
ar
X

iv
:1

41
2.

86
15

v2
 [

cs
.D

S]
 2

 J
ul

 2
01

5

On Randomized Algorithms for Matching in the

Online Preemptive Model

Ashish Chiplunkar

{ashish.chiplunkar@gmail.com}
Sumedh Tirodkar

{sumedht@cse.iitb.ac.in}
Sundar Vishwanathan

{sundar@cse.iitb.ac.in}

Abstract

We investigate the power of randomized algorithms for the maximum
cardinality matching (MCM) and the maximum weight matching (MWM)
problems in the online preemptive model. In this model, the edges of a
graph are revealed one by one and the algorithm is required to always
maintain a valid matching. On seeing an edge, the algorithm has to
either accept or reject the edge. If accepted, then the adjacent edges
are discarded. The complexity of the problem is settled for deterministic
algorithms [6, 8].

Almost nothing is known for randomized algorithms. A lower bound
of 1.693 is known for MCM with a trivial upper bound of two. An upper
bound of 5.356 is known for MWM. We initiate a systematic study of the
same in this paper with an aim to isolate and understand the difficulty.
We begin with a primal-dual analysis of the deterministic algorithm due
to [6]. All deterministic lower bounds are on instances which are trees at
every step. For this class of (unweighted) graphs we present a randomized
algorithm which is 28

15
-competitive. The analysis is a considerable exten-

sion of the (simple) primal-dual analysis for the deterministic case. The
key new technique is that the distribution of primal charge to dual vari-
ables depends on the “neighborhood” and needs to be done after having
seen the entire input. The assignment is asymmetric: in that edges may
assign different charges to the two end-points. Also the proof depends on
a non-trivial structural statement on the performance of the algorithm on
the input tree.

The other main result of this paper is an extension of the deterministic
lower bound of Varadaraja [8] to a natural class of randomized algorithms
which decide whether to accept a new edge or not using independent

random choices. This indicates that randomized algorithms will have to
use dependent coin tosses to succeed. Indeed, the few known randomized
algorithms, even in very restricted models follow this.

We also present the best possible 4

3
-competitive randomized algorithm

for MCM on paths.

1 Introduction

Matching has been a central problem in combinatorial optimization. Indeed, al-
gorithm design in various models of computations, sequential, parallel, stream-

1

http://arxiv.org/abs/1412.8615v2

ing, etc., have been influenced by techniques used for matching. We study
the maximum cardinality matching (MCM) and the maximum weight matching
(MWM) problems in the online preemptive model. In this model, edges e1, . . . ,
em of a graph, possibly weighted, are presented one by one. An algorithm is
required to output a matching Mi after the arrival of each edge ei. This model
constrains an algorithm to accept/reject an edge as soon as it is revealed. If
accepted, the adjacent edges, if any, have to be discarded from Mi.

An algorithm is said to have a competitive ratio α if the cost of the matching
maintained by the algorithm is at least 1

α
times the cost of the offline optimum

over all inputs. The deterministic complexity of this problem is settled. For
maximum cardinality matching (MCM), it is an easy exercise to prove a tight
bound of two.

The weighted version (MWM) is more difficult. Improving an earlier result
of Feigenbaum et al, McGregor [6] gave a deterministic algorithm together with
an ingenious analysis to get a competitive ratio of 3 + 2

√
2 ≈ 5.828. Later, this

was proved to be optimal by Varadaraja [8].
Very little is known on the power of randomness for this problem. Recently,

Epstein et al. [3] proved a lower bound of 1 + ln 2 ≈ 1.693 on the competitive
ratio of randomized algorithms for MCM. This is the best lower bound known
even for MWM. Epstein et al. [3] also give a 5.356-competitive randomized
algorithm for MWM.

In this paper, we initiate a systematic study of the power of randomness
for this problem. Our main contribution is perhaps to throw some light on
where lies the difficulty. We first give an analysis of McGregor’s algorithm using
the traditional Primal-Dual framework (see Appendix A). All lower bounds for
deterministic algorithms (both for MCM and MWM) employ growing trees.
That is, the input graph is a tree at every stage. It is then natural to start
our investigation for this class of inputs. For this class, we give a randomized
algorithm (that uses two bits of randomness) that is 28

15 competitive. While this
result is modest, already the analysis is considerably more involved than the
traditional primal dual analysis. In the traditional primal dual analysis of the
matching problem, the primal charge (every selected edge contributes one to
the charge) is distributed (perhaps equally) to the two end-points. In the online
case, this is usually done as the algorithm proceeds. Our assignment depends on
the structure of the final tree, so this assignment happens at the end. Our charge
distribution is not symmetric. It depends on the position of the edge in the tree
(we make this clear in the analysis) as also the behavior of neighboring edges.
The main technical lemma shows that the charge distribution will depend on a
neighborhood of distance at most four. We also note that these algorithms are
(restricted versions of) randomized greedy algorithms even in the offline setting.
Obtaining an approximation ratio less than two for general graphs, even in the
offline setting is a notorious problem. See [7, 2] for a glimpse of the difficulty.

The optimal maximal matching algorithm for MCM, and McGregor’s [6]
optimal deterministic algorithm for MWM are both local algorithms. The choice
of whether a new edge should accepted or rejected is based only on the weight
of the new edge and the weight of the conflicting edges, if any, in the current
matching.

It is natural to add randomness to such local algorithms, and to ask whether
they do better than the known deterministic lower bounds. An obvious way
to add randomness is to accept/reject the new edge with certain probability,

2

which is only dependent on the new edge and the conflicting edges in the cur-
rent matching. The choice of adding a new edge is independent of the previous
coin tosses used by the algorithm. We call such algorithms randomized local al-
gorithms. We show that randomized local algorithms cannot do better than op-
timal deterministic algorithms. This indicates that randomized algorithms may
have to use dependent coin tosses to get better approximation ratios. Indeed,
the algorithm by Epstein et al. does this. So does our randomized algorithms.

The randomized algorithm of Epstein et al. [3] works as follows. For a
parameter θ, they round the weights of the edges to powers of θ randomly, and
then they update the matching using a deterministic algorithm. The weights get
distorted by a factor θ ln θ

θ−1 in the rounding step, and the deterministic algorithm

has a competitive ratio of 2+ 2
θ−2 on θ-structured graphs, i.e., graphs with edge

weights being powers of θ. The overall competitive ratio of the randomized

algorithm is θ ln θ
θ−1 ·

(

2 + 2
θ−2

)

which is minimized at θ ≈ 5.356. A natural

approach to reducing this competitive ratio is to improve the approximation
ratio for θ structured graphs. However, we prove that the competitive ratio
2 + 2

θ−2 is tight for θ-structured graphs, as long as θ ≥ 4, for deterministic
algorithms.

One (minor) contribution of this paper is a randomized algorithms for MCM
on paths, that achieves a competitive ratio of 4

3 , with a matching lower bound.
The other (minor) contribution of this paper is to highlight model specific

bounds. There is a difference in the models in which the lower and upper bounds
have been proved and this may be one reason for the large gaps.

2 Barely Random Algorithms for MCM

In this section, we present barely random algorithms, that is, algorithms that
use a constant number of random bits, for MCM on growing trees.

The ideal way to read the paper, for a reader of leisure, is to first read our
analysis of McGregor’s algorithm (presented in Appendix A), then the analysis
of the algorithm for trees with maximum vertex degree three (presented in
Appendix B.2) and then this section. The dual variable management which is
the key contribution gets progressively more complicated. It is local in the first
two cases. The Appendix B.3 also gives an example which shows why a non-
local analysis is needed. Here are the well known Primal and Dual formulations
of the matching problem. The primal formulation is known to be optimum for
bipartite graphs. For general graphs, odd set constraints have to be added. But
they are not needed in this paper.

Primal LP Dual LP
max

∑

e xe min
∑

v yv
∀v :

∑

v∈e xe ≤ 1 ∀e : yu + yv ≥ 1
xe ≥ 0 yv ≥ 0

2.1 Randomized Algorithm for MCM on Growing Trees

In this section, by using only two bits of randomness, we beat the deterministic
lower bound of 2 for MCM on growing trees.

3

Algorithm 1 Randomized Algorithm for Growing Trees

1. The algorithm maintains four matchings: M1,M2,M3, and M4.

2. On receipt of an edge e, the processing happens in two phases.

(a) The augment phase. The new edge e is added to each Mi in which
there are no edges adjacent to e.

(b) The switching phase. For i = 2, 3, 4, in order, e is added to Mi (if
it was not added in the previous phase) and the conflicting edge is
discarded, provided it decreases the quantity

∑

i,j∈[4],i6=j |Mi ∩Mj |.

3. Output matching Mi with probability 1
4 .

We begin by assuming (we justify this below) that all edges that do not
belong to any matching are leaf edges. This helps in simplifying the analysis.
Suppose that there is an edge e which does not belong to any matching, but is
not a leaf edge. By removing e, the tree is partitioned into two subtrees. The
edge e is added to the tree in which it has 4 neighboring edges. (There must be
such a subtree, see next para.) Each tree is analysed separately.

We will say that a vertex(/an edge) is covered by a matching Mi if there
is an edge in Mi which is incident on(/adjacent to) the vertex(/edge). We also
say that an edge is covered by a matching Mi if it belongs to Mi. We begin
with the following observations.

• After an edge is revealed, its end points are covered by all 4 matchings.

• An edge e that does not belong to any matching has 4 edges incident on
one of its end points such that each of these edges belong to a distinct
matching. This holds when the edge is revealed, and does not change
subsequently.

An edge is called internal if there are edges incident on both its end points. An
edge is called bad if its end points are covered by only 3 matchings.

We begin by proving some properties about the algorithm. The key struc-
tural lemma that keeps “influences” of bad edges local is given below. The two
assertions in the Lemma have to be proved together by induction.

Lemma 2.1. 1. An internal edge is covered by at least four matchings (when
counted with multiplicities). It is not necessary that these four edges be in
distinct matchings.

2. If p, q and r are three consecutive vertices on a path, then bad edges cannot
be incident on all 3 of these vertices, (as in figure 1).

The proof of this lemma is in the Appendix B.4.

Theorem 2.2. The randomized algorithm for finding MCM on growing trees is
28
15 -competitive.

A local analysis like the one in Appendix B.2 will not work here. For a
reason, see Appendix B.3. The analysis of this algorithm proceeds in two steps.

4

p q r

“bad” “bad” “bad”

Figure 1: Forbidden Configuration

Once all edges have been seen, we impose a partial order on the vertices of the
tree and then with the help of this partial order, we distribute the primal charge
to the dual variables, and use the primal-dual framework to infer the competitive
ratio. If every edge had four adjacent edges in some matching (counted with
multiplicities) then the distribution of dual charge is easy. However we do have
edges which have only three adjacent edges in matchings. We would like the
edges in matchings to contribute more to the end-points of these edges. Then,
the charge on the other end-point would be less and we need to balance this
through other edges. Details follow.
Ranks: Consider a vertex v. Let v1, . . . , vk be the neighbors of v. For each
i, let di denote the maximum distance from v to any leaf if there was no edge
between v and vi.The rank of v is defined as the minimum of all the di. Observe
that the rank of v is one plus the second highest rank among the neighbors of
v. Thus there can be at most one neighbor of vertex v which has rank at least
the rank of v. All leaves have rank 0. Rank 1 vertices have at most one non-leaf
neighbor.

Lemma 2.3. There exists an assignment of the primal charge amongst the dual
variables such that the dual constraint for each edge e ≡ (u, v) is satisfied at least
15
28 in expectation, i.e. E[yu + yv] ≥ 15

28 .

Proof. Consider an edge e ≡ (u, v) where rank of u is i and rank of v is j. We
will show that yu + yv ≥ 2 + ǫ for such an edge, when summed over all four
matchings. The value of ǫ is chosen later. The proof is by induction on the
lexicographic order of < j, i >, j ≥ i.
Dual Variable Management: Consider an edge e from a vertex of rank i to
a vertex of rank j, such that i ≤ j. This edge will distribute its primal weight
between its end-points. The exact values are discussed in the proof of the claim
below. In general, we look to transfer all of the primal charge to the higher
ranked vertex. But this does not work and we need a finer strategy. This is
detailed below.

• If e does not belong to any matching, then it does not contribute to the
value of dual variables.

• If e belongs to a single matching then, depending on the situation, one of
0, ǫ or 2ǫ of its primal charge will be assigned to the rank i vertex and rest
will be assigned to the rank j vertex. The small constant ǫ is determined
later.

• If e belongs to two matchings, then at most 3ǫ of its primal charge will be
assigned to the rank i vertex as required. The rest is assigned to the rank
j vertex.

5

• If e belongs to three or four matchings, then its entire primal charge is
assigned to the rank j vertex.

The analysis breaks up into six cases.
Case 1. Suppose e does not belong to any matching. Then it must be a

leaf edge. Hence, i = 0. There must be 4 edges incident on v besides e, each
belonging to a distinct matching. Of these 4, at least 3 say e1, e2, and e3, must
be from lower ranked vertices to the rank j vertex v. The edges e1, e2, and e3,
each assign a charge of 1− 2ǫ to yv. Therefore, yu + yv ≥ 3− 6ǫ ≥ 2 + ǫ.

Case 2. Suppose e is a bad edge that belongs to a single matching. Since
no internal edge can be a bad edge, i = 0. This implies (Lemma 2.1) that, there
is an edge e1 from a rank j − 1 vertex to v, which belongs to a single matching.
Also, there is an edge e2, from v to a higher ranked vertex, which also belongs
to a single matching. The edge e assigns a charge of 1 to yv. If e1 assigns a
charge of 1 (or 1− ǫ) to yv, then e2 assigns ǫ (or 2ǫ respectively) to yv. In either
case, yu + yv = 2 + ǫ. The key fact is that e1 could not have assigned 2ǫ to a
lower ranked vertex. Since, then, by Lemma 2.1, e cannot be a bad edge.

Case 3. Suppose e is not a bad edge, and it belongs to a single matching.
Case 3(a). i = 0. There are two sub cases.

• There is an edge e1 from some rank j − 1 vertex to v which belongs to 2
matchings, or there are two other edges e2 and e3 from some lower ranked
vertices to v, each belonging to separate matchings. The edge e assigns
a charge of 1 to yv. Either e1 assigns a charge of at least 2 − 3ǫ to yv,
or e2 and e3 assign a charge of at least 1 − 2ǫ each, to yv. In either case,
yu + yv ≥ 3− 4ǫ ≥ 2 + ǫ.

• There is one edge e1, from a rank j − 1 vertex to v, which belongs to
a single matching, and there is one edge e2, from v to a higher ranked
vertex, which belongs to 2 matchings. The edge e assigns a charge of 1 to
yv. If e1 assigns a charge of 1 (or 1− ǫ or 1− 2ǫ) to yv, then e2 assigns ǫ
(or 2ǫ or 3ǫ respectively) to yv. In either case, yu + yv = 2 + ǫ.

Case 3(b). i > 0. There are two sub cases.

• There are at least two edges e1 and e2 from lower ranked vertices to u,
and one edge e3 from v to a higher ranked vertex. Each of these edges are
in one matching only (not necessarily the same matching).

• There is one edge e4 from a vertex of lower rank to u, at least one edge
e5 from a lower ranked vertex to v, and one edge e6 from v to a vertex of
higher rank. All these edges belong to a single matching (not necessarily
the same).

The edge e assigns a charge of 1 among yu and yv. If e1 and e2 assign a charge
of at least 1 − 2ǫ each, to yu, then yu + yv ≥ 3 − 4ǫ ≥ 2 + ǫ. Similarly, if e4
assigns a charge of at least 1−2ǫ to yu, and e5 assigns a charge of at least 1−2ǫ
to yv, then yu + yv ≥ 3− 4ǫ ≥ 2 + ǫ.

Case 4. Suppose e is a bad edge that belongs to two matchings. Then
i = 0. This implies that there is an edge e1, from v to a vertex of higher rank
which belongs to a single matching. The edge e assigns a charge of 2 to yv, and
the edge e1 assigns a charge of ǫ to yv. Thus, yu + yv = 2 + ǫ.

6

Case 5. Suppose e is not a bad edge and it belongs to two matchings. This
means that either there is an edge e1 from a lower ranked vertex to u, which
belongs to at least one matching, or there is an edge from some lower ranked
vertex to v that belongs to at least one matching, or there is an edge from v to
some higher ranked vertex which belongs to two matchings. The edge e assigns
a charge of 2 among yu and yv. The neighboring edges assign a charge of ǫ to
yu or yv (depending on which vertex it is incident), to give yu + yv ≥ 2 + ǫ.

Case 6. Suppose, e belongs to 3 or 4 matchings, then trivially yu+yv ≥ 2+ǫ.
From the above conditions, the best value for the competitive ratio is obtained
when ǫ = 1

7 , yielding E[yu + yv] ≥ 15
28 .

Lemma 2.3 implies that the competitive ratio of the algorithm is at most 28
15 .

3 Lower Bounds

3.1 Lower Bound for MWM

In this section, we prove a lower bound on the competitive ratio of a natural
class of randomized algorithms in the online preemptive model for MWM. The
algorithms in this class, which we call local algorithms, have the property that
their decision to accept or to reject a new edge is completely determined by the
weights of the new edge and the conflicting edges in the matching maintained
by the algorithm. Indeed, the optimal deterministic algorithm by McGregor
[6] is a local algorithm. The notion of locality can be extended to randomized
algorithms as well. In case of randomized local algorithms, the event that a new
edge is accepted is independent of all such previous events, given the current
matching maintained by the algorithm. Furthermore, the probability of this
event is completely determined by the weight of the new edge and the conflicting
edges in the matching maintained by the algorithm. Given that the optimal
(3+2

√
2)-competitive deterministic algorithm for MWM is a local algorithm, it

is natural to ask whether randomized local algorithms can beat the deterministic
lower bound of (3 + 2

√
2) by Varadaraja [8]. We answer this question in the

negative, and prove the following theorem.

Theorem 3.1. No randomized local algorithm for the MWM problem can have
a competitive ratio less than α = 3 + 2

√
2 ≈ 5.828.

Note that the randomized algorithm by Epstein et al. [3] does not fall in
this category, since the decision of accepting or rejecting a new edge is also
dependent on the outcome of the coins tossed at the beginning of the run of the
algorithm. (For details, see Section 3 of [3].) In order to prove Theorem 3.1, we
will crucially use the following lemma, which is a consequence of Section 4 of
[8].

Lemma 3.2. If there exists an infinite sequence (xn)n∈N of positive real numbers

such that for all n, βxn ≥∑n+1
i=1 xi + xn+1, then β ≥ 3 + 2

√
2.

7

3.1.1 Characterization of local randomized algorithms

Suppose, for a contradiction, that there exists a randomized local algorithm A
with a competitive ratio β < α = 3 + 2

√
2, β ≥ 1. Define the constant γ to be

γ =
β
(

1− 1
α

)

(

1− β
α

) =
β(α− 1)

α− β
≥ 1 >

1

α

For i = 0, 1, 2, if w is the weight of a new edge and it has i conflicting edges,
in the current matching, of weights w1, . . . , wi, then fi(w1, . . . , wi, w) gives the
probability of switching to the new edge. The behavior of A is completely
described by these three functions. We need the following key lemma to state
our construction of the adversarial input.

The lemma states (informally) that given an edge of weight w1, there exists
weights x and y, close to each other such that if an edge of weight x (respective
y) is adjacent to an edge of weight w1, the probability of switching is at most
(respectively at least) δ.

Lemma 3.3. For every δ ∈ (0, 1/α), ǫ > 0, and w1, there exist x and y such
that f1(w1, x) ≥ δ, f1(w1, y) ≤ δ, x− y ≤ ǫ, and w1/α ≤ y ≤ x ≤ γw1.

The proof of this lemma can be found in Appendix (section C).

3.1.2 The adversarial input

The adversarial input is parameterized by four parameters: δ ∈ (0, 1/α), ǫ > 0,
m, and n, wherem and n determine the graph and δ and ǫ determine the weights
of its edges.

Define the infinite sequences (xi)i∈N and (yi)i∈N, as functions of ǫ and δ, as
follows. x1 = 1, and for all i, having defined xi, let xi+1 and yi be such that
f1(xi, xi+1) ≥ δ, f1(xi, yi) ≤ δ, xi+1 − yi ≤ ǫ, and xi/α ≤ yi ≤ xi+1 ≤ γxi.
Lemma 3.3 ensures that such xi+1 and yi exist. Furthermore, by induction on
i, it is easy to see that for all i,

1/αi ≤ yi ≤ xi+1 ≤ γi (1)

These sequences will be the weights of the edges in the input graph.
Given m and n, the input graph contains several layers of vertices, namely

A1, A2, . . . , An+1, An+2 and B1, B2, . . . , Bn+1; each layer containing m vertices.
The vertices in the layer Ai are named ai1, a

i
2, . . . , a

i
m, and those in layer Bi are

named analogously. We have a complete bipartite graph Ji between layer Ai

and Ai+1 and an edge between aij and bij for every i, j (that is, a matching Mi

between Ai and Bi).
For i = 1 to n, the edges {(aij , ai+1

j′)|1 ≤ j, j′ ≤ m}, in the complete bipartite

graph between Ai and Ai+1, have weight xi, and the edges {(aij , bij)|1 ≤ j ≤ m},
in the matching between Ai and Bi, have weight yi. The edges in the complete
graph Jn+1 have weight xn, and those in the matching Mn+1 have weight yn.
Note that weights xi and yi depend on ǫ and δ, but are independent of m and n.
Clearly, the weight of the maximum weight matching in this graph is bounded
from below by the weight of the matching

⋃n+1
i=1 Mi. Since yi ≥ xi+1 − ε, we

have

OPT ≥ m

(

n
∑

i=1

yi + yn

)

≥ m

(

n+1
∑

i=2

xi + xn+1 − (n+ 1)ǫ

)

(2)

8

The edges of the graph are revealed in n + 1 phases. In the ith phase, the
edges in Ji∪Mi are revealed as follows. The phase is divided into m sub phases.
In the jth sub phase of the ith phase, edges incident on aij are revealed, in the

order (aij , a
i+1
1), (aij , a

i+1
2), . . . , (aij , a

i+1
m), (aij , b

i
j).

3.1.3 Analysis of the lower bound

The overall idea of bounding the weight of the algorithm’s matching is as follows.
In each phase i, we will prove that as many as m − O(1) edges of Ji and only
δm+O(1) edges of Mi are picked by the algorithm. Furthermore, in the i+ 1th

phase, since m−O(1) edges from Ji+1 are picked, all but O(1) edges of the edges
picked from Ji are discarded. Thus, the algorithm ends up with δm+O(1) edges
from each Mi, and O(1) edges from each Ji, except possibly Jn and Jn+1. The
algorithm can end up with at most m edges from Jn ∪ Jn+1, since the size of
the maximum matching in Jn ∪ Jn+1 is m. Thus, the weight of the algorithm’s
matching is at most mxn plus a quantity that can be neglected for large m and
small δ.

Let Xi (resp. Yi) be the set of edges of Ji (resp. Mi) held by the algorithm
at the end of input. Then we have,

Lemma 3.4. For all i = 1 to n

E[|Yi|] ≤ δm+
1− δ

δ

Lemma 3.5. For all i = 1 to n− 1

E[|Xi|] ≤
1− δ

δ

Lemma 3.6.

E[|Yn+1|] ≤ δm+
1− δ

δ

The proof of the above lemmas can be found in Appendix (section C).
We are now ready to prove Theorem 3.1. The expected weight of the match-

ing held by A is

E[ALG] ≤
n
∑

i=1

yiE[|Yi|] + ynE[|Yn+1|] +
n−1
∑

i=1

xiE[|Xi|] + xnE[|Xn ∪Xn+1|]

Using Lemmas 3.4, 3.6, 3.5, and the facts that yi ≤ xi+1 for all i and E[|Xn ∪
Xn+1|] ≤ m (since Xn ∪Xn+1 is a matching in Jn ∪ Jn+1), we have

E[ALG] ≤
(

δm+
1− δ

δ

)

(

n+1
∑

i=2

xi + xn+1

)

+
1− δ

δ

n−1
∑

i=1

xi +mxn

Since the algorithm is β-competitive, for all n, m, δ and ǫ we must have E[ALG]
≥ OPT /β. From the above and equation (2), we must have

(

δm+ 1−δ
δ

)

(

∑n+1
i=2 xi + xn+1

)

≥ m
β

(

∑n+1
i=2 xi + xn+1 − (n+ 1)ǫ

)

+ 1−δ
δ

∑n−1
i=1 xi +mxn

9

Since the above holds for arbitrarily large m, ignoring the terms independent of
m (recall that xi’s are functions of ǫ and δ only), we have for all δ and ǫ,

δ

(

n+1
∑

i=2

xi + xn+1

)

+ xn ≥ 1

β

(

n+1
∑

i=2

xi + xn+1 − (n+ 1)ǫ

)

that is,

xn ≥ 1

β

(

n+1
∑

i=2

xi + xn+1 − (n+ 1)ǫ

)

− δ

(

n+1
∑

i=2

xi + xn+1

)

Taking limit inferior as δ → 0 in the above inequality, and noting that limit
inferior is super-additive we get for all ǫ,

lim infδ→0 xn ≥
1
β

(

∑n+1
i=2 lim infδ→0 xi + lim infδ→0 xn+1 − (n+ 1)ǫ

)

− lim supδ→0 δ
(

∑n+1
i=2 xi + xn+1

)

Recall that xi’s are functions of ǫ and δ, and that from equation (1), 1/αi ≤
xi+1 ≤ γi, where the bounds are independent of δ. Thus, all the limits in the

above inequality exist. Moreover, limδ→0 δ
(

∑n+1
i=2 xi + xn+1

)

exists and is 0,

for all ǫ. This implies lim supδ→0 δ
(

∑n+1
i=2 xi + xn+1

)

= 0 and we get for all ε,

lim inf
δ→0

xn ≥ 1

β

(

n+1
∑

i=2

lim inf
δ→0

xi + lim inf
δ→0

xn+1 − (n+ 1)ǫ

)

Again, taking limit inferior as ǫ → 0, and using super-additivity,

lim inf
ǫ→0

lim inf
δ→0

xn ≥ 1

β

(

n+1
∑

i=2

lim inf
ǫ→0

lim inf
δ→0

xi + lim inf
ǫ→0

lim inf
δ→0

xn+1

)

Note that the above holds for all n. Finally, let xn = lim infǫ→0 lim infδ→0 xn+1.
Then we have the infinite sequence (xn)n∈N such that for all n, βxn ≥∑n+1

i=1 xi+

xn+1. Thus, by Lemma 3.2, we have β ≥ 3 + 2
√
2.

3.2 Lower Bound for θ structured graphs

Recall that an edge weighted graph is said to be θ-structured if the weights of
the edges are powers of θ. The following bound applies to any deterministic
algorithm for MWM on θ-structured graphs.

Theorem 3.7. No deterministic algorithm can have a competitive ratio less
than 2 + 2

θ−2 for MWM on θ-structured graphs, for θ ≥ 4.

The proof of the above theorem can be found in Appendix (section D).

4 Randomized Algorithm for Paths

When the input graph is restricted to be a collection of paths, then every new
edge that arrives connects two (possibly empty) paths. Our algorithm consists
of several cases, depending on the lengths of the two paths.

10

Algorithm 2 Randomized Algorithm for Paths

1: M = ∅. {M is the matching stored by the algorithm.}
2: for each new edge e do

3: Let L1 ≥ L2 be the lengths of the two (possibly empty) paths P1, P2 that
e connects.

4: If L1 > 0 (resp. L2 > 0), let e1 (resp. e2) be the edge on P1 (resp. P2)
adjacent to e.

5: if e is a disjoint edge {L1 = L2 = 0 } then

6: M = M ∪ {e}.
7: else if e is revealed on a disjoint edge e1 {L1 = 1, L2 = 0. e1 ∈ M} then

8: with probability 1
2 , M = M \ {e1} ∪ {e}.

9: else if e is revealed on a end point of path of length > 1 {L1 > 1, L2 = 0}
then

10: if e1 /∈ M , M = M ∪ {e} .
11: else if e joins two disjoint edges {L1 = L2 = 1. e1, e2 ∈ M} then

12: with probability 1
2 , M = M \ {e1, e2} ∪ {e}.

13: else if e joins a path and a disjoint edge {L1 > 1, L2 = 1. e2 ∈ M} then

14: if e1 /∈ M , M = M \ {e2} ∪ {e}.
15: else if e joins two paths of length > 1{L1 > 1, L2 > 1} then

16: if e1 /∈ M and e2 /∈ M , M = M ∪ {e}.
17: end if

18: Output M .
19: end for

The following simple observations can be made by looking at the algorithm:

• All isolated edges belong to M with probability one.

• The end vertex of any path of length > 1 is covered by M with probability
1
2 , and this is independent of the end vertex of any other path being
covered.

• For a path of length 2, 3, or 4, each maximal matching is present in M
with probability 1

2 .

Theorem 4.1. The randomized algorithm for finding MCM on path graphs is
4
3 -competitive.

The proof of above theorem can be found in Appendix (section E).

References

[1] Niv Buchbinder and Joseph Naor. The Design of Competitive Online Algo-
rithms via a Primal-Dual Approach. Foundations and Trends in Theoretical
Computer Science, 3(2-3):93–263, 2009.

[2] T.-H. Hubert Chan, Fei Chen, Xiaowei Wu, and Zhichao Zhao. Ranking on
Arbitrary Graphs: Rematch via Continuous LP with Monotone and Bound-
ary Condition Constraints. In Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 1112–1122, 2014.

11

[3] Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved
Bounds for Online Preemptive Matching. In 30th International Symposium
on Theoretical Aspects of Computer Science, STACS 2013, Kiel, Germany,
pages 389–399, 2013.

[4] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri,
and Jian Zhang. On Graph Problems in a Semi-streaming Model. Theor.
Comput. Sci., 348(2):207–216, December 2005.

[5] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An Optimal Algorithm for
On-line Bipartite Matching. In Proceedings of the Twenty-second Annual
ACM Symposium on Theory of Computing, STOC ’90, pages 352–358, New
York, NY, USA, 1990. ACM.

[6] Andrew McGregor. Finding Graph Matchings in Data Streams. In Proceed-
ings of the 8th International Workshop on Approximation, Randomization
and Combinatorial Optimization Problems, and Proceedings of the 9th Inter-
national Conference on Randamization and Computation: Algorithms and
Techniques, APPROX’05/RANDOM’05, pages 170–181, Berlin, Heidelberg,
2005. Springer-Verlag.

[7] Matthias Poloczek and Mario Szegedy. Randomized Greedy Algorithms
for the Maximum Matching Problem with New Analysis. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, pages 708–717, 2012.

[8] Ashwinkumar Badanidiyuru Varadaraja. Buyback Problem - Approximate
Matroid Intersection with Cancellation Costs. In Automata, Languages
and Programming - 38th International Colloquium, ICALP 2011, Zurich,
Switzerland, Proceedings, Part I, pages 379–390, 2011.

[9] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified mea-
sure of complexity. In 18th Annual Symposium on Foundations of Computer
Science, FOCS 1977, pages 222–227, Oct 1977.

12

Appendices

A A Primal-Dual Analysis of a deterministic al-

gorithm for MWM

In this section, we present a primal-dual analysis for the deterministic algorithm
due to [6] for the maximum weight matching problem in the online preemptive
model. The algorithm is as follows.

Algorithm 3 Deterministic Algorithm for MWM

1. Fix a parameter γ.

2. If the new edge e has weight greater than (1 + γ) times the weight of
the edges currently adjacent to e, then include e and discard the adjacent
edges.

A.1 Analysis

Lemma A.1. [6] The competitive ratio of this algorithm is (1 + γ)(2 + 1
γ
).

We use the primal-dual technique to prove the same competitive ratio. This
analysis technique is different from the one in [1]. In [1], the primal variables
once set to a certain value are never changed whereas in our analysis the primal
variables may change during the run of algorithm. The primal and dual LPs we
use for the maximum weight matching problem are as follows.

Primal LP Dual LP
max

∑

ewexe min
∑

v yv
∀v :

∑

v∈e xe ≤ 1 ∀e : yu + yv ≥ we

xe ≥ 0 yv ≥ 0

We maintain both primal and dual variables along with the run of the algorithm.
On processing an edge, we maintain the following invariants.

• The dual LP is always feasible.

• For each edge e ≡ (u, v) in the current matching, yu ≥ (1 + γ)w(e) and
yv ≥ (1 + γ)w(e).

• The change in cost of the dual solution is at most (1+γ)(2+ 1
γ
) times the

change in cost of primal solution.

These invariants imply that the competitive ratio of the algorithm is (1+γ)(2+
1
γ
).

We start with ~0 as the initial primal and dual solutions. Consider a round
in which an edge e of weight w is given. Assume that all the above invariants
hold before this edge is given. Whenever an edge e ≡ (u, v) is accepted by the
algorithm, we assign values xe = 1 to the primal variable and yu = max(yu, (1+
γ)w(e)), yv = max(yv, (1 + γ)w(e)) to the dual variables of its end points.

13

Whenever an edge is rejected, we do not change the corresponding primal or
dual variables. Whenever an edge e is evicted, we change its primal variable
xe = 0. The dual variables never decrease. Hence, if a dual constraint is feasible
once, it remains so. We will now show that the invariants are always satisfied.
These are three cases.

1. If the edge e ≡ (u, v) has no conflicting edges in the current matching,
then it is accepted by the algorithm in current matching M . We assign
xe = 1, yu = max(yu, (1 + γ)w(e)) and yv = max(yv, (1 + γ)w(e)). Hence,
yu ≥ (1 + γ)w(e) and yv ≥ (1 + γ)w(e). And hence, the dual constraint
yu + yv ≥ w(e) is feasible. The change in the dual cost is at most 2(1 +
γ)w(e). The change in the primal cost is w(e). So, the change in the dual
cost is at most (1 + γ)(2 + 1

γ
) times the change in the cost of the primal

solution.

2. If the edge e ≡ (u, v) has conflicting edges X(M, e) and w(e) ≤ (1 +
γ)w(X(M, e)), then it is rejected by the algorithm. That happens when
yu+yv ≥ (1+γ)w(X(M, e)), and the dual constraint for edge e is satisfied.

3. If the edge e ≡ (u, v) had conflicting edges X(M, e) and w(e) > (1 +
γ)w(X(M, e)), then it is accepted by the algorithm in the current matching
M and X(M, e) is/are evicted from M . We only need to show that the
change in dual cost is at most (1+γ)(2+ 1

γ
) times the change in the primal

cost. The change in primal cost is w(e)−w(X(M, e)). The change in dual
cost is at most 2(1 + γ)w(e) − (1 + γ)w(X(M, e)). Hence the ratio is at
most

2(1 + γ)w(e)− (1 + γ)w(X(M, e))

w(e)− w(X(M, e))

=2(1 + γ) +
(1 + γ)w(X(M, e))

w(e)− w(X(M, e))

<2(1 + γ) +
w(e)

w(e)− w(X(M, e))

≤2(1 + γ) + (1 +
1

γ
)

=(1 + γ)(2 +
1

γ
)

Here, the management of the dual variables was straight forward. The introduc-
tion of randomization complicates matters considerably, and we are only able
to analyze the algorithm in the very restricted setting of paths and “growing
trees”.

B Barely Random Algorithms for MCM

B.1 Randomized Algorithm for Paths

Theorem B.1. The barely random algorithm for finding the MCM on paths is
3
2 -competitive, and no barely random algorithm can do better.

We prove this theorem using the following lemma.

14

Algorithm 4 Barely Random Algorithm for Paths

1. The algorithm maintains two matchings: M1 and M2.

2. On receipt of an edge e, the processing happens in two phases.

(a) The augment phase. Here, the new edge e is added to each Mi such
that there is no edge in Mi sharing an end point with e.

(b) The switching phase. Edge e is added to M2 and the conflicting edge
is discarded, provided it decreases the quantity |M1 ∩M2|.

3. Output a matching Mi with probability 1
2 .

Lemma B.2. The dual constraint for each edge is satisfied at least 2
3rd in

expectation.

M1 and M2 are valid matchings and hence correspond to valid primal solu-
tions. For each edge e ≡ (u, v) in some matching Mi, we distribute a charge of
xe = 1 amongst dual variables yu and yv of its vertices. We prove that for each
edge e, yu+ yv ≥ 4

3 . Thus, E[yu+ yv] ≥ 2
3 . Hence, this algorithm has a compet-

itive ratio 3
2 . All the dual variables are initialized to 0. Suppose e ≡ (u, v) ∈ Mi

for some i ∈ [2]. Then distribution of primal charge xe amongst dual variables
yu and yv is done as follows. If there is an edge incident on u which does not
belong to any matching, and there is an edge incident on v which does belong to
some matching, then e transfer a primal charge of 2

3 to yu and rest is transferred
to yv. Else, the primal charge of e is transferred equally amongst yu and yv.

We look at three cases and prove that yu + yv ≥ 4
3 for each edge e ≡ (u, v).

1. The edge e is not present in any matching.

(a) If there are no edges on both its end points in the input graph, then
this edge has to be covered by both M1 and M2. So this case is not
possible.

(b) If there is no edge on one end point (say u) in the input graph, then
e has to belong to belong to some matching. So, this case is not
possible.

(c) If there are two edges incident on end points of e in the input graph,
then each of them has to be covered by some matching. So, yu+yv ≥
2 · 2

3 = 4
3 .

2. The edge e ≡ (u, v) is present in a single matching.

(a) If there are no edges on both its end points in the input graph, then
this edge has to be covered by both M1 and M2. So this case is not
possible.

(b) If there is no edge on one end point (say u) in the input graph, then
edge on the other end point must be covered by the other matching.
Otherwise, edge e would have been covered by both matchings. So,
yu + yv ≥ 1 + 1

3 = 4
3 .

15

(c) If there two edges incident on end points of e in the input graph, then
at least one of them has to be covered by other matching. Else, edge e
would have been covered by both matchings. So, yu+yv ≥ 1+ 1

3 = 4
3 .

3. The edge e ≡ (u, v) is present in both the matchings, then yu+yv = 2 ≥ 4
3 .

This proves the above claim. The corollary of the above claim is that we have
a 3

2 -competitive randomized algorithm for the MCM on paths.

Proof. (of the second part of Theorem B.1) Suppose U is the set of matchings
used by a barely random algorithmA. Following input is given to this algorithm.
Reveal two edges x1 and y1 such that they share an end point. Let S be the set
of matchings to which x1 is added, and S̄ be the set of matchings to which y1 is
added. Here, U = S ∪ S̄. Now give two more edges x2 and y2 disjoint from the
previous edges, such that x2 and y2 share an end point. Wlog, x2 will be added
to set of matchings S, and y2 will be added to set of matchings S̄. Give an edge
between y2 and x1. Continue the input similarly for i > 2. It can be seen that
expected increase in the size of optimum matching is 3

2 , whereas increase in the
size of matching held by the algorithm is 1. Thus, we get a lower bound 3

2 on
the competitive ratio of any barely random algorithm.

B.2 Randomized Algorithm for Growing Trees with max-

imum degree 3

In this section, we give a barely random algorithm for growing trees, with max-
imum degree 3. We beat the lower bound of 2 for MCM on the performance of
any deterministic algorithm, for this class of inputs. The edges are revealed in
online fashion such the one new vertex is revealed per edge, (except for the first
edge). Any vertex in the input graph has maximum degree 3.

Algorithm 5 Randomized Algorithm for Growing Trees with ∆ = 3

1. The algorithm maintains 3 matchings M1,M2,M3.

2. On receipt of an edge e, the processing happens in two phases.

(a) The augment phase. Here, the new edge e is added to each Mi such
that there is no edge in Mi sharing an end point with e.

(b) The switching phase. For i = 2, 3, in order, e is added to Mi and
the conflicting edge is discarded, provided it decreases the quantity
∑

i,j∈[3],i6=j |Mi ∩Mj|.

3. Output a matching Mi with probability 1
3 .

Theorem B.3. The barely random algorithm for finding the MCM on growing
trees with maximum degree 3 is 12

7 -competitive.

We make following simple observations.

• There cannot be an edge which is not in any matching.

16

• Call an edge “bad” if its end points are covered by only two matchings.
Indeed, an edge whose none of the end points are leaves, cannot be “bad”.

• An edge incident on a vertex of degree 3 cannot be “bad”, because there
will be a distinct edge belonging to every matching.

We begin by proving a few simple lemmas regarding the algorithm.

Lemma B.4. There cannot be “bad” edges incident on both vertices of an edge.

Proof. Note that a “bad” edge is created when an edge is revealed on a leaf
node of another edge which belongs to two or three matchings currently and
finally belongs to only one matching.

Let e be an edge which currently belongs to three matchings, which means
it is the first edge revealed. Now if an edge e1 is revealed on a vertex of e,
then e1 would be added to one matching, and e would be removed from that
matching, (in the switching phase of the algorithm). For e1 to be a bad edge,
e should be switched out of one more matching. This can happen only if there
are two more edges revealed on the other vertex of e. This means there cannot
be “bad” edges on both sides of e.

Let e belongs to two matchings. Then e already has a neighboring edge e2
which belongs to some matching. When e1 is revealed on the leaf vertex of e, it
will be added to one matching, in the augment phase. Now for e1 to be “bad”,
e should switch out of some matching. This can only happen if there is one
more edge e3 revealed on the common vertex of e and e2. Again, the lemma
holds.

Lemma B.5. If a vertex has three edges incident on it, then at most one of
these edges can have a “bad” neighboring edge.

Proof. Out of the three edges incident on a vertex, only one could have belonged
to two matchings at any step during the run of algorithm. Hence, only that edge
which belonged to two matchings at some stage during the run of algorithm can
have a “bad” neighboring edge.

Proof. (of Theorem B.3) M1,M2,M3 are valid matchings and hence correspond
to valid primal solutions. For each edge e ≡ (u, v) in some matching Mi, we
distribute a charge of xe = 1 amongst dual variables yu and yv of its end points.
We prove that for each edge e, yu + yv ≥ 7

4 . Thus, E[yu + yv] ≥ 7
12 . Hence, this

algorithm has a competitive ratio 12
7 . All the dual variables are initialized to 0.

Suppose e ≡ (u, v) ∈ Mi for some i ∈ [3]. Then distribution of primal charge
xe amongst dual variables yu and yv is done as follows. If there is a “bad” edge
incident on u, then edge e transfer 3

4 of of its primal charge to yu and rest of it
to yv. Else, edge e transfer its primal charge equally between yu and yv.

We look at three cases and then prove that yu + yv ≥ 7
4 for each edge

e ≡ (u, v).

1. Edge e ≡ (u, v) is “bad”. e ∈ Mi for some i ∈ [3]. e will have some
neighboring edge e1 such that e1 ∈ Mj for j ∈ [3] and i 6= j. Let the
common vertex between e and e1 be v. Then e1 will transfer 3

4 of its
primal charge to yv. Thus, yu + yv = 7

4 .

2. Edge e ≡ (u, v) is present in a single matching and not “bad”. This case
has four sub cases.

17

(a) e has one neighboring edge e1. Then e1 should belong to two match-
ings.

(b) e has two neighboring edges e1 and e2 both belonging to only one
matching. If these are both on the same side of e, then at most one
of them could have a “bad” neighboring edge (by lemma B.5). If
these are on opposite sides of e, then none of them can have a “bad”
neighboring edge.

(c) e has three neighboring edges e1, e2, and e3, such that e1 and e2 are
on one side of e, and e3 is on another side of e. At most one of e1
and e2 can have a “bad” neighboring edge (by lemma B.5).

(d) e has four neighboring edges e1, e2, e3, and e4, such that e1 and e2
are on one side of e, and e3 and e4 are on another side of e.

We can see that in all the above sub cases, yu + yv ≥ 7
4 .

3. Edge e ≡ (u, v) belongs to two or three matchings. Then, yu + yv ≥ 7
4

trivially.

This proves that we have a 12
7 -competitive randomized algorithm for finding

MCM on growing trees with maximum degree 3.

B.3 Example showing need of non-local analysis

Consider input graph as a 4-regular tree with large number of vertices, and an
extra edge on every vertex other than the leaf vertices. Every edge other than
the extra edges will belong some matching. For every edge that belongs to some
matching, there will one edge on each of its end points which does not belong to
any matching. If the rule for distributing primal charge among dual variables
is similar to one described in section B.2, then for each edge belonging to some
matching will transfer its primal charge equally amongst both its end points.
For each edge which does not belong to any matching, yu + yv = 2, which will
imply only a competitive ratio of 2. We wish to get a competitive ratio better
than 2. So we need some other idea.

B.4 Proof of Lemma 2.1

Proof. Consider an edge (u, v) revealed at u.

1. When revealed it is not put in any matching. This means that there are
four covered edges incident on u. (Call an edge covered if it belongs to
some matching.) This situation cannot change as more edges are revealed.
Thus the edge will remain covered by four matchings, and can never be-
come a bad edge.

2. When revealed it is put in one matching. This means that there are three
matching edges on at least two covered edges incident on u. If there were
three covered edges incident on u then they remain covered edges. So
suppose otherwise. Then there are two covered edges of which one is in
two matchings. Hence there will always be three matching edges covering
u. If an edge is revealed at v then there will be four matching edges
covering the given edge. The edge may become bad if v stays a leaf and
if one of the matchings on the edge with two of them, switches.

18

3. When revealed it is put in two matchings. Then there are two matching
edges at u and at least one covered edge. If there are two covered edges,
they remain so. Of the two copies of the edge in matchings, one may
switch to a new edge but will always remain adjacent to this edge. Hence
there will always be three matching edges covering u. If an edge is revealed
at v then there will be four matching edges covering the given edge. The
edge may become bad if v stays a leaf and if one of the matchings on the
edge with two of them, switches.

4. When revealed it is put in three matchings. Then there is one covered
edge at u. If one more edge is now revealed on u, then we are back to case
3. If a new edge is revealed on v, it replaces (u, v) in one of the matchings.
Now, even if more edges are revealed on either side of (u, v), it continues
to be covered by four matchings.

5. When revealed it is put in four matchings. If a new edge is revealed either
on u or v, then this case reduces to case 2.

This completes the proof of the first part of lemma.
For the second part of lemma, consider a leaf edge present on each of the

vertices p, q, and r. Suppose the leaf edge incident on q is bad. When this edge
was revealed, there must have been some edge incident on q, either (p, q) or
(q, r), which belonged to two matchings. Wlog, assume (p, q) belonged to two
matchings. Then for a matching to switch out this edge, there need to be three
edges incident on p, and hence the leaf edge incident on p cannot be a bad edge.

C Proof of lemmas from section 3.1

Lemma C.1. For every w > 0, f0(w) > 1/α.

Proof. If not, then a single edge of weight w results in algorithm’s expected
cost wf0(w) ≤ w/α < w/β, whereas the optimum is w. This contradicts β-
competitiveness.

Lemma C.2. For every w1 and w ≤ w1/α, f1(w1, w) = 0.

Proof. If f1(w1, w) > 0 for some w1 and w such that w ≤ w1/α, then the
adversary’s input is a star, with a single edge of weight w1 followed by a large
number n of edges of weight w. Regardless of whether the first edge of weight
w1 is accepted or not, the algorithm holds an edge of weight w, with probability
approaching 1 as n → ∞, in the end. The optimum is w1 ≥ αw > βw, thus,
contradicting β-competitiveness.

Lemma C.3. For every w1, and w ≥ γw1, f1(w1, w) ≥ 1/α.

Proof. Suppose f1(w1, w) < 1/α for some w1 and w such that w ≥ γw1. The
adversary’s input is a star, with a large number n of edges of weight w1, followed
by a single edge of weight w. The algorithm must hold an edge of weight w1,
before the edge of weight w is given, with probability approaching 1 as n → ∞.
Therefore, in the end, the algorithm’s cost is w with probability less than 1/α,
and at most w1 otherwise. Thus, the expected weight of the edge held by the

19

algorithm is less than w/α+w1(1− 1/α), whereas the adversary holds the edge
of weight w. Since the algorithm is β-competitive and β < α, we have

w < β

[

1

α
· w +

(

1− 1

α

)

w1

]

⇒
(

1− β

α

)

w < w1β

(

1− 1

α

)

⇒ w < γw1

This is a contradiction.

Proof of Lemma 3.3. By Lemma C.2, f1(w1, w1/α) = 0, and by Lemma C.3,
f1(w1, γw1) ≥ 1/α. Take a finite sequence of points, increasing from w1/α to
γw1, such that the difference between any two consecutive points is at most ǫ,
and observe the value of f1(w1, z) at each such point z. Since f1(w1, w1/α) < δ
and f1(w1, γw1) > δ, there must exist two consecutive points in the sequence,
say y and x, such that f1(w1, y) ≤ δ and f1(w1, x) ≥ δ. Furthermore, x− y ≤ ǫ
and w1/α ≤ y ≤ x ≤ γw1, by construction.

Lemma C.4. For every i, j, the probability that aij is not matched to any

vertex in Ai+1, in the jth sub phase of the ith phase, just before the edge (aij , b
i
j)

is revealed, is at most (1− δ)m−j+1.

Proof. Consider the jth sub phase of the ith phase, in which, the edges (aij , a
i+1
1),

(aij , a
i+1
2), . . . , (aij , a

i+1
m), (aij , b

i
j) are revealed. Before this sub phase, the number

of unmatched vertices in Ai+1 must be at least m− j + 1. Call this set A′. If
aij was matched at the end of phase i − 1, then the weight of edge incident on

aij , at the beginning of the current phase, is xi−1. For each vertex ai+1
j′ ∈ A′,

given that aij did not get matched to any of ai+1
1 , . . . , ai+1

j′−1, the probability

that aij gets matched to ai+1
j′ is f1(xi−1, xi) ≥ δ. Thus, the probability of aij

not getting matched to any vertex in A′ ⊆ Ai+1, in the current sub phase,
is at most (1 − δ)m−j+1. Note that this argument applies even if aij was not
matched at the beginning of the current phase, due to Lemma C.1 and since
δ < 1/α < f0(xi).

Proof of Lemma 3.4. First, observe that the sequence in which the edges are
revealed ensures that no edge adjacent to any edge e ∈ Mi appears after e.
Thus, if e is picked when it is revealed, it is never preempted, and is maintained
till the end of input. Hence, Yi is also the set of edges of Mi that were picked
as soon as they were revealed.

When the edge (aij , b
i
j) is given, the algorithm picks it with probability at

most δ (since f1(xi, yi) ≤ δ) if aij was matched to some vertex in Ai+1. By

Lemma C.4, the probability of aij not being matched to any vertex in Ai+1 is

at most (1 − δ)m−j+1. Thus, the probability that the edge (aij , b
i
j) appears in

Yi is at most δ + (1 − δ)m−j+1. Hence, E[|Yi|] ≤ δm +
∑m

j=1(1 − δ)m−j+1 ≤
δm+ (1 − δ)/δ.

Proof of Lemma 3.5. Consider the set A′ of all vertices ai+1
j , which remain

matched to some vertex in Ai at the end of input. Then clearly, |A′| = |Xi|.
Let us find the probability that a vertex ai+1

j appears in A′. For this to happen,

it is necessary that ai+1
j not be matched to any vertex in Ai+2, in the jth sub

phase of the i+1st phase. By lemma C.4, this happens with probability at most
(1− δ)m−j+1. Thus, E[|Xi|] =

∑m
j=1(1− δ)m−j+1 ≤ (1− δ)/δ.

20

Lemma C.5. For every j, the probability that an+1
j is not matched to any

vertex in An ∪ An+2, in the jth sub phase of the n + 1st phase, just before the
edge (an+1

j , bn+1
j) is revealed, is at most (1 − δ)m−j+1.

Proof. This proof is analogous to the proof of Lemma C.4. If an+1
j was matched

to some vertex in An at the end of the nth phase, then it will continue to remain
matched to some vertex in An ∪ An+2, until the edge (an+1

j , bn+1
j) is revealed.

Otherwise an+1
j will get matched to some vertex in An+2 with probability at

least 1 − (1 − δ)m−j+1, and remain unmatched with probability at most (1 −
δ)m−j+1.

Proof of Lemma 3.6. This proof is analogous to the proof of Lemma 3.4. Again,
the sequence in which the edges are revealed ensures that no edge adjacent to
any edge e in any Mn+1 appears after e. Thus, if e is picked when it is revealed,
it is never preempted. Hence, Yi is also the set of edges of Mi that were picked
as soon as they were revealed.

When the edge (an+1
j , bn+1

j) is given, the algorithm picks it with probability

at most δ (since f1(xn, yn) ≤ δ) if an+1
j was matched to some vertex in An∪An+1.

Thus, the probability that the edge (aij , b
i
j) appears in Yn+1 is at most δ+ (1−

δ)m−j+1. Hence, E[|Yn+1|] ≤ δm+
∑m

j=1(1− δ)m−j+1 ≤ δm+ (1− δ)/δ.

D Lower Bound for θ structured graphs

The overall idea of the adversarial strategy is as follows. The input graph is
a tree whose edges are partitioned into n + 1 layers which are numbered 0
through n from bottom to top. Every edge in layer i has weight θi. The edges
are revealed bottom-up. The edges in layer i are given in such a manner that all
the edges in layer i − 1 held by the algorithm will be preempted. This ensures
that in the end, the algorithm’s matching contains only one edge, whereas the
adversary’s matching contains 2n−i edges from layer i, for each i.

Let A be any deterministic algorithm for maximum matching in the online
preemptive model. The adversarial strategy uses a recursive function, which
takes n ∈ N as a parameter. For a given n, this recursive function, given by
Algorithm 6, constructs a tree with n+1 layers by giving weighted edges to the
algorithm in an online manner, and returns the tree, the adversary’s matching
in the tree, and a vertex from the tree.

Let us prove a couple of properties about the behavior of the algorithm and
the adversary, when the online input is generated by the call MakeTree(n).

Lemma D.1. Suppose that the call MakeTree(n) returns (T ′,M ′, v′). Then

1. M ′ is a matching in T ′.

2. M ′ does not cover the vertex v′.

3. The weight of M ′ is
∑n

i=0 θ
i2n−i = (θn+1 − 2n+1)/(θ − 2).

Proof. By induction on n. For n = 0, the claim is obvious from the description
of MakeTree. Assume that the claim holds for n − 1, and consider the call
MakeTree(n), which returns (T ′,M ′, v′). Then, by induction hypothesis, the
two recursive calls must have returned (T1,M1, v1) and (T2,M2, v2) satisfying

21

Algorithm 6 MakeTree(n)

1: if n = 0 then

2: while true do

3: Take fresh vertices v, v1, v2, and give the edges (v1, v2), (v, v1) with
weight 1.

4: T := {(v1, v2), (v, v1)}.
5: if algorithm picks (v1, v2) then
6: return (T, {(v, v1)}, v2)
7: else if algorithm picks (v, v1) then
8: return (T, {(v1, v2)}, v)
9: else

10: Discard T and retry.
11: end if

12: end while

13: else

14: while true do

15: (T1,M1, v1) := MakeTree(n− 1)
16: (T2,M2, v2) := MakeTree(n− 1)
17: Give the edge (v1, v2) with weight θn.
18: if algorithm picks (v1, v2) then
19: Take a fresh vertex v, and give the edge (v, v1) with weight θn.
20: T := T1 ∪ T2 ∪ {(v1, v2), (v, v1)}.
21: if algorithm replaces (v1, v2) by (v, v1) then
22: return (T,M1 ∪M2 ∪ {(v1, v2)}, v).
23: else

24: return (T,M1 ∪M2 ∪ {(v, v1)}, v2)
25: end if

26: else

27: {algorithm does not pick (v1, v2)}
28: Discard the constructed tree and retry.
29: end if

30: end while

31: end if

22

the conditions of the lemma. Suppose the algorithm replaced (v1, v2) by (v, v1)
in its matching. Since v1 and v2 were respectively left uncovered by M1 and M2,
M = M1 ∪M2 ∪ {(v1, v2)} is a matching in T , and M ′ does not cover v′ = v.
The case when the algorithm did not replace (v1, v2) by (v, v1) is analogous.
In either case, the additional edge in M ′, apart from edges in M1 and M2 has
weight θn, and M1, M2 themselves have weight

∑n−1
i=0 θi2n−1−i, by induction

hypothesis. Thus, the weight of M ′ is θn+2
∑n−1

i=0 θi2n−1−i =
∑n

i=0 θ
i2n−i.

Lemma D.2. When the call MakeTree(n) returns (T,M, v), the algorithm’s
matching contains exactly one edge from T . This edge is incident on v and has
weight θn.

Proof. By induction on n. Again, the claim is obvious for n = 0. Assume that
the claim holds for n − 1, and consider the call MakeTree(n), which returns
(T ′,M ′, v′). At the end of the two recursive calls which return (T1,M1, v1) and
(T2,M2, v2). The algorithm will have exactly one edge e1 from T1 incident on
v1, and one edge e2 from T2 incident on v2, by induction hypothesis. If the
algorithm does not pick the next edge (v1, v2), then the tree is discarded. If the
algorithm picks that edge, then it must preempt e1 and e2. Thereafter, if the
algorithm replaces (v1, v2) by (v, v1) in its matching, then v′ = v. Otherwise, if
the algorithm keeps (v1, v2), then v′ = v2. In either case, the algorithm is left
with exactly one edge, which is incident on v′, and which has weight θn.

The adversary’s strategy is given by Algorithm 7, where n ≥ 1 is a parameter.

Algorithm 7 Adv(n)

1: while true do

2: (T1,M1, v1) := MakeTree(n− 1)
3: (T2,M2, v2) := MakeTree(n− 1)
4: Give the edge (v1, v2) with weight θn.
5: if algorithm picks (v1, v2) then
6: Take a fresh vertex v, and give the edge (v, v1) with weight θn.
7: if algorithm replaces (v1, v2) by (v, v1) then
8: Take a fresh vertex v′ and give the edge (v, v′) with weight θn.
9: T := T1 ∪ T2 ∪ {(v1, v2), (v, v1), (v, v′)}.

10: return M1 ∪M2 ∪ {(v1, v2), (v, v′)}
11: else

12: {algorithm still has (v1, v2)}
13: Take a fresh vertex v′ and give the edge (v2, v

′) with weight θn.
14: T := T1 ∪ T2 ∪ {(v1, v2), (v, v1), (v2, v′)}.
15: return M1 ∪M2 ∪ {(v, v1), (v2, v′)}
16: end if

17: else

18: {algorithm does not pick (v1, v2)}
19: Discard the constructed tree and retry.
20: end if

21: end while

Lemma D.3. When a tree T is discarded in a call to MakeTree(n) or

Adv(n), ALG(T) ≤
(

2 + 2
θ−2

)

· ADV(T), where ALG(T) and ADV(T) are

23

respectively the total weights of the edges of the algorithm’s and the adversary’s
matchings, in T .

Proof. For n ≥ 1, consider the two calls toMakeTree, which returned (T1,M1,
v1) and (T2,M2, v2) before the edge (v1, v2) is revealed. By Lemma D.2, the
algorithm had exactly one edge in each of T1 and T2, and this edge had weight
θn−1. The tree was discarded because the algorithm did not pick the edge
(v1, v2). Thus, ALG(T) = 2θn−1. On the other hand, the adversary picks the
matching M1 ∪ M2 ∪ {(v1, v2)} which, by Lemma D.1, has weight ADV(T) =

θn + 2
∑n−1

i=0 θi2n−1−i =
∑n

i=0 θ
i2n−i = (θn+1 − 2n+1)/(θ − 2). Thus,

ADV(T)

ALG(T)
=

θn+1 − 2n+1

2θn−1(θ − 2)
=

θ

2
× 1−

(

2
θ

)n+1

1− 2
θ

≥ θ

2
× 1−

(

2
θ

)2

1− 2
θ

=
θ

2
×
(

1 +
2

θ

)

=
θ

2
+ 1 ≥

(

2 +
2

θ − 2

)

The last inequality follows from the fact that θ ≥ 4. Finally, note that when the
discard happens in a call to MakeTree(0), ALG(T) = 0 and ADV(T) = 1.

Now we are ready to prove Theorem 3.7.

Proof of Theorem 3.7. For n ≥ 1, give the adversarial input by calling Adv(n).
If the call does not terminate, then an unbounded number of trees are discarded,

and by Lemma D.3, a lower bound of
(

2 + 2
θ−2

)

is forced on each discarded

tree. If the call terminates, then suppose T is the final tree constructed. Let
(T1,M1, v1) and (T2,M2, v2) be returned by the two calls to MakeTree(n−1).
By the description of Adv and Lemma D.2, it is clear that the algorithm holds
only one edge of T in the end, and this edge has weight θn = ALG(T). On the
other hand, the adversary’s matching contains M1 and M2, and two edges of
weight θn, where by Lemma D.1, the weight of M1 and M2 is (θn − 2n)/(θ− 2)
each. Thus, ADV(T) = 2θn + 2(θn − 2n)/(θ − 2). Therefore,

ADV(T)

OPT(T)
= 2 +

2(θn − 2n)

θn(θ − 2)
= 2 +

2
(

1−
(

2
θ

)n)

θ − 2

This approaches
(

2 + 2
θ−2

)

as n → ∞. Furthermore, this lower bound is also

forced on the trees discarded during the execution of Adv(n). Thus, the algo-

rithm can not have a competitive ratio less than
(

2 + 2
θ−2

)

.

E Proof of Theorem 4.1

Theorem 4.1 can be proved using the following lemma.

Lemma E.1. For any (maximal) path P of length n > 0,

• if n is even then E[|M ∩ P |] ≥ (3/4)(n/2) + 1/4 = p0(n) (say).

• if n is odd then E[|M ∩ P |] ≥ (3/4)(n/2) + 3/8 = p1(n) (say).

24

Proof. For n = 1 and n = 2, E[|M ∩ P |] = 1, and for n = 3, E[|M ∩ P |] = 3
2 .

Thus the lemma holds when n ≤ 3. We will induct on the number of edges in
the input. (Case n = 1 covers the base case.) Suppose the lemma is true before
the arrival of the new edge e. We prove that the lemma holds even after e has
been processed. We may assume that the length n of the new path P resulting
from addition of e is at least 4.

1. If n is even and L2 = 0, (therefore L1 is odd, and L1 ≥ 3), Pr[e1 /∈ M] = 1
2 .

Therefore, e is added to M with probability 1
2 .

E [|M ∩ P |] ≥ p1(n− 1) +
1

2
≥ p0(n)

2. If n is even, L1 = n− 2 and L2 = 1.

E [|M ∩ P |] ≥ p0(n− 2) + 1

=
3

4

(

n− 2

2

)

+
1

4
+ 1

≥ p0(n)

3. If n is even, and L2 > 1, where n = L1 + L2 + 1, L1 is even, and L2 is
odd. Pr[e1 /∈ M, e2 /∈ M] = 1

4

E [|M ∩ P |] ≥ p0(L1) + p1(L2) +
1

4

=
3

4

(

L1 + L2 + 1

2

)

+
1

4
+

3

8
− 3

8
+

1

4

≥ p0(n)

4. If n is odd, and L2 = 0, (therefore L1 is even, and L1 ≥ 3), Pr[e1 /∈ M] =
1
2 . Therefore, e is added to M with probability 1

2 .

E [|M ∩ P |] ≥ p0(n− 1) +
1

2
= p1(n)

5. If n is odd, L1 = n− 2 and L2 = 1.

E [|M ∩ P |] ≥ p1(n− 2) + 1

=
3

4

(

n− 2

2

)

+
3

8
+ 1

≥ p1(n)

6. If n is odd, and L2 > 1, where n = L1 + L2 + 1, L1 is even, and L2 is
even. Pr[e1 /∈ M, e2 /∈ M] = 1

4

E [|M ∩ P |] ≥ p0(L1) + p0(L2) +
1

4

=
3

4

(

L1 + L2 + 1

2

)

+
1

4
+

1

4
− 3

8
+

1

4

= p1(n)

25

7. If n is odd, and L2 > 1, where n = L1 +L2 +1, L1 is odd, and L2 is odd.
Pr[e1 /∈ M, e2 /∈ M] = 1

4

E [|M ∩ P |] ≥ p1(L1) + p1(L2) +
1

4

=
3

4

(

L1 + L2 + 1

2

)

+
3

8
+

3

8
− 3

8
+

1

4

≥ p1(n)

This completes the induction and hence implies a 4
3 -competitive ratio for this

algorithm.

26

	1 Introduction
	2 Barely Random Algorithms for MCM
	2.1 Randomized Algorithm for MCM on Growing Trees

	3 Lower Bounds
	3.1 Lower Bound for MWM
	3.1.1 Characterization of local randomized algorithms
	3.1.2 The adversarial input
	3.1.3 Analysis of the lower bound

	3.2 Lower Bound for structured graphs

	4 Randomized Algorithm for Paths
	A A Primal-Dual Analysis of a deterministic algorithm for MWM
	A.1 Analysis

	B Barely Random Algorithms for MCM
	B.1 Randomized Algorithm for Paths
	B.2 Randomized Algorithm for Growing Trees with maximum degree 3
	B.3 Example showing need of non-local analysis
	B.4 Proof of Lemma 2.1

	C Proof of lemmas from section 3.1
	D Lower Bound for structured graphs
	E Proof of Theorem 4.1

