
On Computing the Hyperbolicity of Real-World
Graphs?

Michele Borassi1, David Coudert2, Pierluigi Crescenzi3, Andrea Marino4

1 IMT Institute for Advanced Studies Lucca, Italy
2 Inria, France

3 Dipartimento di Ingegneria dell’Informazione, Università di Firenze
4 Dipartimento di Informatica, Università di Pisa

Abstract. The (Gromov) hyperbolicity is a topological property of a
graph, which has been recently applied in several different contexts, such
as the design of routing schemes, network security, computational biol-
ogy, the analysis of graph algorithms, and the classification of complex
networks. Computing the hyperbolicity of a graph can be very time con-
suming: indeed, the best available algorithm has running-time O(n3.69),
which is clearly prohibitive for big graphs. In this paper, we provide
a new and more efficient algorithm: although its worst-case complexity
is O(n4), in practice it is much faster, allowing, for the first time, the
computation of the hyperbolicity of graphs with up to 200,000 nodes.
We experimentally show that our new algorithm drastically outperforms
the best previously available algorithms, by analyzing a big dataset of
real-world networks. Finally, we apply the new algorithm to compute the
hyperbolicity of random graphs generated with the Erdös-Renyi model,
the Chung-Lu model, and the Configuration Model.

1 Introduction

In recent years, the analysis of complex networks has provided several significant
results, with a huge amount of applications in sociology, biology, economics, sta-
tistical physics, electrical engineering, and so on. These results are based on the
analysis of very big real-world networks, now made available by improvements in
computer technology and by Internet. One of the major challenges in this field
is to understand which properties distinguish these networks from other kinds
of graphs, like random graphs [25], and which properties distinguish networks of
different kinds [16], in order to classify general and particular behavior.

In this context, a significant role is played by the hyperbolic structure un-
derlying a complex network, that is usually not present in random graphs [24,
6]. For instance, if we draw points from a hyperbolic space and we connect
? This work has been supported in part by the Italian Ministry of Education, Univer-
sity, and Research under PRIN 2012C4E3KT national research project AMANDA
(Algorithmics for MAssive and Networked Data), and by ANR project Stint under
reference ANR-13-BS02-0007, ANR program "Investments for the Future" under
reference ANR-11-LABX-0031-01.

nearby points, we obtain a graph that shares many properties with real-world
networks [21]. Furthermore, the Internet graph can be embedded in the hyper-
bolic space, preserving some metric properties [26, 4].

Consequently, researchers have tried to measure this hyperbolic structure of
complex networks, using Gromov’s definitions of hyperbolicity [15], which works
in any metric space, and does not rely on complicated structures not available
in graphs (geodesics, connections, and so on). Intuitively, this parameter reflects
how the metric space (distances) of a graph is close to the metric space of a tree.
In particular, given an undirected graph G = (V,E) (in this paper, all graphs will
be undirected), the Gromov hyperbolicity of a quadruple of nodes δ(x, y, v, w) is
defined as half the difference between the biggest two of the three sums d(x, y)+
d(v, w), d(x, v)+d(y, w), and d(x,w)+d(y, v), where d(·, ·) denotes the distance
function between two nodes, that is, the lenght of the shortest path connecting
the two nodes. The hyperbolicity of G is δ(G) = maxx,y,v,w∈V δ(x, y, v, w) (the
smaller this value, the more hyperbolic the space is).

Several network properties are connected to the value of the hyperbolicity:
here we will just recall some of them. In [8], it is shown that a small hyperbolicity
implies the existence of efficient distance and routing labeling schemes. In [23],
the authors observe that a small hyperbolicity, that is, a negative curvature
of an interconnection network, implies a faster congestion within the core of
the network itself, and in [18] it is suggested that this property is significant
in the context of network security and can, for example, mitigate the effect of
distributed denial of service attacks. In [12], instead, the hyperbolicity is used
to implement a distance between trees, successively applied to the estimation of
phylogenetic trees. From a more algorithmic point of view, it has been shown
that several approximation algorithms for problems related to distances in graphs
(such as diameter and radius computation [7], and minimum ball covering [9])
have an approximation ratio which depends on the hyperbolicity of the input
graph. Moreover, some approximation algorithms with constant approximation
factor rely on a data-structure whose size is proportional to the hyperbolicity
of the input graph [20]. More in general, the hyperbolicity is connected to other
important graph quantities, like treelength [7] and chordality [29]. In the field
of the analysis of complex networks, the hyperbolicity and its connection with
the size and the diameter of a network has been used in [2] in order to classify
networks into three different classes, that is, strongly hyperbolic, hyperbolic,
and non-hyperbolic, and to apply this classification to a small dataset of small
biological networks (a more extensive analysis of the hyperbolicity of real-world
networks has been also recently done in [5]). In general, it is still not clear whether
the hyperbolicity value is small in all real-world networks (as it seems from [19,
2]), or it is a characteristic of specific networks (as it seems from [1]). Finally, the
hyperbolicity of random graphs has been analyzed in the case of several random
graph models, such as the Erdös-Renyi model [24] and the Kleinberg model [6].
Moreover, in this latter paper, it is stated that the design of more efficient exact
algorithms for the computation of the hyperbolicity would be of interest.

2

Indeed, it is clear that the hyperbolicity computation problem is polynomial-
time solvable by the trivial algorithm that computes δ(x, y, v, w) for each quadru-
ple of nodes. However, the running-time is O(n4), where n is the number of
nodes, which is prohibitive for real-world networks. The best known algorithm
uses fast (max,min)-matrix multiplication algorithm to obtain a running time
O(n3.69) [14], and it has been shown that hyperbolicity cannot be computed in
O(n3.05) time, unless there exists a faster algorithm for (max,min)-matrix multi-
plication than currently known. Such running times are prohibitive for analysing
large-scale graphs with more than 10,000 nodes.

Recently, new algorithms have been developed [11, 10]. Although these al-
gorithms have worst-case running time O(n4), they perform well in practice,
making it possible to compute the hyperbolicity of graphs with up to 50,000
nodes.

In this paper, we propose a new algorithm to compute the hyperbolicity
of a graph, taking some ideas from the algorithm in [11]. The new algorithm
heavily improves the performances through significant speed-ups in the most
time-consuming part. The speed-ups will be so efficient that the running-time
of the new algorithm will be dominated by the pre-processing part, which needs
time O(mn), where m is the number of edges (we assume the input graph to be
connected, and consequently m + n = O(m)). This way, the O(n4) bottleneck
is almost removed, at least in practical instances. For this reason, we will be
able for the first time to compute the hyperbolicity of graphs with up to 200,000
nodes. We will experimentally show these claims by analyzing a big dataset of
real-world networks of different kinds. Finally, we apply our algorithm to the
computation of the hyperbolicity of random graphs. In particular, in the Chung-
Lu model, we compute the hyperbolicity of graphs with up to 200,000 nodes,
improving previous experiments that stop at 1,100 nodes [13].

In Section 2, we will sketch the main features of the algorithm in [11], in
order to make the paper self-contained. Section 3 will explain how to modify that
algorithm, in order to obtain significant improvements, and Section 4 contains
our experimental results. Finally, in Section 5, we apply our algorithm to the
analysis of the hyperbolicity of random graphs, as suggested in [6], and Section 6
concludes the paper.

2 CCL: The Currently Best Available Algorithm

In this section, we will sketch the algorithm proposed in [11], whose main ideas
and lemmas will also be used in the next section. This algorithm improves the
trivial algorithm by analyzing quadruples in a specific order, and by cutting the
exploration of the quadruples as soon as some conditions are satisfied. We will
name this algorithm ccl, from the initials of the surnames of the authors. In
particular, for each quadruple (p, q, r, s) of nodes, ccl computes τ(p, q; r, s) as
defined below, instead of computing δ(p, q, r, s).

τ(p, q; r, s) =
d(p, q) + d(r, s)−max{d(p, r) + d(q, s), d(p, s) + d(q, r)}

2
.

3

Algorithm 1: Hyperbolicity algorithm proposed in [11], ccl.
Let P = ({x1, y1}, . . . , {xN , yN}) be the list of far apart pairs, in decreasing
order of distance.
δL ← 0;
for i ∈ [1, N] do

if d(xi, yi) ≤ 2δL then
return δL;

for j ∈ [1, i− 1] do
δL ← max(δL, τ(xi, yi;xj , yj));

return δL;

Note that δ(G) = maxp,q,r,s∈V τ(p, q; r, s), because if d(p, q)+ d(r, s) is the max-
imum sum, then τ(p, q; r, s) = δ(p, q, r, s), otherwise τ(p, q; r, s) < 0.

Lemma 1 (Lemma 3.2 of [11]). For any quadruple (p, q, r, s) of nodes,
2τ(p, q; r, s) ≤ min(d(p, q), d(r, s)).

In order to exploit this lemma, ccl stores all the N = n(n−1)
2 pairs of nodes

inside a sequence P = ({x1, y1}, . . . , {xN , yN}), in decreasing order of distance
(that is, if d(xi, yi) > d(xj , yj), then i < j). For each i, ccl iterates over all pairs
{xj , yj} with j < i, and computes τ(xi, yi;xj , yj), storing the maximum value
found in a variable δL (clearly, δL is a lower bound for δ(G)). Even if iterating
over the whole sequence P would lead us to the trivial algorithm, by applying
Lemma 1 we may cut the exploration as soon as d(xi, yi) ≤ 2δL, because the τ
value of all remaining quadruples is at most d(xi, yi).

A further improvement is provided by the following lemma.

Lemma 2 ([28]). Let x, y, v, w be four nodes, and let us assume that there exists
an edge (x, x′) such that d(x′, y) = d(x, y)+1. Then, τ(x, y; v, w) ≤ τ(x′, y; v, w).

Definition 1. A pair {x, y} is far apart if there is no edge (x, x′) such that
d(x′, y) = d(x, y) + 1 and no edge (y, y′) such that d(x, y′) = d(x, y) + 1.

By Lemma 2, ccl only needs to analyze far apart pairs, and, hence, in the
following we will denote by P (respectively, N) the list (number) of far apart
pairs. The pseudo-code of ccl is provided in Algorithm 1.

Other improvements of this algorithm involve pre-processing the graph: first
of all, we may analyze each biconnected component separately [11, Section 2],
then, we may decompose the graph by modular decomposition, split decompo-
sition [28], and clique decomposition [10].

3 HYP: The New Algorithm

In this section, we propose a new algorithm, that we will call hyp, that improves
upon Algorithm 1 by further reducing the number of quadruples to consider.

4

Algorithm 2: The new algorithm, hyp
Let P = ({x1, y1}, . . . , {xN , yN}) be the ordered list of far apart pairs.
δL ← 0;
mate[v]← ∅ for each v;
for i ∈ [1, N] do

if d(xi, yi) ≤ 2δL then
return δL;

(acceptable, valuable) ← computeAccVal ();
for v ∈ valuable do

for w ∈ mate[v] do
if w ∈ acceptable then

δL ← max(δL, τ(xi, yi; v, w));

add yi to mate[xi];
add xi to mate[yi];

return δL

3.1 Overview

The new algorithm hyp speeds-up the inner for loop in Algorithm 1, by decreas-
ing the number of pairs to be analyzed. In particular, let us fix a pair (xi, yi) in
the outer for loop and a lower bound δL: a node v is (i, δL)-skippable or simply
skippable if, for any w, τ(xi, yi; v, w) ≤ δL. It is clear that if a node v is skip-
pable, the algorithm could skip the analysis of all quadruples containing xi, yi,
and v. Even if it is not easy to compute the set of skippable nodes, we will define
easy-to-verify conditions that imply that a node v is skippable (Section 3.2): a
node not satisfying any of these conditions will be named (i, δL)-acceptable or
acceptable. Our algorithm will then discard all quadruples (xi, yi, v, w) where
either v or w is not acceptable.

Furthermore, we will define another condition such that if τ(xi, yi; v, w) > δL,
then either v or w must satisfy this condition (an acceptable node also satisfying
this condition will be defined (i, δL)-valuable or valuable). Hence, our algorithm
will not only discard all quadruples (xi, yi, v, w) where either v or w is not
acceptable, but also all quadruples where both v and w are not valuable.

In order to apply these conditions, when analyzing a pair (xi, yi), hyp com-
putes the set of acceptable and valuable nodes in time O(n) (actually, several
nodes are skipped, thanks to implementation tricks, so that the time might be
much smaller). Then, for each valuable node v, it analyzes pairs (v, w) preceding
(xi, yi) such that w is acceptable. For this latter loop, we record for each node
v the list mate[v] of previously seen pairs (v, w), and then test each time if w is
acceptable. The pseudo-code for hyp is provided by Algorithm 2.

Lemma 3. The algorithm is correct.

Proof. First of all, δL ≤ δ(G) during the whole algorithm, so we only have
to rule out the possibility that the output is strictly smaller than δ(G). Let

5

x, y, v, w be a quadruple such that τ(x, y; v, w) = δ(G). We may assume without
loss of generality that {x, y} and {v, w} are far-apart (otherwise, we change the
pairs using Lemma 2), and that {v, w} is before {x, y} in the ordering of pairs
(otherwise, we swap the pairs). By Lemma 1, d(x, y) ≥ 2δ(G) ≥ 2δL at any step
of the algorithm: if 2δL = d(x, y) ≥ 2δ(G) at some step, the algorithm is correct
because δL never decreases. Otherwise, the pair {x, y} is analyzed at some step
i, v and w will be (i, δL)-acceptable, and either v or w will be (i, δL)-valuable
(by definition of acceptable and valuable). Hence, in the inner loop, τ(x, y; v, w)
is computed, and afterwards δL = τ(x, y; v, w) = δ(G). ut

It remains to define which nodes are acceptable and which nodes are valuable,
which is the topic of the following section.

3.2 Acceptable and Valuable Nodes

First of all, let us fix i and δL, since in this section they play the role of pa-
rameters. Moreover, for the sake of clarity, we will denote xi and yi simply by
x and y. The following lemmas will provide conditions implying that v is skip-
pable, that is, there is no pair {v, w} appearing in P before {x, y} such that
τ(x, y; v, w) > δL. An acceptable node must not satisfy these conditions. The
first lemma holds by definition of skippable.

Lemma 4. If v does not belong to any (far-apart) pair {v, w} before {x, y} in
P, then v is skippable.

A second possibility to prove that a node is skippable is given by a simple
corollary of the following lemma.

Lemma 5 ([11]). For each quadruple of nodes (x, y, v, w), τ(x, y; v, w) ≤
mina,b∈{x,y,v,w} d(a, b).

Corollary 1. If d(x, v) ≤ δL or d(y, v) ≤ δL, then v is skippable.

Proof. If the assumptions are satisfied, for each w, τ(x, y; v, w) ≤ d(x, v) ≤ δL,
or τ(x, y; v, w) ≤ d(y, v) ≤ δL.

The next lemmas make use of the notion of the eccentricity e(v) of a node,
defined as maxw∈V d(v, w).

Lemma 6. If 2e(v)− d(x, v)− d(y, v) < 4δL + 2− d(x, y), then v is skippable.

Proof. By contradiction, let us suppose that there exists a node w such that δL <
τ(x, y; v, w). Then, 2δL + 1 ≤ 2τ(x, y; v, w) = d(x, y) + d(v, w) −max(d(x, v) +
d(y, w), d(x,w) + d(y, v)) ≤ d(x, y) + d(v, w) − 1

2 (d(x, v) + d(y, w) + d(x,w) +
d(y, v)) ≤ d(x, y) + e(v) − 1

2 (d(x, v) + d(y, v)) − 1
2d(x, y). By rearranging this

inequality, we would contradict the hypothesis. ut

Lemma 7. If e(v)+d(x, y)−3δL− 3
2 < max{d(x, v), d(y, v)}, then v is skippable.

6

Proof. By contradiction, let us suppose that there exists a node w such that
δL < τ(x, y; v, w). By Corollary 1, d(y, w) > δL, that is, d(y, w) ≥ δL + 1

2 .
Consequently, 2δL + 1 ≤ 2τ(x, y; v, w) = d(x, y) + d(v, w) − max(d(x, v) +
d(y, w), d(x,w) + d(y, v)) ≤ d(x, y) + d(v, w) − d(x, v) − d(y, w) ≤ d(x, y) +
e(v) − d(x, v) − δL − 1/2. By exchanging the roles of x and y, we obtain
2δL+1 ≤ d(x, y)+ e(v)− d(y, v)− δL− 1

2 . These two inequalities contradict the
hypothesis. ut

Definition 2. A node is acceptable if it does not satisfy the assumptions of
Lemmas 4, 6 and 7 and Corollary 1.

Remark 1. Lemma 4 can be verified “on the fly”, by keeping track of already-seen
nodes. The other items are clearly verifiable in time O(1) for each node, and con-
sequently the running-time of this operation is O (|{v ∈ V : ∃{v, w} < {x, y}}|),
which is less than or equal to O(n).

Remark 2. A variation of hyp verifies on the fly Lemma 7 and not Lemma 4.
At the beginning of the algorithm, for each node x, we pre-compute a list
of all nodes v in decreasing order of e(v) − d(x, v) (in time O(n2 log n)).
Then, when computing acceptable nodes, we scan the list corresponding to
x, and we stop as soon as we find a node v such that e(v) + d(x, y) −
3δL − 3

2 < d(x, v). In this case, the running-time of this operation is
O
(
|{v ∈ V : e(v) + d(x, y)− 3δL − 3

2 ≥ d(x, v)}|
)
. Since we may swap the roles

of x and y, at each step, our algorithm chooses between x and y the less central
node, according to closeness centrality measure [3].

The two remarks above correspond to two versions of our algorithm hyp,
that we will call hyp1 and hyp2, respectively. Now we need to define valuable
nodes, using the following lemma, which involves a given node c (formally, we
would need to write c-valuable instead of valuable). All choices of c are feasible,
but if c is “central”, the running-time improves. We decided to set c as the most
central node according to closeness centrality measure [3].

Lemma 8. Let c be any fixed node, and, for any node z, let fc(z) :=
1
2 (d(x, y) − d(x, z) − d(z, y)) + d(z, c). Then, for any two nodes v and w, we
have 2τ(x, y; v, w) ≤ fc(v) + fc(w).

Proof. We have that, 2τ(x, y; v, w) = d(x, y) + d(v, w) − max(d(x, v) +
d(y, w), d(x,w)+d(y, v)) ≤ d(x, y)+d(v, c)+d(c, w)−(d(x, v)+d(y, w)+d(x,w)+
d(y, v))/2 = fc(v) + fc(w). The lemma is thus proved. ut

As a consequence, if 2τ(x, y; v, w) > 2δL, either fc(v) > δL or fc(w) > δL. This
justifies the following definition.

Definition 3. An acceptable node v is c-valuable or valuable if fc(v) > δL.

Hence, if τ(x, y; v, w) > δL, then at least one of v and w must be valuable.

Remark 3. It is possible to compute if an acceptable node is valuable in time
O(1), so there is no time overhead for the computation of valuable nodes.

7

4 Experimental Results

In this section, we compare the best algorithm available until now [11] (ccl,
whose pseudo-code is Algorithm 1), with the two versions of our new algorithm,
denoted as hyp1 and hyp2 (using Remark 1 and Remark 2, respectively). Other
available algorithms are the trivial algorithm, which is significantly outperformed
by ccl in [11], and the algorithm in [14]. This latter is not practical, because it
is based on fast matrix multiplication: indeed using O(n3) matrix multiplication
implementation we get the same time of the trivial algorithm. As far as we know,
no other competitors are available.

Both ccl and our algorithm, in both versions hyp1 and hyp2, share the
following preprocessing (see [11]):

– compute biconnected components to treat them separately;
– computing the distances between all pairs of nodes;
– computing and sorting the list P of all far-apart pairs.

All the operations above need time O(m·n) and they will be not part of the com-
parison since they are common to all three algorithms. Our tests were performed
on an AMD Opteron(TM) Processor 6276, running Fedora release 21. Our source
code has been written in C and compiled with gcc 4.9.2 with optimization level
3. The code is available at piluc.dsi.unifi.it/lasagne.

We have collected a dataset composed by 62 graphs (available with the code)
of different kinds: social, peer-to-peer, autonomous systems, citation networks,
and so on. The networks were selected from the well-known SNAP dataset
(http://snap.stanford.edu/), and from CAIDA (http://www.caida.org).
The number of nodes varies between 4,039 and 265,009 (1,396 and 50,219 af-
ter the preprocessing).
Number of quadruples. The first comparison analyzes how many quadruples are
processed before the hyperbolicity is computed - note that hyp1 and hyp2 an-
alyze the same number of quadruples, since the only difference between them
is how acceptable and valuable nodes are computed. The results are summa-
rized in Figure 1a, which plots the number of quadruples processed by the new
algorithms with respect to ccl. More precisely, for each graph G, we draw a
point in position (x, y) if ccl analyzed x quadruples and both hyp1 and hyp2
analyzed y quadruples to compute the hyperbolicity of G. We observe that the
new algorithm analyzes a much smaller number of quadruples, ranging from one
hundred to few millions, drastically outperforming ccl, which often analyzes
millions of millions of quadruples, and even billions of millions. Of course, the
new algorithm is never outperformed, because the quadruples analyzed by hyp1
and hyp2 are always a subset of the quadruples analyzed by ccl.
Running time. Since the computation of acceptable and valuable nodes has a
non-negligible impact on the total running time, for a more fair comparison,
we have also considered the running time of the algorithms. In Figure 1b we
report the time used by hyp1 and hyp2 with respect to the time used by ccl.
Also in this case, both hyp1 and hyp2 drastically outperform ccl: the running-
time is lower in most of the graphs, and the only cases where ccl is faster

8

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12 1e+13 1e+14

Q
ua

dr
up

le
s

an
al

yz
ed

 b
y

H
YP

Quadruples analyzed by CCL

(a) Quadruples analyzed by hyp1 and
hyp2 with respect to ccl.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.01 0.1 1 10 100 1000 10000 100000 1e+06

Ti
m

e
of

 H
YP

1-
2

Time of CCL

HYP1 wrt CCL
HYP2 wrt CCL

(b) Time used by hyp1 and hyp2 with
respect to ccl.

Fig. 1. Comparisons of quadruples analyzed and running-time of hyp1, hyp2, and
ccl. The line y = x separates the region where ccl is better (above) from the region
where hyp1 and hyp2 are better (below).

need a very small amount of time (a few seconds at most). On the other hand,
the new algorithms are much faster when the total time is big: for instance,
on input as-20120601.caida, ccl needs at least one week (this lower bound
was computed from the actual hyperbolicity and all the distances between the
nodes), while hyp1 is 367 times faster, needing less than half an hour, and hyp2
is more than 5,000 times faster, needing less than two minutes. Similar results
hold in all graphs where the total running-time is big. This does not only mean
that we have improved upon ccl, but also that the improvement is concentrated
on inputs where the running-time is high. Furthermore, we observe that on all
graphs the total running time of algorithm hyp2 is less than half an hour: this
means that, even if the worst-case complexity of this algorithm is O(n4), in
practice, the time used by the second part is comparable to the preprocessing
time, which is O(m · n). Hence, from a practical point of view, since real-world
graphs are usually sparse, the algorithm may be considered quadratic.

5 Synthetic Graphs

Recently, a different line of research has tried to compute asymptotic values
for the hyperbolicity of random graphs, when the number of nodes n tends to
infinity. The simplest model considered is the Erdös-Renyi random graph Gn,m,
that is, we choose a graph with n nodes and m edges uniformly at random. In
this model, it has been proved that the hyperbolicity tends to infinity [24], and,
if m is “much bigger than n”, exact asymptotics for δ have been computed [22].
Instead, the hyperbolicity of sparse Erdös-Renyi graphs is not known, and it is
mentioned as an open problem in [22]. Among the other possible models, the
Chung-Lu model and the Configuration Model stand out for their simplicity (for
more background, we refer to [17]). On these models, as far as we know, it was

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000

2b
/D

nodes

(a) Erdös-Renyi with average degree 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000

2b
/D

nodes

(b) Erdös-Renyi with average degree 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

2b
/D

nodes

(c) Chung-Lu.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

2b
/D

nodes

(d) Configuration Model

Fig. 2. Mean and Standard Deviation of the ratio 2δ
D

at growing values of n.

only proved [27] that the hyperbolicity of a graph generated through the Chung-
Lu model tends to infinity if the maximum and minimum degree are “close to
each other” (meaning that their ratio is smaller than 2

1
3). Other models were

analyzed in [6]: also in that paper, the estimation of the hyperbolicity of random
graphs of different kind is mentioned as an open problem.

Following [6], we use our algorithm to shed some light on the behavior of
these random graphs, at least experimentally, in order to help formulating sen-
sible conjectures on possible asymptotics. In particular, we have restricted our
attention to four examples, chosen among the models where exact asymptotics
have not been proved: Erdös-Renyi random graphs with m = 3n and m = 5n,
and graphs generated through the Chung-Lu and the Configuration Model, with
power-law degree distribution with exponent 2.5 (similar to the degree distribu-
tion of several real-world networks [25]). For each number of nodes n = k · 10i
where k < 10 and i ≥ 2, we have generated 10 graphs and we have computed
their hyperbolicity. More precisely, we have computed the value 2δ

D , where D is
the diameter, which is always between 0 and 1 because of Lemma 1: this value
might be more interesting than the plain hyperbolicity value, since, for most
models, asymptotics for the diameter are known. We believe that this ratio can

10

then be used to formulate sensible conjectures. Figure 2 shows the average value
of 2δ

D and the corresponding standard error over the 10 measures performed.
We have been able to compute the hyperbolicity of Erdös-Renyi graphs with

up to 60, 000 nodes, and graphs generated with the Configuration Model or
the Chung-Lu model with up to 200, 000 nodes. In all models considered, it is
quite evident that the ratio 2δ

D does not tend to 0, and consequently δ = Θ(D).
Furthermore, the ratio in Erdös-Renyi graphs is not very far from 1, even if the
results are not precise enough to discriminate between δ = D

2 or δ = cD for
some c < 1

2 . Instead, in graphs generated through the Configuration Model or
the Chung-Lu model, this ratio seems to tend to a value between 0.5 and 0.7.

6 Conclusion and Open Problems

In this paper, we have provided a new and more efficient algorithm to compute
the hyperbolicity of a graph: even if the running time is O(n4) in the worst
case, it turns out to be O(m · n) in practice. As an example of application,
we have studied the hyperbolicity of random graphs. The space requirement
of the algorithm, as well as of its predecessors, is O(n2): in our case this is
needed to store all distances and the list of far-apart pairs. It would be nice to
better deal with memory usage (for instance, working on the disk) or avoiding
the computation and storage of all pairwise distances by using lower and upper
bounds instead. Furthermore, this algorithm may be parallelized, by analyzing
at the same time different nodes v, or different pairs (x, y). An open issue is
determining how parallelization can improve performances. The algorithm can
be adapted to deal with weighted graphs. On the other hand, a widely accepted
definition of hyperbolicity for directed graphs is still missing. Finally, it would be
nice to prove more precise asymptotics for the hyperbolicity of random graphs.

References

1. R. Albert, B. DasGupta, and N. Mobasheri. Topological implications of negative
curvature for biological and social networks. Physical Review E, 89(3):032811,
2014.

2. H. Alrasheed and F. F. Dragan. Core-Periphery Models for Graphs based on their
delta-Hyperbolicity: An Example Using Biological Networks. Studies in Computa-
tional Intelligence, 597:65–77, 2015.

3. A. Bavelas. Communication patterns in task-oriented groups. Journal of the Acous-
tical Society of America, 22:725–730, 1950.

4. M. Boguna, F. Papadopoulos, and D. Krioukov. Sustaining the Internet with
Hyperbolic Mapping. Nature Communications, 1(62), Oct. 2010.

5. M. Borassi, A. Chessa, and G. Caldarelli. Hyperbolicity Measures “Democracy” in
Real-World Networks. Preprint on arXiv, pages 1–10, Mar. 2015.

6. W. Chen, W. Fang, G. Hu, and M. Mahoney. On the hyperbolicity of small-world
and treelike random graphs. Internet Mathematics, pages 1–40, 2013.

7. V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Notes on diame-
ters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs.
Electronic Notes in Discrete Mathematics, 31:231–234, 2008.

11

8. V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, Y. Vaxès, and Y. Xiang. Additive
Spanners and Distance and Routing Labeling Schemes for Hyperbolic Graphs.
Algorithmica, 62(3-4):713–732, 2012.

9. V. Chepoi and B. Estellon. Packing and covering δ-hyperbolic spaces by balls.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, volume 4627 of Lecture Notes in Computer Science, pages 59–73.
Springer, 2007.

10. N. Cohen, D. Coudert, G. Ducoffe, and A. Lancin. Applying clique-decomposition
for computing Gromov hyperbolicity. Research Report RR-8535, HAL, 2014.

11. N. Cohen, D. Coudert, and A. Lancin. On computing the Gromov hyperbolicity.
ACM J. Exp. Algor., 2015.

12. A. Dress, K. Huber, J. Koolen, V. Moulton, and A. Spillner. Basic Phylogenetic
Combinatorics. Cambridge University Press, Cambridge, UK, Dec. 2011.

13. W. Fang. On Hyperbolic Geometry Structure of Complex Networks. Master’s
thesis, MPRI at ENS and Microsoft Research Asia, 2011.

14. H. Fournier, A. Ismail, and A. Vigneron. Computing the Gromov hyperbolicity of
a discrete metric space. Information Processing Letters, 115(6-8):576–579, 2015.

15. M. Gromov. Hyperbolic groups. In Essays in Group Theory. Springer, 1987.
16. S. Havlin and R. Cohen. Complex networks: structure, robustness and function.

Cambridge University Press, Cambridge, 2010.
17. R. V. D. Hofstad. Random Graphs and Complex Networks, 2014.
18. E. A. Jonckheere and P. Lohsoonthorn. Geometry of network security. In American

Control Conference, volume 2, pages 976–981, Boston, MA, USA, 2004. IEEE.
19. W. S. Kennedy, O. Narayan, and I. Saniee. On the Hyperbolicity of Large-Scale

Networks. CoRR, abs/1307.0031:1–22, 2013.
20. R. Krauthgamer and J. R. Lee. Algorithms on negatively curved spaces. In IEEE

Symposium on Foundations of Computer Science (FOCS), pages 119–132, 2006.
21. D. Krioukov, F. Papadopoulos, M. Kitsak, and A. Vahdat. Hyperbolic Geometry

of Complex Networks. Physical Review E, 82(3):36106, 2010.
22. D. Mitche and P. Pralat. On the hyperbolicity of random graphs. The Electronic

Journal of Combinatorics, 21(2):1–24, 2014.
23. O. Narayan and I. Saniee. The Large Scale Curvature of Networks. Physical Review

E, 84:66108, Dec. 2011.
24. O. Narayan, I. Saniee, and G. H. Tucci. Lack of Hyperbolicity in Asymptotic

Erdös–Renyi Sparse Random Graphs. Internet Mathematics, pages 1–10, 2015.
25. M. E. J. Newman. The Structure and Function of Complex Networks. SIAM

Review, 45(2):167–256, Jan. 2003.
26. F. Papadopoulos, D. Krioukov, M. Boguna, and A. Vahdat. Greedy forwarding in

scale-free networks embedded in hyperbolic metric spaces. ACM SIGMETRICS
Performance Evaluation Review, 37(2):15–17, 2009.

27. Y. Shang. Non-Hyperbolicity of Random Graphs with Given Expected Degrees.
Stochastic Models, 29(4):451–462, Oct. 2013.

28. M. A. Soto Gómez. Quelques propriétés topologiques des graphes et applications à
internet et aux réseaux. PhD thesis, Univ. Paris Diderot (Paris 7), 2011.

29. Y. Wu and C. Zhang. Hyperbolicity and chordality of a graph. The Electronic
Journal of Combinatorics, 18(1):1–22, 2011.

12

