,7,13,17–23]. However, only asm.js [2] and RPython [6] ,
which we already discussed in Section 1, have the same goals as SJS: to define a
typed subset of the base language, which can be compiled efficiently. Other type
systems are designed to provide type safety and often to retrofit an existing code
base. Therefore, it is difficult to compare them directly with SJS type system.

Acknowledgments
The work of the first author is supported in part by a research internship at
Samsung Research America. The work of the last author is supported in part
by Samsung Research America. This research is partially supported by NSF
grants CCF-1018730, CCF-1017810, CCF-1409872, and CCF-1423645. The au-
thors thank Colin S. Gordon, Frank Tip, Manu Sridharan, and the anonymous
reviewers for their comments and suggestions.



SJS: A Type System for JavaScript with Fixed Object Layout 17

References

1. 01.org. https://01.org/html5webapps/webapps/
2. asm.js. http://asmjs.org/
3. Octane Benchmarks. https://developers.google.com/octane/
4. TypeScript. http://www.typescriptlang.org
5. Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag New York, Inc.
6. Ancona, D., Ancona, M., Cuni, A., Matsakis, N.D.: RPython: A step towards

reconciling dynamically and statically typed oo languages. In: DSL 2007
7. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for

JavaScript. In: ECOOP 2005
8. Bono, V., Fisher, K.: An imperative, first-order calculus with object extension. In:

ECCOP 1998
9. Bracha, G., Griswold, D.: Strongtalk: Typechecking Smalltalk in a production en-

vironment. In: OOPSLA 1993
10. Chambers, C., Group, T.C.: The Cecil language – specification and rationale (2004)
11. Chambers, C., Ungar, D.: Customization: Optimizing compiler technology for

SELF, a dynamically-typed object-oriented programming language. In: PLDI 1989
12. Choi, P.W., Chandra, S., Necula, G., Sen, K.: SJS: A typed subset of JavaScript

with fixed object layout. Tech. Rep. UCB/EECS-2015-13, EECS Department, Uni-
versity of California, Berkeley (April 2015)

13. Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: OOPSLA
2012

14. Fisher, K., Honsell, F., Mitchell, J.C.: A lambda calculus of objects and method
specialization. Nordic J. of Computing 1(1), 3–37 (Mar 1994)

15. Furr, M., An, J.h.D., Foster, J.S., Hicks, M.: Static type inference for ruby. In:
SAC 2009

16. Gong, L., Pradel, M., Sen, K.: JITProf: Pinpointing JIT-unfriendly JavaScript
code. In: ESEC/FSE 2015

17. Heidegger, P., Thiemann, P.: Recency types for analyzing scripting languages. In:
ECOOP 2010

18. Lerner, B.S., Politz, J.G., Guha, A., Krishnamurthi, S.: TeJaS: Retrofitting type
systems for JavaScript. In: DLS 2013

19. Politz, J.G., Guha, A., Krishnamurthi, S.: Semantics and types for objects with
first-class member names. In: FOOL 2012

20. Rastogi, A., Chaudhuri, A., Hosmer, B.: The ins and outs of gradual type inference.
In: POPL 2012

21. Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe and efficient
gradual typing for TypeScript. Tech. Rep. MSR-TR-2014-99 (July 2014)

22. Swamy, N., Fournet, C., Rastogi, A., Bhargavan, K., Chen, J., Strub, P.Y., Bier-
man, G.: Gradual typing embedded securely in JavaScript. In: POPL 2014

23. Thiemann, P.: Towards a type system for analyzing JavaScript programs. In: ESOP
2005

24. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed
Scheme. In: POPL 2008

25. Tobin-Hochstadt, S., Felleisen, M.: Logical types for untyped languages. In: ICFP
2010


