
ar
X

iv
:1

50
5.

02
87

8v
2

 [
cs

.P
L

]
 1

6
M

ay
 2

01
5

Refinement Type Inference via Horn Constraint

Optimization

Kodai Hashimoto and Hiroshi Unno

University of Tsukuba
{kodai, uhiro}@logic.cs.tsukuba.ac.jp

Abstract. We propose a novel method for inferring refinement types of
higher-order functional programs. The main advantage of the proposed
method is that it can infer maximally preferred (i.e., Pareto optimal)
refinement types with respect to a user-specified preference order. The
flexible optimization of refinement types enabled by the proposed method
paves the way for interesting applications, such as inferring most-general
characterization of inputs for which a given program satisfies (or vi-
olates) a given safety (or termination) property. Our method reduces
such a type optimization problem to a Horn constraint optimization
problem by using a new refinement type system that can flexibly rea-
son about non-determinism in programs. Our method then solves the
constraint optimization problem by repeatedly improving a current solu-
tion until convergence via template-based invariant generation. We have
implemented a prototype inference system based on our method, and
obtained promising results in preliminary experiments.

1 Introduction

Refinement types [6, 20] have been applied to safety verification of higher-order
functional programs. Some existing tools [9, 10, 15–19] enable fully automated
verification by refinement type inference based on invariant generation tech-
niques such as abstract interpretation, predicate abstraction, and CEGAR. The
goal of these tools is to infer refinement types precise enough to verify a given
safety specification. Therefore, types inferred by these tools are often too specific
to the particular specification, and hence have limited applications.

To remedy the limitation, we propose a novel refinement type inference
method that can infer maximally preferred (i.e., Pareto optimal) refinement
types with respect to a user-specified preference order. For example, let us con-
sider the following summation function (in OCaml syntax)

let rec sum x = if x = 0 then 0 else x + sum (x - 1)

A refinement type of sum is of the form (x : {x : int | P (x)}) → {y : int | Q(x, y)}.
Here, P (x) and Q(x, y) respectively represent pre and post conditions of sum.
Note that the postcondition Q(x, y) can refer to the argument x as well as the
return value y. Suppose that we want to infer a maximally-weak predicate for
P and maximally-strong predicate for Q within a given underlying theory. Our

http://arxiv.org/abs/1505.02878v2

method allows us to specify such preferences as the following constraints for type
optimization

maximize(P), minimize(Q).

Here, maximize(P) (resp.minimize(Q)) means that the set of the models of P (x)
(resp. Q(x, y)) should be maximized (resp. minimized). Our method then infers
a Pareto optimal refinement type with respect to the given preferences.

In general, however, this kind of multi-objective optimization involves a
trade-off among the optimization constraints. In the above example, P may
not be weakened without also weakening Q. Hence, there often exist multiple
optima. Actually, all the following are Pareto optimal refinement types of sum.1

(x : {x : int | x = 0}) → {y : int | y = x} (1)

(x : {x : int | true}) → {y : int | y ≥ 0} (2)

(x : {x : int | x < 0}) → {y : int | false} (3)

Our method further allows us to specify a priority order on the predicate
variables P and Q. If P is given a higher priority over Q (we write P ⊏ Q),
our method infers the type (2), whereas we obtain the type (3) if Q ⊏ P .
Interestingly, (3) expresses that sum is non-terminating for any input x < 0.

The flexible optimization of refinement types enabled by our method paves
the way for interesting applications, such as inferring most-general characteri-
zation of inputs for which a given program satisfies (or violates) a given safety
(or termination) property. Furthermore, our method can infer an upper bound
of the number of recursive calls if the program is terminating, and can find a
minimal-length counterexample path if the program violates a safety property.

Internally, our method reduces such a refinement type optimization prob-
lem to a constraint optimization problem where the constraints are expressed
as existentially quantified Horn clauses over predicate variables [1, 11, 19]. The
constraint generation here is based on a new refinement type system that can
reason about (angelic and demonic) non-determinism in programs. Our method
then solves the constraint optimization problem by repeatedly improving a cur-
rent solution until convergence. The constraint optimization here is based on an
extension of template-based invariant generation [3,8] to existentially quantified
Horn clause constraints and prioritized multi-objective optimization.

The rest of the paper is organized as follows. Sections 2 and 3 respectively
formalize our target language and its refinement type system. The applications
of refinement type optimization are explained in Section 4. Section 5 formalizes
Horn constraint optimization problems and the reduction from type optimiza-
tion problems. Section 6 proposes our Horn constraint optimization method.
Section 7 reports on a prototype implementation of our method and the re-
sults of preliminary experiments. We compare our method with related work in
Section 8 and conclude the paper in Section 9.

1 Here, we use quantifier-free linear arithmetic as the underlying theory and consider
only atomic predicates for P and Q.

E[op(ṽ)] −→D E[JopK(ṽ)] (E-Op)

f x̃ = e ∈ D |x̃| = |ṽ|

E[f ṽ] −→D E[[ṽ/x̃]e]
(E-App)

E[let x = v in e] −→D E[[v/x]e] (E-Let)

E[let x = ∗∀ in e] −→D E[[n/x]e]
(E-Rand∃)

E[let x = ∗∃ in e] −→D E[[n/x]e]
(E-Rand∀)

if n = 0 then i = 1 else i = 2

E[ifz n then e1 else e2] −→D E[ei]
(E-If)

Fig. 1. The operational semantics of our language L

2 Target Language L

This section introduces a higher-order call-by-value functional language L, which
is the target of our refinement type optimization. The syntax is defined as follows.

(programs) D ::= {fi x̃i = ei}
m
i=1

(expressions) e ::= x | e v | n | op(v1, . . . , var(op)) | ifz v then e1 else e2
| let x = e1 in e2 | let x = ∗∀ in e | let x = ∗∃ in e

(values) v ::= x | x ṽ | n
(eval. contexts) E ::= [] | E v | let x = E in e

Here, x and f are meta-variables ranging over variables. n and op respectively
represent integer constants and operations such as + and ≥. ar(op) expresses
the arity of op. We write x̃ (resp. ṽ) for a sequence of variables (resp. values). For
simplicity of the presentation, the language L has integers as the only data type.
We encode Boolean values true and false respectively as non-zero integers and
0. A program is expressed as a set {fi x̃i = ei}

m

i=1 of function definitions. We
define dom({fi x̃i = ei}

m

i=1) = {f1, . . . , fm}. We assume that a value x ṽ satisfies
1 ≤ |ṽ| < ar (f), where |ṽ| represents the length of the sequence ṽ.

The call-by-value operational semantics of L is given in Figure 1. Here, JopK
represents the integer function denoted by op. Both expressions let x = ∗∀ in e
and let x = ∗∃ in e generate a random integer n, bind x to it, and evalu-
ate e. They are, however, interpreted differently in our refinement type system
(see Section 3). These expressions are used to model external functions with-
out definitions and non-deterministic behavior caused by external inputs (e.g.,
user inputs, interrupts, and so on). We write −→∗

D to denote the reflexive and
transitive closure of −→D.

3 Refinement Type System for L

In this section, we introduce a refinement type system for L that can reason about
non-determinism in programs. We then formalize refinement type optimization
problems (in Section 3.1), which generalize ordinary type inference problems.

The syntax of our refinement type system is defined as follows.

(refinement types) τ ::= {x | φ} | (x : τ1) → τ2
(type environments) Γ ::= ∅ | Γ, x : τ | Γ, φ

(formulas) φ ::= t1 ≤ t2 | ⊤ | ⊥ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2

(terms) t ::= n | x | t1 + t2 | n · t
(predicates) p ::= λx̃.φ

An integer refinement type {x | φ} equipped with a formula φ for type refinement
represents the type of integers x that satisfy φ. The scope of x is within φ.
We often abbreviate {x | ⊤} as int. A function refinement type (x : τ1) → τ2
represents the type of functions that take an argument x of the type τ1 and
return a value of the type τ2. Here, τ2 may depend on the argument x and the
scope of x is within τ2. For example, (x : int) → {y | y > x} is the type of
functions whose return value y is always greater than the argument x. We often
write fvs(τ) to denote the set of free variables occurring in τ . We define Γ (x) = τ
if x : τ ∈ Γ and dom(Γ) = {x | x : τ ∈ Γ}.

In this paper, we adopt formulas φ of the quantifier-free theory of linear
integer arithmetic (QFLIA) for type refinement. We write |= φ if a formula φ is
valid in QFLIA. Formulas ⊤ and ⊥ respectively represent the tautology and the
contradiction. Note that atomic formulas t1 < t2 (resp. t1 = t2) can be encoded
as t1 + 1 ≤ t2 (resp. t1 ≤ t2 ∧ t2 ≤ t1) in QFLIA.

The inference rules of our refinement type system are shown in Figure 2.
Here, a type judgment ⊢ D : Γ means that a program D is well-typed under a
refinement type environment Γ . A type judgment Γ ⊢ e : τ indicates that an
expression e has a refinement type τ under Γ . A subtype judgment Γ ⊢ τ1 <: τ2
states that τ1 is a subtype of τ2 under Γ . JΓ K occurring in the rules ISub and
Rand∃ is defined by J∅K = ⊤, JΓ, x : {ν | φ}K = JΓ K ∧ [x/ν]φ, JΓ, x : (ν :
τ1) → τ2K = JΓ K, and JΓ, φK = JΓ K ∧ φ. In the rule Op, JopKTy represents a
refinement type of op that soundly abstracts the behavior of the function JopK.
For example, J+KTy = (x : int) → (y : int) → {z | z = x+ y}. All the rules
except Rand∀ and Rand∃ for random integer generation are essentially the
same as the previous ones [18]. The rule Rand∀ requires e to have τ for any
randomly generated integer x. Therefore, e is type-checked against τ under a
type environment that assigns int to x. By contrast, the rule Rand∃ requires
e to have τ for some randomly generated integer x. Hence, e is type-checked
against τ under a type environment that assigns a type {x | φ} to x for some
φ such that fvs(φ) ⊆ dom(Γ) ∪ {x} and |= JΓ K ⇒ ∃x.φ. For example, x :
int ⊢ let y = ∗∃ in x + y : {r | r = 0} is derivable because we can derive
x : int, y : {y | y = −x} ⊢ x + y : {r | r = 0}. Thus, our new type system
allows us to reason about both angelic ∗∃ and demonic ∗∀ non-determinism in
higher-order functional programs.

We now discuss properties of our new refinement type system. We can prove
the following progress theorem in a standard manner.

Theorem 1 (Progress). Suppose that we have ⊢ D : Γ , dom(Γ) = dom(D),
and Γ ⊢ e : τ . Then, either e is a value or e −→D e′ for some e′.

Γ ⊢ λx̃i.ei : Γ (fi)
(for i ∈ {1, . . . ,m})

⊢ {fi x̃i = ei}
m

i=1 : Γ
(Prog)

Γ (x) = {ν | φ}

Γ ⊢ x : {ν | ν = x}
(IVar)

Γ (x) = (ν : τ1) → τ2

Γ ⊢ x : (ν : τ1) → τ2
(FVar)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx.e : (x : τ1) → τ2
(Abs)

Γ ⊢ e : (x : τ1) → τ2
Γ ⊢ v : τ1

Γ ⊢ e v : [v/x]τ2
(App)

Γ ⊢ n : {ν | ν = n} (Int)

Γ ⊢ e : τ ′ Γ ⊢ τ ′ <: τ

Γ ⊢ e : τ
(Sub)

|= JΓ K ∧ φ1 ⇒ φ2

Γ ⊢ {ν | φ1} <: {ν | φ2}
(ISub)

Γ ⊢ e1 : τ1
Γ, x : τ1 ⊢ e2 : τ2 x 6∈ fvs(τ2)

Γ ⊢ let x = e1 in e2 : τ2
(Let)

Γ, x : int ⊢ e : τ x 6∈ fvs(τ)

Γ ⊢ let x = ∗∀ in e : τ
(Rand∀)

fvs(φ) ⊆ dom(Γ) ∪ {x}
|= JΓ K ⇒ ∃x.φ

Γ, x : {x | φ} ⊢ e : τ x 6∈ fvs(τ)

Γ ⊢ let x = ∗∃ in e : τ
(Rand∃)

Γ, v = 0 ⊢ e1 : τ
Γ, v 6= 0 ⊢ e2 : τ

Γ ⊢ ifz v then e1 else e2 : τ
(If)

JopKTy = (x1 : τ1) → · · · → (xm : τm) → τ
σj = [v1/x1, . . . , vj/xj]

Γ ⊢ vi : σi−1τi (for i ∈ {1, . . . ,m})

Γ ⊢ op(v1, . . . , vm) : σmτ
(Op)

Γ ⊢ τ ′
1 <: τ1

Γ, ν : τ ′
1 ⊢ τ2 <: τ ′

2

Γ ⊢ (ν : τ1) → τ2 <: (ν : τ ′
1) → τ ′

2

(FSub)

Fig. 2. The inference rules of our refinement type system

We can also show the substitution lemma and the type preservation theorem in
a similar manner to [18].

Lemma 1 (Substitution). If Γ ⊢ v : τ ′ and Γ, x : τ ′, Γ ′ ⊢ e : τ , then
Γ, [v/x]Γ ′ ⊢ [v/x]e : [v/x]τ .

Theorem 2 (Preservation). Suppose that we have ⊢ D : Γ and Γ ⊢ e : τ . If
e is of the form let x = ∗∃ in e0, then we get Γ ⊢ e′ : τ for some e′ such that
e −→D e′. Otherwise, we get Γ ⊢ e′ : τ for any e′ such that e −→D e′.

Proof. We prove the theorem by induction on the derivation of Γ ⊢ e : τ . We only
show the case for the rule Rand∃ below. The other cases are similar to [18]. By
Rand∃, we have e = let x = ∗∃ in e0, fvs(φ) ⊆ dom(Γ) ∪ {x}, |= JΓ K ⇒ ∃x.φ,
Γ, x : {x | φ} ⊢ e0 : τ , and x 6∈ fvs(τ). It then follows from |= JΓ K ⇒ ∃x.φ that
there is an integer n such that |= JΓ K ∧ x = n ⇒ φ. By the rule E-Rand∃, we
get e −→D [n/x]e0 = e′. By the rules Int and Sub, we obtain Γ ⊢ n : {x | φ}.
Thus, we get Γ ⊢ e′ : τ by Lemma 1, Γ, x : {x | φ} ⊢ e0 : τ , and x 6∈ fvs(τ). ⊓⊔

3.1 Refinement Type Optimization Problems

We now define refinement type optimization problems, which generalize refine-
ment type inference problems addressed by previous work [9, 10, 15–19].

We first introduce the notion of refinement type templates. A refinement type
template of a function f is the refinement type obtained from the ordinary ML-
style type of f by replacing each base type int with an integer refinement type
{ν | P (x̃, ν)} for some fresh predicate variable P that represents an unknown
predicate to be inferred, and each function type T1 → T2 with a (dependent)
function refinement type (x : τ1) → τ2. For example, from an ML-style type
(int → int) → int → int, we obtain the following template.

(f : (x1 : {x1 | P1(x1)}) → {x2 | P2(x1, x2)}) →

(x3 : {x3 | P3(x3)}) → {x4 | P4(x3, x4)}

Note here that the first argument f is not passed as an argument to P3 and
P4 because f is of a function type and never occurs in QFLIA formulas for
type refinement. A refinement type template of a program D with dom(D) =
{f1, . . . , fm} is the refinement type environment ΓD = f1 : τ1, . . . , fm : τm,
where each τi is the refinement type template of fi. We write pvs(ΓD) for the
set of predicate variables that occur in ΓD. A predicate substitution θ for ΓD

is a map from each P ∈ pvs(ΓD) to a closed predicate λx1, . . . , xar(P).φ, where
ar(P) represents the arity of P . We write θΓD to denote the application of a
substitution θ to ΓD. We also write dom(θ) to represent the domain of θ.

We can define ordinary refinement type inference problems as follows.

Definition 1 (Refinement Type Inference). A refinement type inference
problem of a program D is a problem to find a predicate substitution θ such that
⊢ D : θΓD.

We now generalize refinement type inference problems to optimization problems.

Definition 2 (Refinement Type Optimization). Let D be a program, ≺ be
a strict partial order on predicate substitutions, and Θ = {θ | ⊢ D : θΓD}. A
predicate substitution θ ∈ Θ is called Pareto optimal with respect to ≺ if there
is no θ′ ∈ Θ such that θ′ ≺ θ. A refinement type optimization problem (D,≺)
is a problem to find a Pareto optimal substitution θ ∈ Θ with respect to ≺.

In the remainder of the paper, we will often consider type optimization problems
extended with user-specified constraints and/or templates for some predicate
variables (see Section 4 for examples and Section 5 for formal definitions).

The above definition of type optimization problems is abstract in the sense
that ≺ is only required to be a strict partial order on predicate substitutions. We
below introduce an example concrete order, which is already explained informally
in Section 1 and adopted in our prototype implementation described in Section 7.
The order is defined by two kinds of optimization constraints: the optimization
direction (i.e. minimize/maximize) and the priority order on predicate variables.

Definition 3. Suppose that

– P = {P1, . . . , Pm} is a subset of pvs(ΓD),

– ρ is a map from each predicate variable in P to an optimization direction d
that is either ↑ (for maximization) or ↓ (for minimization), and

– ⊏ is a strict total order on P that expresses the priority.2 We below assume
that P1 ⊏ · · · ⊏ Pm.

We define a strict partial order ≺(ρ,⊏) on predicate substitutions that respects ρ
and ⊏ as the following lexicographic order:

θ1 ≺(ρ,⊏) θ2 ⇐⇒ ∃i ∈ {1, . . . ,m} . θ1(Pi) ≺ρ(Pi) θ2(Pi)∧∀j < i. θ1(Pj) ≡ρ(Pj) θ2(Pj)

Here, a strict partial order ≺d and an equivalence relation ≡d on predicates are
defined as follows.

– p1 ≺d p2 ⇐⇒ p1 �d p2 ∧ p2 6�d p1,
– p1 ≡d p2 ⇐⇒ p1 �d p2 ∧ p2 �d p1,
– λx̃.φ1 �↑ λx̃.φ2 ⇐⇒|= φ2 ⇒ φ1, and λx̃.φ1 �↓ λx̃.φ2 ⇐⇒|= φ1 ⇒ φ2.

Example 1. Recall the function sum and its type template with the predicate
variables P,Q in Section 1. Let us consider optimization constraints ρ(P) =↑,
ρ(Q) =↓, and P ⊏ Q, and predicate substitutions

– θ1 = {P 7→ λx. x = 0, Q 7→ λx, y. y = x},
– θ2 = {P 7→ λx.⊤, Q 7→ λx, y. y ≥ 0}, and
– θ3 = {P 7→ λx. x < 0, Q 7→ λx, y.⊥}.

We then have θ2 ≺(ρ,⊏) θ1 and θ2 ≺(ρ,⊏) θ3, because (λx.⊤) ≺↑ (λx. x = 0) and
(λx.⊤) ≺↑ (λx. x < 0). ⊓⊔

4 Applications of Refinement Type Optimization

In this section, we present applications of refinement type optimization to the
problems of proving safety (in Section 4.1) and termination (in Section 4.3), and
disproving safety (in Section 4.4) and termination (in Section 4.2) of programs
in the language L. In particular, we discuss precondition inference, namely, in-
ference of most-general characterization of inputs for which a given program
satisfies (or violates) a given safety (or termination) property.

4.1 Proving Safety

We explain how to formalize, as a type optimization problem, a problem of
inferring maximally-weak precondition under which a given program satisfies
a given postcondition. For example, let us consider the following terminating
version of sum.

2 If ⊏ were partial, the relation ≺(ρ,⊏) defined shortly would not be a strict partial
order. Our implementation described in Section 7 uses topological sort to obtain a
strict total order ⊏ from a user-specified partial one.

let rec sum’ x = if x <= 0 then 0 else x + sum’ (x-1)

In our framework, a problem to infer a maximally-weak precondition on the argu-
ment x for a postcondition x = sum′ x is expressed as a type optimization prob-
lem to infer sum′’s refinement type of the form (x : {x | P (x)}) → {y | x = y}
under an optimization constraint maximize(P). Our type optimization method
described in Sections 5.2 and 6 infers the following type.

(x : {x | 0 ≤ x ≤ 1}) → {y | x = y}

This type says that the postcondition holds if the actual argument x is 0 or 1.

Example 2 (Hihger-Order Function). For an example of a higher-order function,
consider the following.

let rec repeat f n e = if n<=0 then e else repeat f (n-1) (f e)

By inferring repeat’s refinement type of the form

(f : (x : {x | P1(x)}) → {y | P2(x, y)}) → (n : int) → (e : {e | P3(n, e)}) → {r | r ≥ 0}

under optimization constraints ρ(P1) =↓, ρ(P2) = ρ(P3) =↑, and P3 ⊏ P2 ⊏ P1,
our type optimization method obtains

(f : (x : {x | x ≥ 0}) → {y | y ≥ 0}) → (n : int) → (e : {e | e ≥ 0}) → {r | r ≥ 0}

Thus, type optimization can be applied to infer maximally-weak refinement types
of (possibly higher-order) arguments that are sufficient for the function to satisfy
a given postcondition. ⊓⊔

4.2 Disproving Termination

In a similar manner to Section 4.1, we can apply type optimization to the prob-
lems of inferring maximally-weak precondition for a given program to violate
the termination property. For example, consider the function sum in Section 1.
For disproving termination of sum, we infer sum’s refinement type of the form
(x : {x | P (x)}) → {y | ⊥} under an optimization constraint maximize(P). Our
type optimization method infers the following type.

(x : {x | x < 0}) → {y | ⊥}

The type expresses the fact that no value is returned by sum (i.e., sum is non-
terminating) if the actual argument x satisfies x < 0.

Example 3 (Non-Deterministic Function). For an example of non-deterministic
function, let us consider a problem of disproving termination of the following.

let rec f x = let n = read_int () in if n<0 then x else f x

Here, read_int () is a function to get an integer value from the user and is
modeled as ∗∃ in our language L. Note that the termination of f does not
depend on the argument x but user inputs n. Actually, our type optimization
method successfully disproves termination of f by inferring a refinement type
(x : int) → {y | ⊥} for f and {n | n ≥ 0} for the user inputs n. This means that
f is non-terminating if the user always inputs some non-negative integer. ⊓⊔

4.3 Proving Termination

Refinement type optimization can also be applied to bounds analysis for inferring
upper bounds of the number of recursive calls. Our bounds analysis for functional
programs is inspired by a program transformation approach to bounds analysis
for imperative programs [7, 8]. Let us consider sum in Section 1. By inserting
additional parameters i and c to the definition of sum, we obtain

let rec sum_t x i c = if x=0 then 0 else x + sum_t (x-1) i (c+1)

Here, i and c respectively represent the initial value of the argument x and the
number of recursive calls so far. For proving termination of sum, we infer sum t’s
refinement type of the form

(x : {x | P (x}) → (i : int) → (c : {c | Inv(x, i, c)}) → int

under optimization constraints maximize(P), minimize(Bnd), P ⊏ Bnd , and
additional constraints on the predicate variables P,Bnd , Inv

∀x, i, c. (Inv(x, i, c) ⇐ c = 0 ∧ i = x) (4)

∀x, i, c. (Bnd(i, c) ⇐ P (x) ∧ Inv(x, i, c)) (5)

Here, Bnd(i, c) is intended to represent the bounds of the number c of recursive
calls of sum with respect to the initial value i of the argument x. We therefore
assume that Bnd(i, c) is of the form 0 ≤ c ≤ k0 + k1 · i, where k0, k1 represent
unknown coefficients to be inferred. The constraint (4) is necessary to express the
meaning of the inserted parameters i and c. The constraint (5) is also necessary
to ensure that the bounds Bnd(i, c) is implied by a precondition P (x) and an
invariant Inv(x, i, c) of sum. Our type optimization method then infers

(x : {x | x ≥ 0}) → (i : int) → (c : {c | x ≤ i ∧ i = x+ c}) → int

and Bnd(i, c) ≡ 0 ≤ c ≤ i. Thus, we can conclude that sum is terminating for
any input x ≥ 0 because the number c of recursive calls is bounded from above
by the initial value i of the argument x.

Interestingly, we can infer a precondition for minimizing the number of re-
cursive calls of sum by replacing the priority constraint P ⊏ Bnd with Bnd ⊏ P
and adding an additional constraint ∃x.P (x) (to avoid a meaningless solution
P (x) ≡ ⊥). In fact, our type optimization method obtains

(x : {x | x = 0}) → (i : int) → (c : {c | c = 0}) → int

and Bnd(i, c) ≡ c = 0. Therefore, we can conclude that the minimum number of
recursive calls is 0 when the actual argument x is 0.

We expect that our bounds analysis for functional programs can further be
extended to infer non-linear upper bounds by adopting ideas from an elaborate
transformation for bounds analysis of imperative programs [7].

4.4 Disproving Safety

We can use the same technique in Section 4.3 to infer maximally-weak precon-
dition for a given program to violate a given postcondition. For example, let us
consider again the function sum. A problem to infer a maximally-weak precondi-
tion on the argument x for violating a postcondition sum x ≥ 2 can be reduced
to a problem to infer sum t’s refinement type of the form

(x : {x | P (x)}) → (i : int) → (c : {c | Inv(x, i, c)}) → {y | ¬(y ≥ 2)}

under the same constraints for bounds analysis in Section 4.3. The refinement
type optimization method then obtains

(x : {x | 0 ≤ x ≤ 1}) → (i : int) → (c : {c | 0 ≤ x ∧ i = x+ c}) → {y | ¬(y ≥ 2)}

and Bnd(i, c) ≡ 0 ≤ c ≤ i. This result says that if the actual argument x is 0 or
1, then sum terminates and returns some integer y that violates y ≥ 2. In other
words, x = 0, 1 are counterexamples to the postcondition sum x ≥ 2.

We can instead find a minimal-length counterexample path3 to the post-
condition sum x ≥ 2 by just replacing the priority constraint P ⊏ Bnd with
Bnd ⊏ P and adding an additional constraint ∃x.P (x). Our type optimization
method then infers

(x : {x | x = 0}) → (i : int) → (c : {c | 0 ≤ x ∧ i = x+ c}) → {y | ¬(y ≥ 2)}

and Bnd(i, c) ≡ c = 0. From the result, we can conclude that a minimal-length
counterexample path is obtained when the actual argument x is 0.

5 Horn Constraint Optimization and Reduction from

Refinement Type Optimization

We reduce refinement type optimization problems into constraint optimization
problems subject to existentially-quantified Horn clauses [1,11,19]. We first for-
malize Horn constraint optimization problems (in Section 5.1) and then explain
the reduction (in Section 5.2).

5.1 Horn Constraint Optimization Problems

Existentially-Quantified Horn Clause Constraint Sets (∃HCCSs) over QFLIA are
defined as follows.

(∃HCCSs) H ::= {hc1, . . . , hcm}
(Horn clauses) hc ::= h ⇐ b

(heads) h ::= P (t̃) | φ | ∃x̃.(P (t̃) ∧ φ)

(bodies) b ::= P1(t̃1) ∧ . . . ∧ Pm(t̃m) ∧ φ

3 Here, minimality is with respect to the number of recursive calls within the path.

We write pvs(H) for the set of predicate variables that occur in H.

A predicate substitution θ for an ∃HCCS H is a map from each P ∈ pvs(H)
to a closed predicate λx1, . . . , xar(P).φ. We write ΘH for the set of predicate
substitutions for H. We call a substitution θ is a solution of H if for each hc ∈ H,
|= θhc. For a subset Θ ⊆ ΘH, we call a substitution θ ∈ Θ is a Θ-restricted
solution if θ is a solution of H. Our constraint optimization method described
in Section 6 is designed to find a Θ-restricted solution for some Θ consisting of
substitutions that map each predicate variable to a predicate with a bounded
number of conjunctions and disjunctions. In particular, we often use

Θatom =
{
P 7→ λx1, . . . , xar(P).n0 +Σ

ar(P)
i=1 ni · xi ≥ 0 | P ∈ pvs(H)

}

consisting of atomic predicate substitutions.

Example 4. Recall the function sum and the predicate substitutions θ1, θ2, θ3 in
Example 1. Our method reduces a type optimization problem for sum into a
constraint optimization problem for the following HCCS Hsum (the explanation
of the reduction is deferred to Section 5.2).

{
Q(x, 0) ⇐ P (x) ∧ x = 0, P (x− 1) ⇐ P (x) ∧ x 6= 0,
Q(x, x+ y) ⇐ P (x) ∧Q(x− 1, y) ∧ x 6= 0

}

Here, θ1 is a solution of Hsum, and θ2 and θ3 are Θatom -restricted solutions of
Hsum. If we fix Q(x, y) ≡ ⊥ (i.e., infer sum’s type of the form (x : {x | P (x)}) →
{y | ⊥}) for disproving termination of sum as in Section 4.2, we obtain the fol-
lowing HCCS H⊥

sum
.

{⊥ ⇐ P (x) ∧ x = 0, P (x− 1) ⇐ P (x) ∧ x 6= 0}

H⊥
sum

has, for example, Θatom -restricted solutions {P 7→ λx.x < 0} and {P 7→
λx.x < −100}. ⊓⊔

We now define Horn constraint optimization problems for ∃HCCSs.

Definition 4. Let H be an ∃HCCS and ≺ be a strict partial order on predicate
substitutions. A solution θ of H is called Pareto optimal with respect to ≺ if
there is no solution θ′ of H such that θ′ ≺ θ. A Horn constraint optimization
problem (H,≺) is a problem to find a Pareto optimal solution θ with respect to
≺. A Θ-restricted Horn constraint optimization problem is a Horn constraint
optimization problem with the notion of solutions replaced by Θ-restricted solu-
tions.

Example 5. RecallHsum and its solutions θ1,θ2,θ3 in Example 1. Let us consider a
Horn constraint optimization problem (Hsum,≺(ρ,⊏)) where ρ(P) = ↑, ρ(Q) = ↓,
and Q ⊏ P . We have θ3 ≺(ρ,⊏) θ1 and θ3 ≺(ρ,⊏) θ2. In fact, θ3 is a Pareto
optimal solution of Hsum with respect to ≺(ρ,⊏). ⊓⊔

In general, an ∃HCCS H may not have a Pareto optimal solution with re-
spect to ≺(ρ,⊏) even though H has a solution. For example, consider a Horn
constraint optimization problem (Hsum,≺(ρ,⊏)) where ρ(P) =↑, ρ(Q) =↓, and

P ⊏ Q. Because the semantically optimal solution Q(x, y) ≡ y = x(x+1)
2 is not

expressible in QFLIA, it must be approximated, for example, as Q(x, y) ≡ y ≥
0 ∧ y ≥ x ∧ y ≥ 2x − 1. The approximated solution, however, is not Pareto
optimal because we can always get a better approximation like Q(x, y) ≡ y ≥
0 ∧ y ≥ x ∧ y ≥ 2x− 1 ∧ y ≥ 3x− 3 if we use more conjunctions.

We can, however, show that an ∃HCCS has a Θatom -restricted Pareto optimal
solution with respect to ≺(ρ,⊏) if it has a Θatom -restricted solution. For the above
example, θ2 in Example 1 is a Θatom -restricted Pareto optimal solution.

Lemma 2. Suppose that an ∃HCCS H has a Θatom -restricted solution and for
any P such that ρ(P) =↓, P is not existentially quantified in H. It then follows
that H has a Θatom -restricted Pareto optimal solution with respect to ≺(ρ,⊏).

Proof Sketch. We prove the lemma by contradiction. Suppose that H has a
Θatom -restricted solution but no Pareto optimal one. It then follows that there
exist an infinite descending chain θ1 ≻(ρ,⊏) θ2 ≻(ρ,⊏) . . . of Θatom -restricted
solutions and a predicate variable P such that

– ∀i ≥ 1. θi(P) ≻ρ(P) θi+1(P) ∧ ∀Q ⊏ P. θi(Q) ≡ρ(Q) θi+1(Q) and
– no Θatom -restricted solution is a lower bound of the chain.

The key observations here are that the half-spaces represented by θ1(P), θ2(P), . . .
are parallel, and for some k > 0 that depends on 2ar(P) and the largest absolute
value of coefficients in θ1(P), the distance di between θi(P) and θi+k(P) are di >
1 for all i ≥ 1, because of the strictness of ≻ρ(P) and the discreteness of integers.
By continuity of H, H has a Θatom -restricted solution θ such that θ(P) ≡ λx̃.⊤
if ρ(P) =↑ and θ(P) ≡ λx̃.⊥ if ρ(P) =↓, and ∀Q ⊏ P. θ(Q) ≡ρ(Q) θ1(Q). θ is
obviously a lower bound of the chain. Thus, a contradiction is obtained. ⊓⊔

5.2 Reduction from Refinement Type Optimization

Our method reduces a refinement type optimization problem into an Horn con-
straint optimization problem in a similar manner to the previous refinement
type inference method [18]. Given a program D, our method first prepares a
refinement type template ΓD of D as well as, for each expression of the form
let x = ∗∃ in e, a refinement type template {x | P (ỹ, x)} of x, where P is a fresh
predicate variable and ỹ is the sequence of all integer variables in the scope. Our
method then generates an ∃HCCS by type-checking D against ΓD and collecting
the proof obligations of the forms JΓ K ∧ φ1 ⇒ φ2 and JΓ K ⇒ ∃ν.φ respectively
from each application of the rules ISub and Rand∃. We write Gen(D,ΓD) to
denote the ∃HCCS thus generated from D and ΓD.

We can show the soundness of our reduction in the same way as in [18].

Theorem 3 (Soundness of Reduction). Let (D,≺) be a refinement type op-
timization problem and ΓD be a refinement type template of D. If θ is a Pareto
optimal solution of Gen(D,ΓD), then θ is a solution of (D,≺).

1: procedure Optimize(H,≺)
2: match Solve(H) with

3: Unknown → return Unknown

4: | NoSol → return NoSol

5: | Sol(θ0) →
6: θ := θ0;
7: while true do

8: let H′ = Improve≺(θ,H) in
9: match Solve(H′) with

10: Unknown → return Sol(θ)
11: | NoSol → return OptSol(θ)
12: | Sol(θ′) → θ := θ′

13: end

Fig. 3. Pseudo-code of the constraint optimization method for ∃HCCSs

6 Horn Constraint Optimization Method

In this section, we describe our Horn constraint optimization method for ∃HCCSs.
The method repeatedly improves a current solution until convergence. The pseudo-
code of the method is shown in Figure 3. The procedure Optimize for Horn con-
straint optimization takes a (Θ-restricted) ∃HCCS optimization problem (H,≺)
and returns any of the following: Unknown (which means the existence of a solu-
tion is unknown), NoSol (which means no solution exists), Sol(θ) (which means
θ is a possibly non-Pareto optimal solution), or OptSol(θ) (which means θ is a
Pareto optimal solution). The sub-procedure Solve for Horn constraint solving
takes an ∃HCCS H and returns any of Unknown, NoSol, or Sol(θ). The detailed
description of Solve is deferred to Section 6.1.

Optimize first calls Solve to find an initial solution θ0 of H (line 2). Opti-

mize returns Unknown if Solve returns Unknown (line 3) and NoSol if Solve
returns NoSol (line 4). Otherwise (line 5), Optimize repeatedly improves a cur-
rent solution θ starting from θ0 until convergence (lines 6 – 13). To improve θ,
we call a sub-procedure Improve≺(θ,H) for generating an ∃HCCS H′ from H
by adding constraints that require any solution θ′ of H′ satisfies θ′ ≺ θ (line 8).
Optimize then calls Solve to find a solution of H′. If Solve returns Unknown,
Optimize returns Sol(θ) as a (possibly non-Pareto optimal) solution (line 10). If
Solve returns NoSol, it is the case that no improvement is possible, and hence
the current solution θ is Pareto optimal. Thus, Optimize returns OptSol(θ) (line
11). Otherwise, we obtain an improved solution θ′ ≺ θ, and Optimize updates
the current solution θ with θ′ and repeats the improvement process (line 12).

Example 6. Recall H⊥
sum

in Example 4 and consider an optimization problem
(H⊥

sum
,≺(⊏,ρ)) where ρ(P) =↑. We below explain how Optimize(H⊥

sum
,≺(⊏,ρ)

) proceeds. First, Optimize calls the sub-procedure Solve to find an initial
solution ofH⊥

sum
(e.g., θ0 = {P 7→ λx.⊥}).Optimize then calls the sub-procedure

Improve≺(θ0,H⊥
sum

) and obtains an ∃HCCS H′ = H⊥
sum

∪{P (x) ⇐ ⊥, ∃x.P (x)∧
¬⊥}. Note that H′ requires that for any solution θ of H′, θ(P) ≺ρ(P) θ0(P) =

λx.⊥. Optimize then calls Solve(H′) to find an improved solution of H (e.g.,
θ1 = {P 7→ λx.x < 0}). In the next iteration, Optimize returns θ1 as a Pareto
optimal solution because Improve≺(θ1,H

⊥
sum

) has no solution. ⊓⊔

We now discuss properties of the procedure Optimize under the assumption
of the correctness of the sub-procedure Solve (i.e., θ is a Θ-restricted solution of
H if Solve(H) returns Sol(θ), and H has no Θ-restricted solution if Solve(H)
returns NoSol). The following theorem states the correctness of Optimize.

Theorem 4 (Correctness of the Procedure Optimize). Let (H,≺) be a
Θ-restricted Horn constraint optimization problem. If Optimize(H,≺) returns
OptSol(θ) (resp. Sol(θ)), θ is a Pareto optimal (resp. possibly non-Pareto opti-
mal) Θ-restricted solution of H with respect to ≺.

The following theorem states the termination ofOptimize forΘatom -restricted
Horn constraint optimization problems.

Theorem 5 (Termination of the Procedure Optimize). Let (H,≺(⊏,ρ))
be a Θatom -restricted Horn constraint optimization problem. It then follows that
Optimize(H,≺(⊏,ρ)) always terminates if the sub-procedure Solve preferen-
tially returns solutions having smaller absolute values of coefficients.

Proof. Recall the proof sketch of Lemma 2. Any infinite descending chain of
Θatom -restricted solutions for a predicate variable P with respect to ≺(⊏,ρ) has
a limit λx̃.⊤ if ρ(P) =↑ and λx̃.⊥ if ρ(P) =↓. Because λx̃.⊥ (resp. λx̃.⊤) is
expressed as an atomic predicate λx̃. − 1 ≥ 0 (resp. λx̃.0 ≥ 0) having absolute
values of coefficients not greater than 1 and the number of such predicates is
finite, the limit is guaranteed to be reached in a finite number of iterations. ⊓⊔

6.1 Sub-Procedure Solve for Solving ∃HCCSs

The pseudo-code of the sub-procedure Solve for solving ∃HCCSs is presented
in Figure 4. Here, Solve uses existing template-based invariant generation tech-
niques based on Farkas’ lemma [3, 8] and ∃HCCS solving techniques based on
Skolemization [1, 11, 19]. Solve first generates a template substitution θ that
maps each predicate variable in pvs(H) to a template atomic predicate with un-
known coefficients c0, . . . , car(P) (line 2).

4 Solve then applies θ to H and obtains
a verification condition of the form ∃c̃.∀x̃.∃ỹ.φ without predicate variables (line
3). Solve applies Skolemization [1, 11, 19] to the condition and obtains a sim-
plified condition of the form ∃c̃, z̃.∀x̃.φ′ (line 4). Solve further applies Farkas’
lemma [3,8] to eliminate the universal quantifiers and obtains a condition of the
form ∃c̃, z̃, w̃.φ′′ (line 5). Solve then uses an off-the-shelf SMT solver to find a
satisfying assignment to φ′′ (line 6). If such an assignment σ is found, Solve

4 In this way, the particular code is specialized to solve Θatom -restricted Horn con-
straint optimization problems. To solve Θ-restricted optimization problems for other
Θ, we need here to generate templates that conform to the shape of substitutions in
Θ instead. Our implementation in Section 7 iteratively increases the template size.

1: procedure Solve(H)

2: let θ =
{
P 7→ λx̃.c0 +Σ

ar(P)
i=1 ci · xi ≥ 0 | P ∈ pvs(H)

}
in

3: let ∃c̃.∀x̃.∃ỹ.φ = ∃c̃.
∧

hc∈H
∀fvs(hc).θ(hc) in

4: let ∃c̃, z̃.∀x̃.φ′ = apply Skolemization to ∃c̃.∀x̃.∃ỹ.φ in

5: let ∃c̃, z̃, w̃.φ′′ = apply Farkas’ lemma to ∃c̃, z̃.∀x̃.φ′ in

6: match SMT(φ′′) with

7: Unknown → return Unknown

8: | Sat(σ) → return Sol(σ(θ))
9: | Unsat → match SMT(∀x̃.∃ỹ.φ) with

10: Unknown → return Unknown

11: | Sat(σ) → return Sol(σ(θ))
12: | Unsat → return NoSol

Fig. 4. Pseudo-code of the constraint solving method for ∃HCCSs based on template-
based invariant generation

returns σ(θ) as a solution (line 8). Solve returns Unknown if the SMT solver
returns Unknown (line 7). Otherwise (no assignment is found),5 Solve uses the
SMT solver again to find a satisfying assignment σ to ∀x̃.∃ỹ.φ (line 9). If such a
σ is found, Solve returns σ(θ) as a solution (line 11). Solve returns Unknown
if Unknown is returned (line 10) and NoSol if Unsat is returned (line 12).

Example 7. We explain how Solve proceeds for H′ in Example 6. Solve first
generates a template substitution θ = {P 7→ λx.c0 + c1 · x ≥ 0} with unknown
coefficients c0, c1 and applies θ to H′. As a result, we get a verification condition

∃c0, c1.



∀x.

(
(⊥ ⇐ c0 + c1 · x ≥ 0 ∧ x = 0)∧
(c0 + c1 · (x− 1) ≥ 0 ⇐ c0 + c1 · x ≥ 0 ∧ x 6= 0)

)
∧

∃x. c0 + c1 · x ≥ 0





By applying Farkas’ lemma, we obtain

∃c0, c1.




∃w1, w2, w3 ≥ 0. (c0 · w1 ≤ −1 ∧ c1 · w1 + w2 − w3 = 0)∧

∃w4, w5, w6 ≥ 0.

(
(−1− c0 + c1) · w4 + c0 · w5 − w6 ≤ −1∧
c1 · (−w4 + w5) + w6 = 0

)
∧

∃w7, w8, w9 ≥ 0.

(
(−1− c0 + c1) · w7 + c0 · w8 − w9 ≤ −1∧
c1 · (−w7 + w8)− w9 = 0

)
∧

∃x. c0 + c1 · x ≥ 0




By using an SMT solver, we obtain, for example, a satisfying assignment

σ =

{
c0 7→ −1, c1 7→ −1, w1 7→ 1, w2 7→ 1, w3 7→ 0,
w4 7→ 0, w5 7→ 1, w6 7→ 1, w7 7→ 1, w8 7→ 0, w9 7→ 1

}

Thus, Solve returns σ(θ) = {P 7→ λx. − 1− x ≥ 0} ≡ θ1 in Example 6. ⊓⊔

5 Note here that even though no assignment is found, H may have a Θatom -restricted
solution because Farkas’ lemma is not complete for QFLIA formulas [3, 8] and
Skolemization of ∃c̃.∀x̃.∃ỹ.φ into ∃c̃, z̃.∀x̃.φ′ here assumes that ỹ are expressed as
linear expressions over x̃ [1, 11,19].

Table 1. The results of a non-termination verification benchmark set used in [2,11,13].
The results for CppInv, T2-TACAS, and TNT are according to Larraz et al. [13]. The
result for MoCHi is according to [11].

Verified TimeOut Other

Our tool 41 27 13

CppInv [13] 70 6 5

T2-TACAS [2] 51 0 30

TNT [5] 19 3 59

MoCHi [11] 48 26 7

The following theorem states the correctness of the sub-procedure Solve.

Lemma 3 (Correctness of the Sub-Procedure Solve). Let H be an ∃HCCS.
θ is a Θatom -restricted solution of H if Solve(H) returns Sol(θ), and H has no
Θatom -restricted solution if Solve(H) returns NoSol.

Note that the sub-procedure Solve described above does not necessarily
satisfy the assumption of Theorem 5. We can, however, extend Solve to satisfy
the assumption by bounding the absolute values of unknown coefficients and
iteratively incrementing the bounds in SMT solving.

7 Implementation and Experiments

We have implemented a prototype refinement type optimization tool based on
our method. Our tool takes OCaml programs and uses Z3 [4] as the underlying
SMT solver in the sub-procedure Solve. We conducted preliminary experiments
for each application presented in Section 4. All the experiments were conducted
on a machine with Intel Core i7-4650U 1.70GHz, 8GB of RAM.

The experimental results are summarized in Tables 1 and 2. Table 1 shows
the results of an existing first-order non-termination verification benchmark set
used in [2, 11, 13]. Because the original benchmark set was written in the input
language of T2 (http://mmjb.github.io/T2/), we used an OCaml translation
of the benchmark set provided by [11]. Our tool was able to successfully disprove
termination of 41 programs (out of 81) in the time limit of 100 seconds. Our
prototype tool was not the best but performed well compared to the state-of-
the-art tools dedicated to non-termination verification.

Table 2 shows the results of maximally-weak precondition inference for prov-
ing safety and termination, and disproving safety and termination. In the col-
umn #Iterations, > 2 represents that the 3-rd iteration timed out and possibly
non-Pareto optimal solution was inferred by our tool. We used non-termination
(resp. termination) verification benchmarks for higher-order programs from [11]
(resp. [12]). The results show that our method is also effective for safety and non-
termination verification of higher-order programs. Our prototype tool, however,
could be optimized further to speed up termination and non-safety verification.

http://mmjb.github.io/T2/

Table 2. The results of maximally-weak precondition inference for proving/disproving
safety/termination.

Program Applications #Iterations Time (ms)

fixpoint_nonterm [11] Disprove Termination 1 2,020
fib_CPS_nonterm [11] Disprove Termination 1 5,023

indirect_e [11] Disprove Termination 1 1,083
indirectHO_e [11] Disprove Termination 1 2,434

loopHO [11] Disprove Termination 1 1,642
foldr_nonterm [11] Disprove Termination 1 4,904

repeat (Sec. 4.1) Prove Safety 4 948
sum_geq3 Prove Safety 4 2,654
append Prove Safety 5 20,352

append [12] Prove Termination 6 26,786
zip [12] Prove Termination 13 76,641

sum
′ (Sec. 4.1) Prove Safety 3 1,856

sum (Sec. 4.2) Disprove Termination 1 174
sum t (Sec. 4.3) Prove Termination(P ⊏ Inv) 4 56,042
sum t (Sec. 4.3) Prove Termination(Inv ⊏ P) 3 6,628
sum t (Sec. 4.4) Disprove Safety(P ⊏ Inv) > 2 18,009
sum t (Sec. 4.4) Disprove Safety(Inv ⊏ P) > 2 16,540

8 Related Work

Type inference problems of refinement type systems [6,20] have been intensively
studied [9, 10, 15–19]. To our knowledge, this paper is the first to address type
optimization problems, which generalize ordinary type inference problems. As
we saw in Sections 4 and 7, this generalization enables significantly wider appli-
cations in the verification of higher-order functional programs.

For imperative programs, Gulwani et al. have proposed a template-based
method to infer maximally-weak pre and maximally-strong post conditions [8].
Their method, however, cannot directly handle higher-order functional pro-
grams, (angelic and demonic) non-determinism in programs, and prioritized
multi-objective optimization, which are all handled by our new method.

Internally, our method reduces a type optimization problem to a constraint
optimization problem subject to an existentially quantified Horn clause con-
straint set (∃HCCS). Constraint solving problems for ∃HCCSs have been studied
by recent work [1,11,19]. They, however, do not address constraint optimization
problems. The goal of our constraint optimization is to maximize/minimize the
set of the models for each predicate variable occurring in the given ∃HCCS. Thus,
our constraint optimization problems are different from Max-SMT [14] problems
whose goal is to minimize the sum of the penalty of unsatisfied clauses.

9 Conclusion

We have generalized refinement type inference problems to type optimization
problems, and presented interesting applications enabled by type optimization

to inferring most-general characterization of inputs for which a given functional
program satisfies (or violates) a given safety (or termination) property. We have
also proposed a refinement type optimization method based on template-based
invariant generation. We have implemented our method and confirmed by ex-
periments that the proposed method is promising for the applications.

References

1. T. A. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially quantified
horn clauses. In CAV ’13, volume 8044 of LNCS, pages 869–882. Springer, 2013.

2. H. Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. W. O’Hearn. Proving nontermi-
nation via safety. In TACAS ’14, volume 8413 of LNCS, pages 156–171. Springer,
2014.

3. M. A. Colón, S. Sankaranarayanan, and H. B. Sipma. Linear invariant generation
using non-linear constraint solving. In CAV ’03, volume 2725 of LNCS, pages
420–432. Springer, 2003.

4. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS ’08, volume
4963 of LNCS, pages 337–340. Springer, 2008.

5. F. Emmes, T. Enger, and J. Giesl. Proving non-looping non-termination automat-
ically. In IJCAR ’12, volume 7364 of LNCS, pages 225–240. Springer, 2012.

6. T. Freeman and F. Pfenning. Refinement types for ML. In PLDI ’91, pages
268–277. ACM, 1991.

7. S. Gulwani, K. K. Mehra, and T. Chilimbi. SPEED: Precise and efficient static
estimation of program computational complexity. In POPL ’09, pages 127–139.
ACM, 2009.

8. S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as constraint
solving. In PLDI ’08, pages 281–292. ACM, 2008.

9. R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: verifying functional programs
using abstract interpreters. In CAV ’11, volume 6806 of LNCS, pages 470–485.
Springer, 2011.

10. N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CEGAR for
higher-order model checking. In PLDI ’11, pages 222–233. ACM, 2011.

11. T. Kuwahara, R. Sato, H. Unno, and N. Kobayashi. Predicate abstraction and CE-
GAR for disproving termination of higher-order functional programs. In CAV’15,
LNCS. Springer, 2015.

12. T. Kuwahara, T. Terauchi, H. Unno, and N. Kobayashi. Automatic termination
verification for higher-order functional programs. In ESOP ’14, volume 8410 of
LNCS, pages 392–411. Springer, 2014.

13. D. Larraz, K. Nimkar, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. Proving
non-termination using max-SMT. In CAV ’14, volume 8559 of LNCS, pages 779–
796. Springer, 2014.

14. R. Nieuwenhuis and A. Oliveras. On SAT modulo theories and optimization prob-
lems. In SAT ’06, volume 4121 of LNCS, pages 156–169. Springer, 2006.

15. P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI ’08, pages 159–169.
ACM, 2008.

16. T. Terauchi. Dependent types from counterexamples. In POPL ’10, pages 119–130.
ACM, 2010.

17. H. Unno and N. Kobayashi. On-demand refinement of dependent types. In FLOPS

’08, volume 4989 of LNCS, pages 81–96. Springer, 2008.

18. H. Unno and N. Kobayashi. Dependent type inference with interpolants. In PPDP

’09, pages 277–288. ACM, 2009.
19. H. Unno, T. Terauchi, and N. Kobayashi. Automating relatively complete veri-

fication of higher-order functional programs. In POPL ’13, pages 75–86. ACM,
2013.

20. H. Xi and F. Pfenning. Dependent types in practical programming. In POPL ’99,
pages 214–227. ACM, 1999.

	Refinement Type Inference via Horn Constraint Optimization

