
A Polynomial Kernel for Trivially Perfect Editing∗

P̊al Grøn̊as Drange† Micha l Pilipczuk‡

October 9, 2018

Abstract

We give a kernel with O(k7) vertices for Trivially Perfect Editing, the problem of adding or
removing at most k edges in order to make a given graph trivially perfect. This answers in affirmative
an open question posed by Nastos and Gao [27], and by Liu et al. [24]. Our general technique implies
also the existence of kernels of the same size for related Trivially Perfect Completion and
Trivially Perfect Deletion problems. Whereas for the former an O(k3) kernel was given by
Guo [19], for the latter no polynomial kernel was known.

We complement our study of Trivially Perfect Editing by proving that, contrary to Trivially
Perfect Completion, it cannot be solved in time 2o(k)·nO(1) unless the Exponential Time Hypothesis
fails. In this manner we complete the picture of the parameterized and kernelization complexity of
the classic edge modification problems for the class of trivially perfect graphs.

1 Introduction

Graph modification problems form an important subclass of discrete computational problems, where the
task is to modify a given graph using a constrained number of modifications in order to make it satisfy
some property Π, or equivalently belong to the class G of graphs satisfying Π. Well-known examples of
graph modification problems include Vertex Cover, Cluster Editing, Feedback Vertex Set, Odd
Cycle Transversal, and Minimum Fill-In. The systematic study of graph modification problems
dates back to early 80s and the work of Yannakakis [28], who showed that there is a dichotomy for the
vertex deletion problems: unless a graph class G is trivial (finite or co-finite), the problem of deleting
the least number of vertices to obtain a graph from G is NP-hard. However, when, in order to obtain
a graph from G, we are to modify the edge set of the graph instead of the vertex set, there are three
natural classes of problems: deletion problems (deleting the least number of edges), completion problems
(adding the least number of edges) and editing problems (performing the least number of edge additions
or deletions). For neither of these, any complexity dichotomy in the spirit of Yannakakis’ result is known.
Indeed, in [28] Yannakakis states

It [. . .] would be nice if the same kind of techniques could be applied to the edge-deletion
problems. Unfortunately we suspect that this is not the case — the reductions we found for
the properties considered [. . .] do not seem to fall into a pattern.

— Mihalis Yannakakis

Even though for edge modification problems there is no general P vs. NP classification known, much
can be said about their parameterized complexity. Recall that a parameterized problem is called fixed-
parameter tractable if it can be solved in time f(k) · nO(1) for some computable function f , where n is
the size of the input and k is its parameter. In our case, the natural parameter k is the allowed number
of modifications. Cai [5] made a simple observation that for all the aforementioned graph modification
problems there is a simple branching algorithm running in time cknO(1) for some constant c, as long as G is

∗The research leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959. M. Pilipczuk is currently
holding a post-doc position at Warsaw Center of Mathematics and Computer Science, and his research is supported by Polish
National Science Centre grant DEC-2013/11/D/ST6/03073; However, large part of this work was done when M. Pilipczuk
was affiliated with the University of Bergen and was supported by the aforementioned ERC grant n. 267959.
†Department of Informatics, University of Bergen, Norway, pal.drange@ii.uib.no.
‡Institute of Informatics, University of Warsaw, Poland, michal.pilipczuk@mimuw.edu.pl.

1

ar
X

iv
:1

41
2.

75
58

v1
 [

cs
.D

S]
 2

3
D

ec
 2

01
4

characterized by a finite set of forbidden induced subgraphs : there is a finite list of graphs H1, H2, . . . ,Hp

such that any graph G belongs to G if and only if G does not contain any Hi as an induced subgraph.
Although many studied graph classes satisfy this property, there are important examples, like chordal or
interval graphs, that are outside this regime.

For this reason, the parameterized analysis of modification problems for graph classes characterized
by a finite set of forbidden induced subgraphs focused on studying the design of polynomial kernelization
algorithms (polynomial kernels); Recall that such an algorithm is required, given an input instance (G, k)
of the problem, to preprocess it in polynomial time and obtain an equivalent output instance (G′, k′),
where |G′|, k′ ≤ p(k) for some polynomial p. That is, the question is the following: can you, using
polynomial-time preprocessing only, bound the size of the tackled instance by a polynomial function
depending only on k?

For vertex deletion problems the answer is again quite simple: As long as G is characterized by a
finite set of forbidden induced subgraphs, the task is to hit all the copies of these subgraphs (so-called
obstacles) that are originally contained in the graph. Hence, one can construct a simple reduction to the
d-Hitting Set problem for a constant d depending on G, and use the classic O(kd) kernel for the latter
that is based on the sunflower lemma (see e.g. [11, 14]). For edge modifications problems, however, this
approach fails utterly: every edge addition/deletion can create new obstacles, and thus it is not sufficient
to hit only the original ones. For this reason, edge modification problems behave counterintuitively w.r.t.
polynomial kernelization, and up to recently very little was known about their complexity.

On the positive side, kernelization of edge modification problems for well-studied graph classes was
explored by Guo [19], who showed that four problems: Threshold Completion, Split Completion,
Chain Completion, and Trivially Perfect Completion, all admit polynomial kernels. However,
the study took a turn for the interesting when Kratch and Wahlström [23] showed that there is a graph H
on 7 vertices, such that the deletion problem to H-free graphs (the class of graphs not admitting H as
an induced subgraph) does not admit a polynomial kernel, unless the polynomial hierarchy collapses.
This shows that the subtle differences between edge modification and vertex deletion problems have
tremendous impact on the kernelization complexity.

Kratch and Wahlström conclude by asking whether there is a “simple” graph, like a path or a cycle,
for which an edge modification problem does not admit a polynomial kernel under similar assumptions.
The question was answered by Guillemot et al. [18] who showed that both for the class of P`-free graphs
(for ` ≥ 7) and for the class of C`-free graphs (for ` ≥ 4), the edge deletion problems probably do not
have polynomial kernelization algorithms. They simultaneously gave a cubic kernel for the Cograph
Editing problem, the problem of editing to a graph without induced paths on four vertices.

These results were later improved by Cai and Cai [6], who tried to obtain a complete dichotomy
of the kernelization complexity of edge modification problems for classes of H-free graphs, for every
graph H. The project has been almost fully successful — the question remains unresolved only for a
finite number of graphs H. In particular, it turns out that the existence of a polynomial kernel for any of
H-Free Editing, H-Free Edge Deletion, or H-Free Completion problems is in fact a very rare
phenomenon, and basically happens only for specific, constant-size graphs H. In particular, for H being
a path or a cycle, the aforementioned three problems admit polynomial kernels if and only if H has at
most three edges.

At the same time, there is a growing interest in identifying parameterized problems that are solvable
in subexponential parameterized time, i.e., in time 2o(k)nO(1). Although for many classic parameterized
problems already known NP-hardness reductions show that the existence of such an algorithm would
contradict the Exponential Time Hypothesis of Impagliazzo et al. [20], subexponential parameterized
algorithms were known to exist for problems in restricted settings, like planar, or more generally H-minor
free graphs [7], or tournaments [1]. See the book of Flum and Grohe [11] for a wider discussion.

Therefore, it was an immense surprise when Fomin and Villanger [15] showed that Chordal Com-

pletion (also called Minimum Fill-In) can be solved in time 2O(
√
k log k)nO(1). Following this discovery,

a new line of research was initiated. Ghosh et al. [17] showed that Split Completion is solvable in the
same running time. Although Komusiewicz and Uhlmann [22] showed that we cannot expect Cluster
Editing to be solvable in subexponential parameterized time, as shown by Fomin et al. [12], when
the number of clusters in the target graph is sublinear in the number of allowed edits, this is possible
nonetheless.

2

Following these three positive examples, Drange et al. [9] showed that completion problems for
trivially perfect graphs, threshold graphs and pseudosplit graphs all admit subexponential parameterized
algorithms. Later, Bliznets et al. showed that both Proper Interval Completion and Interval
Completion also admit subexponential parameterized algorithms [3, 2].

Let us remark that in almost all these results, the known existence of a polynomial kernelization
procedure for the problem played a vital role in designing the subexponential parameterized algorithm.
Kernelization is namely used as an opening step that enables us to assume that the size of the considered
graph is polynomial in the parameter k, something that turns out to be extremely useful in further
reasonings. The only exception is the algorithm for the Interval Completion problem [2], for which
the existence of a polynomial kernel remains a notorious open problem. The need of circumventing this
issue created severe difficulties in [2].

In this paper we study the Trivially Perfect Editing problem. Recall that trivially perfect
graphs are exactly graphs that do not contain a P4 or a C4 as an induced subgraph; see Section 2.2 for
a structural characterization of this graph class. Interest in trivially perfect graphs started with the
attempts to prove the strong perfect graph theorem. In recent times, new source of motivation has grown,
with the realization that trivially perfect graphs are related to the width parameter treedepth (called also
vertex ranking number, ordered chromatic number, and minimum elimination tree height). Although
it had been known that both the completion and the deletion problem for trivially perfect graphs are
NP-hard, it was open for a long time whether the editing version is NP-hard as well [4, 25].

This question was answered very recently by Nastos and Gao [27], who showed that the problem is
indeed NP-hard. Actually, the work of Nastos and Gao focuses on exhibiting applications of trivially
perfect graphs in social network theory, since this graph class may serve as a model for familial groups,
communities in social networks showing a hierarchical nature. Specifically, the editing number to a
trivially perfect graph1 can be used as a measure of how much a social network resembles a collection of
hierarchies. Nastos and Gao also ask whether it is possibly to obtain a polynomial kernelization algorithm
for this problem. The question about the existence of a polynomial kernel for Trivially Perfect
Editing was then restated in a recent survey by Liu, Wang, and Guo [24], which nota bene contains a
comprehensive overview of the current status of the research on the kernelization complexity of graph
modification problems.

Our contribution. We answer the question of Nastos and Gao [27] and of Liu, Wang, and Guo [24] in
affirmative by proving the following theorem.

Theorem 1. The problem Trivially Perfect Editing admits a proper kernel with O(k7) vertices.

Here, we say that a kernel (kernelization algorithm) is proper if it can only decrease the parameter,
i.e., the output parameter k′ satisfies k′ ≤ k.

To prove Theorem 1, we employ an extensive analysis of the tackled instance, based on the equivalent
structural definition of trivially perfect graphs. The main approach is to construct a small vertex modulator,
a set of vertices whose removal results in obtaining a trivially perfect graph. However, since we are
allowed only edge deletions and additions, this modulator just serves as a tool for exposing the structure
of the instance. More specifically, we greedily pack disjoint obstructions into a set X, whose size can be
guaranteed to be at most 4k, with the condition that to get rid of each of these obstructions, at least one
edge must be edited inside the modulator per obstruction. Having obtained such a modulator, the rest of
the graph, G−X, is trivially perfect, and we may apply the structural view on trivially perfect graphs to
find irrelevant parts that can be reduced.

While the modulator technique is commonly used in kernelization, the new insight in this work is
as follows. Since we work with an edge modification problem, we can be less restrictive about when
an obstacle can be greedily packed into the modulator. For example, the obstacle does not need to be
completely vertex-disjoint with the so far constructed X; sharing just one vertex is still allowed. This
observation allows us to reason about the adjacency structure between X and V (G) \X, which is of great
help when identifying irrelevant parts. We hope that this generic technique finds applications in other
edge modification problems as well.

By slight modifications of our kernelization algorithm, we also obtain polynomial kernels for Trivially
Perfect Deletion and Trivially Perfect Completion.

1Nastos and Gao use the terminology quasi-threshold graphs instead of trivially perfect graphs.

3

Theorem 2. The problem Trivially Perfect Deletion admits a proper kernel with O(k7) vertices.

Theorem 3. The problem Trivially Perfect Completion admits a proper kernel with O(k7) vertices.

To the best of our knowledge, no polynomial kernel for Trivially Perfect Deletion was known so
far. For Trivially Perfect Completion, a cubic kernel was shown earlier by Guo [19]. Unfortunately,
the work of Guo [19] is published only as a conference extended abstract, where it is only sketched how
the approach yielding a quartic kernel for Split Deletion could be used to obtain a cubic kernel for
Trivially Perfect Completion. The details of this kernelization algorithm are deferred to the full
version, which, alas, has not appeared. For this reason, we believe that our proof of Theorem 3 fills an
important gap in the literature — the polynomial kernel for Trivially Perfect Completion is an
important ingredient of the subexponential parameterized algorithm for this problem [9].

Finally, we show that Trivially Perfect Editing, in addition to being NP-complete, cannot admit
a subexponential parameterized algorithm, provided that the Exponential Time Hypothesis holds.

Theorem 4. Under ETH, the Trivially Perfect Editing problem is NP-hard and cannot be solved
in time 2o(k)nO(1) or 2o(n+m) even on graphs with maximum degree 4.

In other words; the familial group measure cannot be computed in time subexponential in terms of
the value of the measure. This stands in contrast with Trivially Perfect Completion that admits a
subexponential parameterized algorithm, and shows that Trivially Perfect Editing is more similar
to Trivially Perfect Deletion, for which a similar lower bound has been proved earlier by Drange
et al. [9]. In fact, our reduction can be used as an alternative proof of hardness of Trivially Perfect
Deletion as well.

Let us note that the NP-hardness reduction for Trivially Perfect Editing presented by Nastos
and Gao [27] cannot be used to prove nonexistence of a subexponential parameterized algorithm, since
it involves a cubic blow-up of the parameter (see Section 5 for details). To prove Theorem 4, we resort
to the technique used for similar hardness results by Komusiewicz and Uhlmann [22] and by Drange et
al. [9].

2 Preliminaries

2.1 Graphs and complexity

Graphs. In this work we consider only undirected simple finite graphs. For a graph G, by V (G)
and E(G) we denote the vertex and edge set of G, respectively. The size of a graph G is defined as
|G| = |V (G)|+ |E(G)|.

For a vertex v ∈ V (G), by NG(v) we denote the open neighborhood of v, i.e. NG(v) = {u ∈ V (G) |
uv ∈ E(G)}. The closed neighborhood of v, denoted by NG[v], is defined as NG(v) ∪ {v}. These notions
are extended to subsets of vertices as follows: NG[X] =

⋃
v∈X NG[v] and NG(X) = NG[X] \X. We omit

the subscript whenever G is clear from context.
When U ⊆ V (G) is a subset of vertices of G, we write G[U] to denote the induced subgraph of G, i.e.,

the graph G′ = (U,EU) where EU is E(G) restricted to U . The degree of a vertex v ∈ V (G), denoted
degG(v), is the number of vertices it is adjacent to, i.e., degG(v) = |NG(v)|. We denote by ∆(G) the
maximum degree in the graph, i.e., ∆(G) = maxv∈V (G) deg(v). For a set A, we write

(
A
2

)
to denote the

set of unordered pairs of elements of A; thus E(G) ⊆
(
V (G)

2

)
. By G we denote the complement of a

graph G, i.e., V (G) = V (G) and E(G) =
(
V (G)

2

)
\ E(G).

If v and u are such that N [v] = N [u], then we call v and u true twins. Observe that v and u are
adjacent if they are true twins. On the other hand, if v and u have N(v) = N(u), then we call v and u
false twins, and in this case we may observe that v and u are non-adjacent. If X is an inclusion-wise
maximal set of vertices such that for every pair of vertices v and u in X they are true (resp. false) twins,
then we call X a true (resp. false) twin class.

For a graph G and a set of vertices X ⊆ V (G), we denote by G−X the (induced subgraph) G[V (G)\X].

When F ⊆
(
V (G)

2

)
, we write G− F to denote the graph G′ on vertex set V (G) and edge set E(G) \ F .

Finally, we let G4F be the graph on vertex set V (G) and edge set E(G)4F , where 4 denotes the
symmetric difference; For two sets A and B, A4B = (A \B) ∪ (B \A). We will also say that two sets A
and B are nested if A ⊆ B or B ⊆ A.

4

A vertex v ∈ V (G) is universal if it is adjacent to all the other vertices of the graph. Note that the
set of universal vertices of a graph forms a clique, which is also a true twin class. This clique will be
denoted by uni(G) and called the universal clique of G.

Modules and the modular decomposition. In our kernelization algorithm we will use the notion
of a module in a graph.

Definition 2.1. Given a graph G, a set of vertices M ⊆ V (G) is called a module if for any two vertices v
and u in M , we have that N(v) \M = N(u) \M , i.e., all the vertices of M have exactly the same
neighborhood outside M .

Observe that for any graph G, any singleton M = {v} is a module, and also V (G) itself is a module.
However, G can contain a whole hierarchy of modules. This hierarchy can be captured using the following
notion of a modular decomposition, introduced by Gallai [16]. The following description of a modular
decomposition is taken verbatim from the work of Bliznets et al. [2] .

A module decomposition of a graph G is a rooted tree T , where each node t is labeled by a module
M t ⊆ V (G), and is one of four types:

leaf: t is a leaf of T , and M t is a singleton;

union: G[M t] is disconnected, and the children of t are labeled with different connected components of
G[M t];

join: the complement of G[M t] is disconnected, and the children of t are labeled with different connected
components of the complement of G[M t];

prime: neither of the above holds, and the children of t are labeled with different modules of G that are
proper subsets of M t, and are inclusion-wise maximal with this property.

Moreover, we require that the root of T is labeled with the module V (G). We need the following properties
of the module decomposition.

Theorem 5 (see [26]). For a graph G, the following holds.

1. A module decomposition (T, (M t)t∈V (T)) of G exists, is unique, and computable in linear time.

2. At any prime node t of T , the labels of the children form a partition of M t. In particular, for each
vertex v of G there exists exactly one leaf node with label {v}.

3. Each module M of G is either a label of some node of T , or there exists a union or join node t
such that M is a union of labels of some children of t.

Let us remark that since in this work we do not optimize the running time of the kernelization
algorithm, we do not need to compute the modular decomposition in linear time. Any simpler polynomial
time algorithm would suffice (see the work of McConnell and Spinrad [26] for a literature overview).

Parameterized complexity. The running time of an algorithm is usually described as a function of the
length of the input. To refine the complexity analysis of computationally hard problems, parameterized
complexity introduced the notion of an extra “parameter” that is an additional part of a problem instance
responsible for measuring its complexity. To simplify the notation, we will consider inputs to problems
of the form (G, k), which is a pair consisting of a graph G and a nonnegative integer k. A problem
is then said to be fixed parameter tractable if there is an algorithm which solves the problem in time
f(k) · poly(|G|), where f is any function, and poly : N→ N any polynomial function. In the case when
f(k) = 2o(k) we say that the algorithm is a subexponential parameterized algorithm. When a problem
Π ⊆ G × N is fixed-parameter tractable, where G is the class of all graphs, we say that Π belongs to the
complexity class FPT. For a more rigorous introduction to parameterized complexity we refer to the
books of Downey and Fellows [8] and of Flum and Grohe [11].

A kernelization algorithm (or kernel) is a polynomial-time algorithm for a parameterized problem Π
that takes as input a problem instance (G, k) and returns an equivalent instance (G′, k′), i.e. (G, k) ∈
Π⇔ (G′, k′) ∈ Π, where both |G′| and k′ are bounded by f(k) for some function f . We then say that f

5

(a) P4 (b) C4

Figure 1: Trivially perfect graphs are {C4, P4}-free.

is the size of the kernel. When k′ ≤ k, we say that the kernel is a proper kernel. Specifically, a proper
polynomial kernelization algorithm for Π is a polynomial time algorithm which takes as input an instance
(G, k) and returns an equivalent instance (G′, k′) with k′ ≤ k and |G′| ≤ p(k) for some polynomial
function p.

Tools for lower bounds. As evidence that Trivially Perfect Editing cannot be solved in
subexponential parameterized time 2o(k)nO(1), we will use the Exponential Time Hypothesis, formulated
by Impagliazzo, Paturi, and Zane [20].

Exponential Time Hypothesis (Exponential Time Hypothesis, ETH). There exists a positive real
number s such that 3Sat with n variables and m clauses cannot be solved in time 2sn(n+m)O(1).

Impagliazzo, Paturi, and Zane [20] proved a fundamental result called Sparsification Lemma, which
can serve as a Turing reduction from an arbitrary instance of 3Sat to an instance where the number of
clauses is linear in the number of variables. Thus, the following statement is an immediate corollary of
the Sparsification Lemma.

Proposition 2.2 ([20]). Unless ETH fails, there exists a positive real number s such that 3Sat with n
variables and m clauses cannot be solved in time 2s(n+m)(n+m)O(1). In particular, 3Sat does not admit
an algorithm with time complexity 2o(n+m)(n+m)O(1).

2.2 Trivially Perfect Graphs

Combinatorial properties. A graph G is trivially perfect if and only if it does not contain a C4 or a P4

as an induced subgraph. That is, trivially perfect graphs are defined by the forbidden induced subgraph
family F = {C4, P4} (see Figure 1). However, we mostly rely on the following recursive characterization
of the trivially perfect graphs:

Proposition 2.3 ([21]). The class of trivially perfect graphs can be defined recursively as follows:

• K1 is a trivially perfect graph.

• Adding a universal vertex to a trivially perfect graph results in a trivially perfect graph.

• The disjoint union of two trivially perfect graphs results in a trivially perfect graph.

Based on Proposition 2.3, a superset of the current authors [9] proposed the following notion of a
decomposition for trivially perfect graphs. In the following, for a rooted tree T and vertex t ∈ V (T), by
Tt we denote the subtree of T rooted at t.

Definition 2.4 (Universal clique decomposition, [9]). A universal clique decomposition (UCD) of a
connected graph G is a pair T = (T = (VT , ET),B = {Bt}t∈VT

), where T is a rooted tree and B is a
partition of the vertex set V (G) into disjoint nonempty subsets, such that

• if vw ∈ E(G) and v ∈ Bt, w ∈ Bs, then either t = s, t is an ancestor of s in T , or s is an ancestor
of t in T , and

• for every node t ∈ VT , the set of vertices Bt is the universal clique of the induced subgraph
G[
⋃
s∈V (Tt)

Bs].

We call the vertices of T nodes and the sets in B bags of the universal clique decomposition (T,B). By
slightly abusing notation, we often identify nodes with corresponding bags. Note that by the definition,

6

in a universal clique decomposition every non-leaf node t has at least two children, since otherwise the
bag Bt would not comprise all the universal vertices of the graph G[

⋃
s∈V (Tt)

Bs].
The following lemma explains the connection between trivially perfect graphs and universal clique

decompositions.

Lemma 2.5 ([9]). A connected graph G admits a universal clique decomposition if and only if it is
trivially perfect. Moreover, such a decomposition is unique up to isomorphisms.

Note that a universal clique decomposition can trivially be found in polynomial time by repeatedly
locating universal vertices and connected components. Moreover, we can extend the notion of a universal
clique decomposition also to a disconnected trivially perfect graph G. In this case, the universal clique
decomposition of G becomes a rooted forest consisting of universal clique decompositions of the connected
components of G. Since a graph is trivially perfect if and only if each of its connected component is,
Lemma 2.5 can be easily generalized to the following statement: Every (possibly disconnected) graph G
is trivially perfect if and only if it admits a universal clique decomposition, where the decomposition has
the shape of a rooted forest. Moreover, this decomposition is unique up to isomorphism.

The following definition of a quasi-ordering of vertices respecting the UCD will be helpful when
arguing the correctness of the kernelization procedure.

Definition 2.6. Let (T,B) be the universal clique decomposition of a trivially perfect graph G. We
impose a quasi-ordering � on vertices of G defined as follows. Suppose vertex u belongs to bag Bt and
vertex v belongs to bag Bs. Then u � v if and only if t = s or t is an ancestor of s in the rooted forest T .

Thus, classes of vertices pairwise equivalent with respect to � are exactly formed by the bags of B,
and otherwise the ordering respects the rooted structure of T . Note that since the UCD of a trivially
perfect graph is unique up to isomorphism, the quasi-ordering � is uniquely defined and can be computed
in polynomial time.

Computational problems. In this work we are mainly interested in the Trivially Perfect Editing
problem, defined formally as follows:

Trivially Perfect Editing
Input: A graph G and a non-negative integer k.
Parameter: k

Question: Is there a set S ⊆
(
V (G)

2

)
of size at most k such that G4S is trivially perfect?

For a graph G, any set F ⊆
(
V (G)

2

)
for which G4F is trivially perfect will henceforth be referred to

as an editing set. An editing set is minimal if no proper subset F ′ (F is also an editing set.
In the Trivially Perfect Deletion and Trivially Perfect Completion problems we allow

only edge deletions and edge additions, respectively. More formally, we require that the editing set S is
contained in, or disjoint from E(G), respectively. In Section 3 we prove Theorem 1, that is, we show that
Trivially Perfect Editing admits a kernel with O(k7). Actually, the character of our data reduction
rules will be very simple; The kernelization algorithm will start with instance (G, k), and perform only
the following operations:

• edit some e ∈
(
V (G)

2

)
, decrement the budget k by 1, and terminate the algorithm if k becomes

negative; or

• remove some vertex u of G and proceed with instance (G− u, k).

Thus, the kernel will essentially be an induced subgraph of G, modulo performing some edits whose
safeness and necessity can be deduced. In the proofs of correctness, we will never use any minimality
argument that exchanges edge deletions for completions, or vice versa. Therefore, the whole approach can
be applied almost verbatim to Trivially Perfect Deletion and Trivially Perfect Completion,
yielding proofs for Theorems 2 and 3 after very minor modifications. We hope that the reader will
be convinced about this after understanding all the arguments of Section 3. However, for the sake
of completeness we, in Section 4, review the modifications of the argumentation of Section 3 that are
necessary to prove Theorems 2 and 3.

7

TP-set systems. In the kernelization algorithm we will need the following auxiliary definition and
result.

Definition 2.7 (TP-set system). A set system F ⊆ 2U over a ground set U is called a TP-set system if
for every X1 and X2 in F with x1 ∈ X1 \X2 and x2 ∈ X2 \X1, there is no Y ∈ F with {x1, x2} ⊆ Y .

The following property bounds the size of a TP-set system, which we need later:

Lemma 2.8. Let F be a TP-set system over a finite ground set U . Then the cardinality of F is at
most |U |+ 1.

Proof. We proceed by induction on |U |, with the claim being trivial when U = ∅. Suppose F is a TP-set
system over a ground set U , and let X be a member of F that has the minimum cardinality among
the nonempty ones (if there is no such set, then |F| ≤ 1 and we are done). The first observation is
that if Y1 and Y2 are two nonempty members of F that satisfy Y1 \X = Y2 \X (possibly Y1 = X or
Y2 = X), then in fact Y1 = Y2. Suppose otherwise that there exist two such nonempty sets Y1, Y2 ∈ F
with Y1 ∩ X 6= Y2 ∩ X; W.l.o.g., suppose that there exists an element x1 ∈ Y1 \ Y2 ⊆ X, and hence
x1 ∈ X \ Y2. Since X is of minimum cardinality, we have that |X| ≤ |Y2|. As X * Y2, we infer that there
exists an element x2 ∈ Y2 \X = Y1 \X. Consider the pair {x1, x2} and observe that (a) x1 ∈ X \ Y2,
(b) x2 ∈ Y2 \X, and (c) {x1, x2} ⊆ Y1. This contradicts the definition of a TP-set system.

Define a set system F ′ over the ground set U \X as follows:

F ′ = {Y \X : Y ∈ F , Y 6= ∅}.

Clearly, F ′ is a TP-set system over a strictly smaller ground set, so from the induction hypothesis we
infer that |F ′| ≤ |U \X|+ 1. Moreover, from the observation of the previous paragraph we infer that sets
Y \X are pairwise different for Y ∈ F , Y 6= ∅, and hence |F| ≤ |F ′|+ 1 (the additive +1 comes from
possibly having the empty set in F). Concluding,

|F| ≤ |F ′|+ 1 ≤ |U \X|+ 1 + 1 ≤ |U | − 1 + 1 + 1 = |U |+ 1.

3 A Kernel for Trivially Perfect Editing

This section is devoted to the proof of Theorem 1, stating that Trivially Perfect Editing admits a
proper kernel with O(k7) vertices. As usual, the kernelization algorithm will be given as a sequence of
data reduction rules: simple preprocessing procedures that, if applicable, simplify the instance at hand.
For each rule we shall prove two results: (a) that applicability of the rule can be recognized in polynomial
time, and (b) that the rule is safe, i.e., the resulting instance is equivalent to the input one. At the end
of the proof we will argue that if no rule is applicable, then the size of the instance must be bounded
by O(k7). Some rules will decrement the budget k for edge edits; If this budget drops below zero, we may
conclude that we are dealing with a no-instance, so we immediately terminate the algorithm and provide
a constant-size trivial no-instance as the obtained kernel, for example the instance (C4, 0).

Before starting the formal description, let us give a brief overview of the structure of the proof. In
Section 3.1 we give some preliminary basic rules, which mostly deal with situations where we can find a
large number of induced C4s and P4s in the graph (henceforth called obstacles), which share only one
edge or non-edge. We then infer that this edge or non-edge has to be included in any editing set of size
at most k, and hence we can perform the necessary edit and decrement the budget.

In Section 3.2 we perform a greedy algorithm that iteratively packs disjoint induced C4s and P4s in
the graph. Note that if we are able to pack more than k of them, then this certifies that the considered
instance does not have a solution, and we can terminate the algorithm. Hence, if X is the union of vertex
sets of the packed obstacles, then |X| ≤ 4k and G−X is a trivially perfect graph. Uncovering such a
set X, which we call a TP-modulator, imposes a lot of structure on the considered instance, and is the
key for further analysis of irrelevant parts of the input.

Although the applied modulator technique is standard in the area of kernelization for graph modification
problems, in this paper we introduce a new twist to it that may have possible further applications. Namely,
we observe that since we consider edge editing problems, the packed obstacles do not have to be entirely

8

u v

(a) Rule 1: There are four C4s sharing only the
vertices u and v. Unless the edge uv is added, we
must use at least as many edits as the size of the
non-matching.

u v

(b) Rule 2: There are four P4s sharing only the
vertices u and v. Unless the edge uv is deleted, we
must use at least as many edits as the size of the
non-matching.

Figure 2: Illustrations of Rules 1 and 2. The red dotted edges are non-edges; They form a matching in
the complement graph. In each of the cases, the only common vertices are u and v.

vertex-disjoint, but the next obstacle can be packed even if it shares one vertex with the union of vertex
sets of the previous obstacles; In some limited cases even having two vertices in common is permitted.
Thus, the obtained modulator X has the property that not only is there no obstacle in the graph G that
is vertex-disjoint with X, but even the existence of obstacles sharing one vertex with X is forbidden.
This simple observation enables us to reason about the adjacency structure between X and V (G) \X. In
Section 3.3 we analyze this structure in order to prove the most important technical result of the proof:
The number of subsets of X that are neighborhoods within X of vertices from V (G) \ X is bounded
polynomially in k; see Lemma 3.8.

In Section 3.4 we proceed to analyze the trivially perfect graph G − X. Having the polynomial
bound on the number of neighborhoods within X, we can locate in the UCD of G −X a polynomial
(in k) number of important bags, where something interesting from the point of view of X-neighborhoods
happens. The parts between the important bags have very simple structure. They are either tassels : sets
of trees hanging below some important bag, where each such tree is a module in the whole graph G; or
combs: long paths stretched between two important bags where all the vertices of subtrees attached to
the path have exactly the same neighborhood in X. Tassels and combs are treated differently: Large
tassels contain large trivially perfect modules in G that can be reduced quite easily, however for combs we
need to devise a quite complicated irrelevant vertex rule that locates a vertex that can be safely discarded
in a long comb. The module reduction rules are described in Section 3.5, while in Section 3.6 we reduce
the sizes of tassels and combs and conclude the proof.

3.1 Basic rules

In this section we introduce the first two basic reduction rules. In the argumentation of the next sections,
we will assume that none of these rules is applicable. An instance satisfying this property will be called
reduced.

Rule 1. For an instance (G, k) with uv /∈ E(G), if there is a matching of size at least k + 1 in
G[N(u) ∩N(v)], then add edge uv to G and decrease k by one, i.e., return the new instance (G+uv, k−1).

Rule 2. For an instance (G, k) with uv ∈ E(G) and N1 = N(u) \N [v] and N2 = N(v) \N [u], if there is
a matching in G between N1 and N2 of size at least k + 1, then delete edge uv from G and decrease k by
one, i.e., return the new instance (G− uv, k − 1).

Lemma 3.1. Applicability of Rules 1 and 2 can be recognized in polynomial time. Moreover, both these
rules are safe, i.e., the input instance (G, k) is a yes-instance if and only if the output instance (G′, k− 1)
is a yes-instance.

Proof. Observe that verifying applicability of Rule 1 or 2 to a fixed (non-)edge uv boils down to computing
the cardinality of the maximum matching in an auxiliary graph. This problem is well-known to be solvable
in polynomial time [10]. Thus, by iterating over all edges and non-edges of G we obtain polynomial time
algorithms for recognizing applicability of Rules 1 and 2. We proceed to the proof of the safeness for
both rules.

Rule 1: Let x0y0, x1y1, . . . , xkyk be edges of the found matching in G[N(u) ∩N(v)]. Observe that for
each i, 0 ≤ i ≤ k, vertices u, xi, v, yi induce a C4 in G. These induced C4s share only the non-edge uv,
hence any editing set that does not contain uv must contain at least one element of

({u,xi,v,yi}
2

)
\ {uv},

9

and consequently be of size at least k + 1. We infer that every editing set for G that has size at most k
has to include the edge uv, and the safeness of the rule follows.

Rule 2: We proceed similarly as for Rule 1. Suppose x0y0, x1y1, . . . , xkyk is the found matching in G,
where xi ∈ N1 and yi ∈ N2 for 0 ≤ i ≤ k. Then vertices xi, u, v, yi induce a P4, and all these P4s for
0 ≤ i ≤ k pairwise share only the edge uv. Similarly as for Rule 1, we conclude that every editing set
for G of size at most k has to contain uv, and the safeness of the rule follows.

We can now use Lemma 3.1 to apply Rules 1 and 2 exhaustively; note that each application reduces the
budget k, hence at most k applications can be performed before discarding the instance as a no-instance.
From now on, we assume that the considered instance (G, k) is reduced.

3.2 Modulator construction

We now move to the construction of a small modulator whose raison d’être is to expose structure in
the considered graph G. We say that a subset W ⊆ V (G) with |W | = 4 is an obstruction if G[W] is
isomorphic to a C4 or a P4. Formally, our modulator will be compliant to the following definition.

Definition 3.2 (TP-modulator). Let (G, k) be an instance of Trivially Perfect Editing. A
subset X ⊆ V (G) is a TP-modulator if for every obstruction W the following holds (see Figure 3):

• |W ∩X| ≥ 2, and

• if |W ∩X| = 2, then it cannot happen that G[W] is a C4 of the form x1 − y1 − y2 − x2 − x1 or a P4

of the form x1 − y1 − y2 − x2, where W ∩X = {x1, x2}.

We call a TP-modulator X small if |X| ≤ 4k.

In particular, observe that for a TP-modulator X there is no obstacle disjoint with X, so G−X is
trivially perfect. The following result shows that from now we can assume that a small TP-modulator is
given to us.

Lemma 3.3. Given an instance (G, k) for Trivially Perfect Editing, we can in polynomial time
construct a small TP-modulator X ⊆ V (G), or correctly conclude that (G, k) is a no-instance.

Proof. The algorithm starts with X0 = ∅, and iteratively constructs an increasing family of sets X0 ⊆
X1 ⊆ X2 ⊆ In the ith iteration we look for an obstacle W that contradicts the fact that Xi−1 is a
TP-modulator according to Definition 3.2, by verifying all the quadruples of vertices in O(n4) time. If
this check verifies that Xi−1 is a TP-modulator, then we terminate the algorithm and output X = Xi−1.
Otherwise, we set Xi = Xi−1 ∪W and proceed to the next iteration. Moreover, if we performed k + 1
iterations, i.e., successfully constructed set Xk+1, then we terminate the algorithm concluding that (G, k)
is a no-instance. Since in each iteration the next Xi grows by at most 4 vertices, we infer that if we
succeed in outputting a TP-modulator X, then it has size at most 4k.

We are left with proving that if the algorithm successfully constructed Xk+1, then (G, k) is a no-
instance. To this end, we prove by induction on i that for every i = 0, 1, . . . , k + 1 and every editing set
F for G, it holds that |F ∩

(
Xi

2

)
| ≥ i. Indeed, from this statement for i = k + 1 we can infer that every

editing set for G has size at least k + 1, so (G, k) is a no-instance. The base of the induction is trivial,
so for the induction step suppose that Xi = Xi−1 ∪W , where W is an obstacle with |W ∩Xi−1| ≤ 1 or
having the form described in the second point of Definition 3.2.

First, if |W ∩Xi−1| ≤ 1, then
(
W
2

)
is disjoint with

(
Xi−1

2

)
. Since F is an editing set for G, we have

that F ∩
(
W
2

)
6= ∅, and hence∣∣∣∣F ∩ (Xi

2

)∣∣∣∣ ≥ ∣∣∣∣F ∩ (Xi−1

2

)∣∣∣∣+

∣∣∣∣F ∩ (W2
)∣∣∣∣ ≥ i− 1 + 1 = i,

by the induction hypothesis. Second, if |W ∩Xi−1| = 2 and W has one of the two forms described in the
second point of Definition 3.2, then it is easy to see that F in fact has to have a nonempty intersection
with

(
W
2

)
\ {x1x2}: editing only the (non)edge x1x2 would turn a C4 into a P4 or vice versa. Since(

W
2

)
\ {x1x2} is disjoint with

(
Xi−1

2

)
, we analogously obtain that∣∣∣∣F ∩ (Xi

2

)∣∣∣∣ ≥ ∣∣∣∣F ∩ (Xi−1

2

)∣∣∣∣+

∣∣∣∣F ∩ ((W2
)
\ {x1x2}

)∣∣∣∣ ≥ i− 1 + 1 = i.

10

X

Figure 3: Forbidden patterns of intersection between an obstruction and a TP-modulator X.

By applying Lemma 3.3, from now on we assume that we are given a small TP-modulator X in G.

3.3 Bounding the number of neighborhoods in a TP-modulator

Recall that we exposed a small TP-modulator X in the input graph G. In polynomial time we compute
the universal clique decomposition T = (T,B) of the trivially perfect graph G − X. The goal of this
section is to analyze the structure of neighborhoods within X of vertices residing outside X.

Definition 3.4 (X-neighborhood). Let G be a graph and X ⊆ V (G). For a vertex v ∈ V (G) \X, the
X-neighborhood of v, denoted NX

G (v), is the set NG(v) ∩X. The family of X-neighborhoods of G is the
set {NX

G (v) : v ∈ V (G) \X}.

Again, we shall omit the subscript G whenever this does not lead to any confusion. Recall that the
UCD T gives us a quasi-ordering � on the vertices of G−X. We have u � v if the bag to which v belong
is a descendant of the bag which u belongs to, where every bag is considered its own descendant. We
shall use the notation u ≺ v to denote that u � v and v � u. The following two lemmas show that the
quasi-ordering � is compatible with the inclusion ordering of X-neighborhoods.

Lemma 3.5. If u ≺ v then NX(u) ⊇ NX(v).

Proof. Suppose u ∈ Bt and v ∈ Bs, where t 6= s and t is an ancestor of s in the forest T . Recall that in a
UCD, every non-leaf node has at least two children, which means that there exists some node s′ that is a
descendant of t, but which is incomparable with s. Let w be any vertex of Bs′ . From the definition of a
UCD it follows that uv, uw ∈ E(G) but vw /∈ E(G).

For the sake of contradiction suppose that NX(u) 6⊇ NX(v), which means there exists a vertex x ∈ X
with xv ∈ E(G) and xu /∈ E(G). It follows that {x, u, v, w} is an obstacle regardless of whether wx
is an edge or a non-edge: it is an induced C4 if wx ∈ E(G) and an induced P4 if wx /∈ E(G). Thus
we have uncovered an obstacle sharing only one vertex with X, contradicting the fact that X is a
TP-modulator.

Lemma 3.6. If u, v ∈ Bt for some Bt ∈ B, then NX(u) ⊆ NX(v) or NX(v) ⊆ NX(u).

Proof. Since u, v ∈ Bt, we have that uv ∈ E(G). For the sake of contradiction, suppose that there exist
some xu ∈ NX(u) \NX(v) and xv ∈ NX(v) \NX(u). It can be now easily seen that regardless whether
xuxv belongs to E(G) or not, the quadruple {u, v, xu, xv} forms one of the obstacles forbidden in the
second point of the Definition 3.2. This is a contradiction with the fact that X is a TP-modulator.

Lemmas 3.5 and 3.6 motivate the following refinement of the quasi-ordering �: If u, v belong to
different bags of T , then we put u �N v if and only if u � v, and if they are in the same bag, then
u �N v if and only if NX(u) ⊇ NX(v). Thus, by Lemma 3.6 �N refines � by possibly splitting every
bag of T into a family of linearly ordered equivalence classes. Moreover, by Lemmas 3.5 and 3.6 we have
the following corollary.

Corollary 3.7. If u �N v then NX(u) ⊇ NX(v).

Observe that for a pair of vertices u, v ∈ V (G) \X, the following conditions are equivalent: (a) u
and v are comparable w.r.t �, (b) u and v are comparable w.r.t. �N , and (c) uv ∈ E(G). We have now
prepared all the tools needed to prove the main lemma from this section.

11

Lemma 3.8. If (G, k) is a reduced instance for Trivially Perfect Editing and X is a small
TP-modulator, then the number of different X-neighborhoods is at most O(k4).

Proof. Let F be the family of X-neighborhoods in G. For every Z ∈ F , let us choose an arbitrary vertex
vZ ∈ V (G) \X with Z = NX(vZ). We split F into two subfamilies: The first family F1 contains all the
sets of F that contain the endpoints of some non-edge in G[X], whereas the second family F2 contains
all the sets of F that induce complete graphs in G[X]. We bound the sizes of F1 and F2 separately.

Bounding |F1|: Let xy be a non-edge of G[X], and for 2 ≤ κ ≤ |X| let Fxy,κ1 be the family of those
sets of F1 that contain {x, y} and have cardinality exactly κ. Take any distinct Z1, Z2 ∈ Fxy,κ1 , and
observe that they are not nested since both have size κ. By Corollary 3.7, this means that vertices vZ1

and vZ2
are incomparable w.r.t. �N , so vZ1

vZ2
/∈ E(G). Hence, set {vZ : Z ∈ Fxy,κ1 } is independent in G.

Observe now that if we had that |{vZ : Z ∈ Fxy,κ1 }| ≥ 2k + 2, then Rule 1 would be applicable to the
non-edge xy. Since we assume that the instance is reduced, we conclude that |{vZ : Z ∈ Fxy,κ1 }| ≤ 2k+ 1,
and hence also |Fxy,κ1 | ≤ 2k + 1. By summing through all the κ between 2 and |X| and through all the
non-edges of G[X], we infer that

|F1| ≤
(

4k

2

)
· 4k · (2k + 1) = O(k4).

Bounding |F2|: Consider any pair of X-neighborhoods Z1, Z2 ∈ F2 such that they are not nested, and
moreover there exist vertices x1 ∈ Z1 \ Z2 and x2 ∈ Z2 \ Z1 such that x1x2 ∈ E(G). Since Z1 and Z2

are not nested, by Corollary 3.7 we infer that vZ1 and vZ2 are incomparable w.r.t. �N , and hence
vZ1

vZ2
/∈ E(G). Observe that then G[{vZ1

, vZ2
, x1, x2}] is an induced P4; however, the existence of such

an obstacle is not forbidden by the definition of a TP-modulator.
Create an auxiliary graph H with V (H) = F2, and put Z1Z2 ∈ E(H) if and only if Z1 and Z2 satisfy

the condition from the previous paragraph, i.e., Z1 and Z2 are not nested and there exist x1 ∈ Z1 \ Z2

and x2 ∈ Z2 \ Z1 with x1x2 ∈ E(G). Run the classic greedy 2-approximation algorithm for vertex cover
in H. This algorithm either finds a matching M in H of size more than

(
4k
2

)
· k, or a vertex cover C of H

of size at most 2 ·
(
4k
2

)
· k. In the first case, assign each edge Z1Z2 of M to the corresponding edge x1x2

of G[X] as in the definition of the edges of H. Observe that since |X| ≤ 4k, then some edge x1x2 ∈ G[X]
is assigned at least k+ 1 times. Then it is easy to see that the sets {vZ1

, vZ2
, x1, x2} for Z1Z2 being edges

of M assigned to x1x2 induce P4s that share only the edge x1x2, and hence Rule 2 would be applicable
to x1x2. This is a contradiction with the assumption that (G, k) is reduced. Hence, we can assume that
we have successfully constructed a vertex cover C of H of size at most 2 ·

(
4k
2

)
· k = O(k3).

Let now F ′2 = F2 \ C. Since F ′2 is independent in H, it follows that for any non-nested Z1, Z2 ∈ F ′2
and any x1 ∈ Z1 \ Z2, x2 ∈ Z2 \ Z1, we have that x1x2 /∈ E(G). Since the sets of F ′2 induce complete
graphs in G[X], this means that in particular there is no set Z3 ∈ F ′2 that contains both x1 and x2.
This proves that the family F ′2 is a TP-set system with X as ground set, so by Lemma 2.8 we infer that
|F ′2| ≤ |X|+ 1 ≤ 4k + 1. Concluding,

|F2| ≤ |C|+ |F ′2| ≤ O(k3) + 4k + 1 = O(k3),

and |F| ≤ |F1|+ |F2| = O(k4) +O(k3) = O(k4).

3.4 Locating important bags

In the previous section we analyzed the structure of neighborhoods that nodes from V (G) \X have in X.
Our goal in this section is to perform the symmetric analysis: to understand, how the neighborhood of a
fixed x ∈ X in V (G) \X looks like. Eventually, we aim to locate a family I of O(k) important bags, where
some non-trivial behavior w.r.t. the neighborhoods of vertices of X happens. Then, we will perform a
lowest common ancestor-closure on the set I, thus increasing its size to at most twice. After performing
this step, all the connected components of T − I have very simple structure from the point of view of
their neighborhoods in X. As there are only O(k) such components, we will be able to kernelize them
separately.

The following definition and lemma explains what are the types of neighborhoods that vertices of X
can have in V (G) \X. To simplify the notation, in the following we treat � also as a partial order on the

12

(a) Type 0: x sees a disjoint
union of connected compo-
nents.

(b) Type 1: x sees all the
vertices in bags from a root
and to a point in a bag, and
nothing else.

(c) Type 2: x has as neigh-
bors all the vertices from a
root and down to a bag, and
a collection of subtrees below
that bag.

Figure 4: Three types of neighborhoods; simply denoted Type 0, Type 1, and Type 2. The blue parts
mark the possible neighborhoods of a vertex x ∈ X.

vertices of the forest T denoting the ancestor-descendant relation, i.e., s � t if and only if s is an ancestor
of t (possibly s = t).

Definition 3.9 (Type 0, 1, and 2 neighborhoods). Let x ∈ X be any vertex and consider Ux = N(x) \X.
We say that Ux is (see Figure 4):

• A neighborhood of Type 0 if Ux is the union of the vertex sets of a collection of connected components
of G−X.

• A neighborhood of Type 1 if there exists a node tx ∈ V (T) such that
⋃
s≺tx Bs ⊆ Ux ⊆

⋃
s�tx Bs.

In other words, Ux consists of all the vertices contained in bags on the path from tx to the root of
its subtree in T , where some vertices of Btx itself may be excluded.

• A neighborhood of Type 2 if there exists a node tx ∈ V (T) and a collection Lx of subtrees of T
rooted at children of tx such that Ux =

⋃
s�tx Bs∪

⋃
S∈Lx

⋃
s∈V (S)Bs. In other words, Ux is formed

by all the vertices contained in bags on the path from tx to the root of its subtree in T , plus a
selection of subtrees rooted in the children of tx, where the vertices appearing in the bags of each
such subtree are either all included in Ux or all excluded from Ux.

Lemma 3.10. Let x ∈ X be any vertex and consider Ux = N(x) \X. Then Ux is of Type 0, 1 or 2.

Proof. From Corollary 3.7 we infer that Ux is closed downwards w.r.t. the quasi-ordering �N , i.e., if
v ∈ Ux and u �N v, then also u ∈ Ux. Let Sx be the set of nodes of T whose bags contain at least one
vertex of Ux. It follows that Sx is closed under taking ancestors in forest T . Moreover if t ∈ Sx, then the
bags of all the ancestors of t other than t are fully contained in Ux.

Claim 3.11. Suppose t, t′ ∈ Sx are two nodes that are incomparable w.r.t. �. Then Ux ⊇
⋃
s�tBs and

Ux ⊇
⋃
s�t′ Bs, i.e., Ux contains all the vertices of all the bags contained in the subtrees of T rooted at t

and t′.

Proof. We prove the statement for the subtree rooted at t′; The proof for the subtree rooted at t is
symmetric. Let y and y′ be arbitrary vertices of Bt ∩ Ux and Bt′ ∩ Ux, respectively. For the sake
of contradiction suppose there exists some v ∈

⋃
s�t′ Bs such that vx /∈ E(G). Since v ∈

⋃
s�t′ Bs

and t, t′ are incomparable w.r.t. �, by the properties of the universal clique decomposition we have
that yy′ /∈ E(G), vy /∈ E(G) and vy′ ∈ E(G). Since xy, xy′ ∈ E(G) by the definition of Ux, we conclude
that {y, y′, x, v} would induce a P4 in G that has only one vertex in common with X (see Figure 5), a
contradiction to the definition of a TP-modulator. y

We now use Claim 3.11 to perform a case study that recognizes Ux as a neighborhood of Type 0, 1,
or 2.

Suppose first that Ux contains vertices of at least two distinct connected components of G − X.
Let C1, C2 be any two such components, and let T1 and T2 be the trees of the forest T that are UCDs

13

x X

Bt Bt′

y y′

v

Figure 5: An induced P4, yxy′v, with only one vertex x in the modulator, appearing in the proof of
Claim 3.11.

of C1 and C2, respectively. Since Sx is closed under taking ancestors in T , it follows that the roots of T1
and T2 belong to Sx. Claim 3.11 implies then that the entire vertex sets of C1 and C2 are contained in Ux.
Since C1, C2 was an arbitrary pair of components containing a vertex of Ux, it follows that Ux must be
the union of vertex sets of a selection of connected components of G−X, i.e., a neighborhood of Type 0.

Since Ux = ∅ is also a neighborhood of Type 0, we are left with analyzing the case when Ux ⊆ V (C0)
for C0 being a connected component of G−X; Let T0 be the UCD of C0. Observe that if Ux does not
contain any pair of vertices incomparable w.r.t. �, then Sx must form a path from some node of T0 to the
root of T0, and hence Ux is a neighborhood of Type 1. Otherwise, there exists some node of Sx such that
at least two subtrees rooted at its children contain nodes from Sx. Let tx be such a node that is highest
in T0, and let Lx be the family of subtrees rooted at children of tx that contain nodes of Sx. Again
applying Claim 3.11, we infer that Ux contains all the vertices of all the bags of every subtree of Lx: for
any two distinct subtrees T1, T2 ∈ Lx, Sx contains the roots of T1 and T2, and hence by Claim 3.11 Ux
contains all the vertices of all the bags of T1 and T2. Since tx was chosen to be the highest, it follows
that Ux is a neighborhood of Type 2 for node tx and selection of subtrees Lx.

Clearly, for every x ∈ X we can in polynomial time analyze Ux and recognize it as a neighborhood
of Type 0, 1, or 2. Let I0 be the set of nodes tx for vertices x ∈ X for which Ux is of Type 1 or 2. To
simplify the structure of T − I0, we perform the lowest common ancestor-closure operation on I0. The
following variant of this operation is taken verbatim from the work of Fomin et al. [13].

Definition 3.12 ([13]). For a rooted tree T and vertex set M ⊆ V (T) the lowest common ancestor-closure
(LCA-closure) is obtained by the following process. Initially, set M ′ = M . Then, as long as there are
vertices x and y in M ′ whose least common ancestor w is not in M ′, add w to M ′. When the process
terminates, output M ′ as the LCA-closure of M . The following folklore lemma summarizes two basic
properties of LCA-closures.

Lemma 3.13 ([13]). Let T be a tree, M ⊆ V (T) and M ′ = LCA-closure(M). Then |M ′| ≤ 2|M | and
for every connected component C of T −M ′, |N(C)| ≤ 2.

Construct now the set I by taking LCA-closure(I0) and adding the root of every connected component
of T that contains a bag of I0 (provided it is not already included). The nodes from I will be called
important nodes, or important bags. From Lemma 3.13 it follows that |I| ≤ 3|X| ≤ 12k, and by the
construction we infer that every connected component C of T − I is of one of the following three forms:

• C is not adjacent to any node of I, and is thus simply a connected component of T that does not
contain any important bag.

• C is adjacent to one node a of I, and it is a subtree rooted at a child of a.

• C is adjacent to two nodes a and b of I such that a is an ancestor of b. Then C is formed by the
internal nodes of the a − b path in T , plus all the subtrees rooted at the other children of these
internal nodes.

14

3.5 Module reduction

In this section we give two new reduction rules: a twin reduction and a module reduction rule. These
rules are executed exhaustively by the algorithm as Rules 3 and 4. The reason why we introduce them
now is that only after understanding the structural results of Sections 3.3 and 3.4, the motivation of
these rules becomes apparent. Namely, these rules will be our main tools in reducing the sizes of parts of
G−X located between the important bags.

3.5.1 Twin reduction

Rule 3. If T ⊆ V (G) is a true twin class of size |T | > 2k + 5, and v ∈ T is an arbitrarily picked vertex,
then remove v from the graph, i.e., proceed with the instance (G− v, k).

Lemma 3.14. Applicability of Rule 3 can be recognized in polynomial time. Moreover, Rule 3 is safe,
i.e., (G, k) is a yes-instance if and only if (G− v, k) is a yes-instance.

Proof. In order to recognize the applicability of Rule 3 we only need to inspect every true twin classes in
the graph, which clearly can be done in polynomial time. We proceed to the proof of the safeness of the
rule.

Let T be a true twin class of size at least 2k + 5 and let v be the vertex the rule deleted. Since the
class of trivially perfect graphs is hereditary, if (G, k) is a yes-instance, it follows that (G − v, k) is a
yes-instance. Suppose now that (G− v, k) is a yes-instance. Let F be a set of edges with |F | ≤ k such
that (G− v)4F is trivially perfect. We now show that G4F is also trivially perfect, which means that F
is also a solution to (G, k). For the sake of contradiction, suppose W is an obstruction in G4F . Since
(G − v)4F is trivially perfect, W must contain the deleted vertex v. Since F has size at most k, at
most 2k vertices of T can be incident to an edge of F . Let v1, v2, v3, and v4 be four vertices of T that
are different from v and are not incident to F . Then one of them, say v1, is not contained in W . Since v
and v1 are true twins both in G and in G4F , we can replace v with v1 in W yielding a new set W ′ which
is an obstruction in G4F . However, since v is not a member of W ′, we have that W ′ is an obstruction
in (G− v)4F , contradicting the assumption that (G− v)4F was trivially perfect.

3.5.2 Module reduction

Recall that a module is a set of vertices M such that for every vertex v in V (G) \M , either M ⊆ N(v) or
M ∩N(v) = ∅; see Definition 2.1. The following rule enables us to reduce large trivially perfect modules.

Rule 4. Suppose M ⊆ V (G) is a module such that G[M] is trivially perfect and it contains an independent
set of size at least 2k + 5. Then let us take any independent set I ⊆ M of size 2k + 4, and we delete
every vertex of M apart from I, i.e., proceed with the instance (G− (M \ I), k).

Observe that Rule 4 always deletes at least one vertex, since |M | ≥ 2k + 5 and |I| = 2k + 4. Actually,
we could define a stronger rule where we only assume that |M | ≥ 2k + 5; however, the current statement
will be helpful in recognizing the applicability of Rule 4.

We first prove that the rule is indeed safe.

Lemma 3.15. Provided that (G, k) is a reduced instance (w.r.t. Rules 1 and 2), then Rule 4 is safe, i.e.,
(G, k) is a yes-instance if and only if (G− (M \ I), k) is a yes-instance.

Proof. Let A = M \ I, and G′ = G−A. Since G′ is an induced subgraph of G, by heredity, if (G, k) is a
yes-instance, then (G′, k) is a yes-instance. We proceed to the proof of the other direction. Suppose then
that (G′, k) is a yes-instance, and let F , |F | ≤ k, be a minimum-size editing set for G′.

Claim 3.16. No vertex of I is incident to any edit of F .

Proof. Since F has minimum possible size, it is inclusion-wise minimal. We show that if FI ⊆ F is the set
of edges of F incident to a vertex of I and F ′ = F \FI , then G′4F being trivially perfect implies G′4F ′
being trivially perfect. Since |I| = 2k + 4, we can find at least four vertices v1, . . . , v4 ∈ I that are not
incident to any edit of F . Suppose that G′4F ′ is not trivially perfect. Then there is an obstruction W in
G′4F ′ containing at least one of the vertices of I incident to an edge of F . Create W ′ by replacing every
vertex of (W ∩ I) \ {v1, . . . , v4} by a different vertex of {v1, . . . , v4} that is not contained in W . Since

15

vertices of I are not incident to the edits of F ′, they are false twins in G′4F ′, and hence W ′ created in
this manner induces a graph isomorphic to the one induced by W . Thus, W ′ is an obstacle in G′4F ′.
However, the vertices v1, . . . , v4 are not incident to the edits of F and hence W ′ induces the same graph
in G′4F ′ as in G′4F . Therefore W ′ would be an obstacle in G′4F , a contradiction to G′4F being
trivially perfect.

Since we argued that F ′ ⊆ F is also a solution, by the optimality of F we infer that F = F ′ and
FI = ∅. y

We now argue that G4F is trivially perfect, which will imply that (G, k) is a yes-instance. For the
sake of contradiction, suppose that there exists an obstacle W in G4F ; It follows that W shares at least
one vertex with M \ I. From Claim 3.16 it follows that no edit of F is incident to any vertex of M , so
in G4F we still have that M is a module.

If the obstruction W induces a P4, then it is known that W is fully contained in the module M , or
has at most one vertex in M [18, Observation 1]. Since G[M] = (G4F)[M] is trivially perfect, the latter
is the case. But since M is a module in G4F , then replacing the single vertex of W ∩A with any vertex
of I would yield an obstacle in G′4F , a contradiction.

Consider then the case when W induces a C4 in G4F . Since G[M] = (G4F)[M] is C4-free, we have
that W is not entirely contained in M . Also, if W had three vertices in M , then the remaining vertex
would need to be contained in NG(M), and hence would be adjacent in G4F to all the other three
vertices of W , a contradiction to (G4F)[W] being a C4. Therefore, at most two vertices of W can be
in M .

Suppose exactly two vertices w1 and w3 of W are in M , and w2 and w4 are outside M . As M is a
module both in G and in G4F , we must have that w2, w4 ∈ NG(M) and hence the 4-cycle induced by W
in G4F must be w1 −w2 −w3 −w4 −w1. Take any two vertices w′1, w

′
3 ∈ I and obtain W ′ by replacing

w1 and w3 with them. It follows that W ′ induces a C4 in G′4F , a contradiction.
Finally, consider the case when exactly one vertex of W , say w1, is in M . Again, replacing w1 with

any vertex of I would yield an induced C4 contained in G′4F , a contradiction. Thus, we conclude that
G4F is trivially perfect.

Observe that in order to apply Rule 4, one needs to be given the module M . Given M , finding any
independent set I ⊆M of size 2k + 4 can then be done easily as follows: We can find an independent set
of maximum cardinality in M in polynomial time, since G[M] is trivially perfect and the Independent
Set problem is polynomial-time solvable on trivially perfect graphs (it boils down to picking one vertex
from every leaf bag of the universal clique decomposition of the considered graph). Then we take any of
its subsets of size 2k + 4 to be I. Hence, to apply Rule 4 exhaustively, we need the following statement.

Lemma 3.17. There exists a polynomial-time algorithm that, given an instance (G, k), either finds a
module M ⊆ V (G) where Rule 4 can be applied, or correctly concludes that Rule 4 is inapplicable.

Proof. Using Theorem 5 we compute the module decomposition (T, (M t)t∈V (T)) of G. Then we verify
applicability of Rule 4 to each module M t for t ∈ V (T), by checking whether G[M] is trivially perfect and
contains an independent set of size 2k + 5 (the latter check can be done in polynomial time since G[M] is
trivially perfect). Moreover, we perform the same check on all the modules Nt formed as follows: take a
union node t ∈ V (T), and construct a module Nt by taking the union of labels of those children of t that
induce trivially perfect graphs.

We now argue that if Rule 4 is applicable to some module M in G, then this algorithm will encounter
some (possibly different) module M ′ to which Rule 4 is applicable as well. By the third point of Theorem 5,
either M = M t for some t ∈ V (T), or M is the union of a collection of labels of children of some union or
join node. In the first case the algorithm verifies M explicitly. In the following, let α(H) denote the size
of a maximum independent set in a graph H.

If now M is a union of labels of some children of a union node t, then by heredity M ⊆ N t.
Moreover, N t induces a trivially perfect graph (since trivially perfect graphs are closed under taking
disjoint union) and clearly α(N t) ≥ α(M). Hence, Rule 4 is applicable to M ′ = N t, and this will be
discovered by the algorithm.

Finally, suppose M is a union of labels of some children t1, t2, . . . , tp of a join node t. Observe
that since for every i 6= j, every vertex of M ti is adjacent to every vertex of M tj , it follows that
α(G[M]) = maxi=1,2,...,p α(G[M ti]). Without loss of generality suppose that the maximum on the

16

right hand side is attained for the module M t1 . Then by heredity G[M t1] is trivially perfect, and
α(G[M t1]) = α(G[M]) ≥ 2k + 5. Therefore Rule 4 is applicable to M ′ = M t1 , and this will be discovered
by the algorithm.

We remark here that for the kernelization algorithm it is not necessary to be sure that Rule 4 is
inapplicable at all. Instead, we could perform it on demand. More precisely, during further analysis of
the structure of G−X we argue that some modules have to be small, since otherwise Rule 4 would be
applicable. This analysis can be performed by a polynomial-time algorithm that would just apply Rule 4
on any encountered module that needs shrinking. However, we feel that the fact that Rule 4 can be
indeed applied exhaustively provides a better insight into the algorithm, and streamlines the presentation.

Having introduced and verified Rules 3 and 4, we can now prove that after applying them exhaustively,
all the trivially perfect modules in the graph are small.

Lemma 3.18. A (possibly disconnected) trivially perfect graph with maximum true twin class size t and
maximum independent set size α has at most (2α− 1)t vertices in total.

Proof. Let T be the UCD of G, a trivially perfect graph with independent set number α and every true
twin class of size at most t. Since any collection comprising one vertex from each leaf bag of T forms an
independent set, there are at most α leaf bags in T . Thus the number of nodes of T in total is at most
2α− 1. Since every bag of the decomposition T ⊆ V (G) is a true twin class, we conclude that there are
at most (2α− 1)t vertices in G.

Corollary 3.19. Suppose an instance (G, k) is reduced, and moreover Rules 3 and 4 are not applicable to
(G, k). Then for every module M ⊆ V (G) such that G[M] is trivially perfect, we have that |M | = O(k2).

Proof. Suppose M is such a module. Observe that members of every true twin class in G[M] are also
true twins in G (since M is a module). Hence twin classes in G[M] have size at most 2k+ 4, as otherwise
Rule 3 would be applicable. Moreover, if G[M] contained an independent set of size 2k + 5, then Rule 4
would be applicable. By Lemma 3.18, we infer that |M | ≤ (4k + 7)(2k + 4) = O(k2).

From now on we assume that in the considered instance (G, k) we have exhaustively applied Rules 1–4,
using the algorithms of Lemmas 3.1, 3.14, and 3.17. Hence Corollary 3.19 can be used. Observe that to
perform this step, we do not need to construct the small modulator X at all. However, we hope that
the reader already sees that Rules 1–4 will be useful for shrinking too large parts of G−X between the
important bags.

3.6 Kernelizing non-important parts (irrelevant vertex deletion)

Recall that we have fixed a small TP-modulator X with |X| ≤ 4k such that G−X is a trivially perfect
graph with universal clique decomposition T . Moreover, Rules 1–4 are inapplicable to (G, k). By
Lemma 3.8 we have that the number of X-neighborhoods is O(k4). By the marking procedure, we have
marked a set I of O(k) bags of T as important, in such a manner that every connected component
of T − I is adjacent to at most two vertices of I, and is in fact of one of the three forms described at the
end of Section 3.4.

Thus, the whole vertex set of G−X can be partitioned into four sets:

VI : vertices contained in bags from I;

V0: vertices contained in bags of those components of T − I that are not adjacent to any bag from I;

V1: vertices contained in bags of those components of T − I that are adjacent to exactly one bag from I;

V2: vertices contained in bags of those components of T − I that are adjacent to exactly two bags from I.

We are going to establish an upper bound on the cardinality of each of these sets separately. Upper
bounds for VI , V0, and V1 follow already from the introduced reduction rules, but for V2 we shall need a
new reduction rule. The upper bounds on the cardinalities of VI and V0 are quite straightforward.

Lemma 3.20. |VI | ≤ O(k6).

17

Proof. Consider for some a ∈ I the bag Ba. Note that Ba is a module in G−X. By Lemma 3.8 there are
only O(k4) possible X-neighborhoods among vertices of G−X. Hence, vertices of Ba can be partitioned
into O(k4) classes w.r.t. the neighborhoods in X. Each such class is a module in G that is also a clique,
and hence it is a true twin class. Since the twin reduction rule (Rule 3) is not applicable, each true
twin class has size at most 2k + 5, which implies that |Ba| ≤ O(k5). As |I| = O(k), we conclude that
|VI | ≤ O(k6).

We remark that using a more precise analysis of the situation in one bag Ba for a ∈ I, one can see
that the X-neighborhoods of elements of Ba are nested, so there is only at most |X| + 1 ≤ 4k + 1 of
them. By plugging in this argument in the proof of Lemma 3.20, we obtain a sharper upper bound of
O(k3) instead of O(k6). However, the upper bounds on |V0| and |V1| are O(k6) and O(k7), respectively,
so establishing a better bound here would have no influence on the overall asymptotic kernel size. Hence,
we resorted to a simpler proof of a weaker upper bound.

Lemma 3.21. |V0| ≤ O(k6).

Proof. Observe that V0 is the union of bags of these connected components of G−X, whose universal
clique decompositions (being components of T) do not contain any important bag. By the definition of
important bags, each such connected component C is a module in G, and clearly its neighborhood is
entirely contained in X. Recall that by Lemma 3.8 there are only O(k4) possible different X-neighborhoods
among vertices of G −X. Thus, we can group the connected components of G[V0] according to their
X-neighborhoods into O(k4) groups, and the union of vertex sets in each such group forms a module
in G. Since Rule 4 is not applicable, by Corollary 3.19 we have that each of these modules has size O(k2).
Thus we infer that |V0| ≤ O(k6).

To bound the size of V1 we need a few more definitions. Suppose that C is a component of T − I that
is adjacent to exactly one important bag a ∈ I. By the construction of I, we have that C is a tree rooted
in a child of a. We shall say that C is attached below a. The union of bags of all the components of T − I
attached below a will be called the tassel rooted at a. Thus, V1 can be partitioned into O(k) tassels.

Lemma 3.22. For every a ∈ I, the tassel rooted at a has size at most O(k6).

Proof. Let C1, C2, . . . , Cr be the components of T − I rooted at the children of a, whose union of bags
forms the tassel rooted at a. Recall that none of the Cis contains any important bag. Therefore, from
Lemma 3.10 we infer that for any Ci and any x ∈ X, either all the vertices from the bags of Ci are
adjacent to x, or none of them. Thus, the union of bags of each Ci forms a module in G: The vertices in
this union have the same X-neighborhood, and moreover their neighborhoods in G−X are formed by
the vertices from the bags on the path from a to the root of a’s connected component in T . Similarly as
in the proof of Lemma 3.21, by Lemma 3.8 there are only O(k4) possible X-neighborhoods, so we can
partition the components Ci into O(k4) classes with respect to their neighborhoods in X. The union of
bags in each such class forms a module in G; since Rule 4 is not applicable, by Corollary 3.19 we infer
that its size is bounded by O(k2). Thus, the total number of vertices in all the components Ci is at most
O(k6).

As |I| = O(k), Lemma 3.22 immediately implies the following.

Lemma 3.23. |V1| ≤ O(k7).

We are left with bounding the cardinality of V2. Let us fix any component C of T −I which is adjacent
in T to two nodes of I. From the construction of I, it follows that C has the following form:

• C contains a path P = a1 − a2 − . . .− ad such that in T , node ad is a child of an important node
b↑, and a1 has exactly one important child b↓.

• For every i = 1, 2, . . . , d, C contains also all the subtrees of T rooted in children of ai that are
different from ai−1 (where a0 = b↓).

Such a component C will be called a comb (see Figure 6). The path P is called the shaft of a comb; the
union of the bags of the shaft will be denoted by Q. The union of the bags of the subtrees rooted in
children of ai, apart from ai−1, will be called the tooth at i, and denoted by Ri. Note that the subgraph

18

b↓ = a0

a1

aα−1

aα

ai

aβ

ad

L =
⋃β
i=α−1Bi ∪Ri

Ri

b↑

Figure 6: The anatomy of a comb. The top and bottom bags, b↑ and b↓, are important bags.

induced by a tooth is not necessarily connected; it is, however, always non-empty by the definition of the
universal clique decomposition. We also denote R =

⋃d
i=1Ri. By somehow abusing the notation, we will

also denote Bi = Bai for i = 1, 2, . . . , d. The number of teeth d is called the length of a comb.
Since the comb C does not contain any important vertices, from Lemma 3.10 and the construction

of I we immediately infer the following observation about the X-neighborhoods of vertices of the shaft
and the teeth.

Lemma 3.24. There exists two sets Y, Z with Z ⊆ Y ⊆ X such that NX(u) = Y for every u ∈ Q and
NX(v) = Z for every v ∈ R.

In particular, Lemma 3.24 implies that every tooth of a comb is a module. Hence, since Rule 4 is not
applicable, we infer that |Ri| = O(k2) for i = 1, 2, . . . , d. Also, observe that each Bi is a twin class, so by
inapplicability of Rule 3 we conclude that |Bi| ≤ 2k + 5 for each i = 1, 2, . . . , d.

Since T is a forest and |I| = O(k), it follows that in T − I there are O(k) combs. As we already
observed, for each comb the sizes of individual teeth and bags on the shaft are bounded polynomially in
k. Hence, the only thing that remains is to show how to reduce combs that are long. In order to do this,
we need one more definition: a tooth Ri is called simple if G[Ri] is edgeless, and it is called complicated

19

otherwise. We can now state the final reduction rule.

Rule 5. Suppose C is a comb of length at least (4k + 3)2, and adopt the introduced notation for the
shaft and the teeth of C. Define an index β as follows:

(i) If at least 4k + 3 teeth Ri are complicated, then we let β = d.

(ii) Otherwise, there is a sequence of 4k + 3 consecutive teeth Ri, Ri+1, . . . , Ri+4k+2 that are simple.
Let β be the index of the last tooth of this sequence, i.e., β = i+ 4k + 2.

Having defined β, remove the tooth Rβ from the graph and do not modify the budget. That is, proceed
with the instance (G−Rβ , k).

Lemma 3.25. Rule 5 is safe.

Proof. Since G−Rβ is an induced subgraph of G, then we trivially have that the existence of a solution
for (G, k) implies the existence of a solution for (G−Rβ , k). Hence, we now prove the converse. Suppose
that F is a solution to (G−Rβ , k), that is, a set of edits in G−Rβ such that (G−Rβ)4F is trivially
perfect and |F | ≤ k.

We will say that a tooth Ri is spoiled if any vertex of Ri ∪Bi is incident to an edit from F , and clean
otherwise. The first goal is to find an index α such that

(a) 1 < α < β,

(b) the teeth Rα−1 and Rα are clean, and

(c) if any of the teeth Rα+1, Rα+2, . . . , Rβ is complicated, then Rα is also complicated.

Suppose first that β was constructed according to case (i), i.e., there are at least 4k + 3 complicated
teeth in the comb, and hence β = d. Out of these teeth Ri, at most one can have index 1, at most one
can have index d, at most 2k can be spoiled (since |F | ≤ k) and at most 2k can have the preceding tooth
Ri−1 spoiled. This leaves at least one complicated tooth Ri such that 1 < i < d and both Ri and Ri−1
are clean. Then we can take α = i; thus, property (c) of α is satisfied since Rα is complicated.

Suppose then that β was constructed according to case (ii), i.e., the following teeth are all simple:
Rβ−(4k+2), Rβ−(4k+1), . . . , Rβ−1, Rβ . Similarly as before, out of these 4k + 3 teeth, one has index β, one
has index β − (4k + 2), at most 2k can be spoiled, and at most 2k can have the preceding tooth spoiled.
Hence, among them there is a tooth Ri such that β − (4k + 2) < i < β and both Ri and Ri−1 are clean.
Again, we take α = i; thus, property (c) is satisfied since all the teeth Rβ−(4k+2), Rβ−(4k+1), . . . Rβ−1, Rβ
are simple.

With α defined, we are ready to complete the proof of Lemma 3.25. To that aim, define L =⋃β
i=α−1Bi ∪ Ri. Construct F ′ from F by removing all the edits that are incident to any vertex of L;

clearly |F ′| ≤ |F | ≤ k. We claim that F ′ is a solution to the instance (G, k), that is, that G4F ′ is
trivially perfect. For the sake of a contradiction, suppose that A ⊆ V (G) is a vertex set of size 4 such
that G4F ′[A] is a P4 or a C4. Let A0 = A ∩ L and A1 = A \A0.

Claim 3.26. |A0| = 1 or |A0| = 2.

Proof. Suppose first that A0 = ∅, so A ⊆ V (G)\L ⊆ V (G−Rβ). Since F ∩
(
V (G)\L

2

)
= F ′∩

(
V (G)\L

2

)
and

Rβ ⊆ L, we have that the induced subgraph G4F ′[A] is equal to the induced subgraph (G−Rβ)4F [A].
However, the graph (G−Rβ)4F is trivially perfect, so it cannot have an induced P4 or C4; a contradiction.

Suppose now that |A0| ≥ 3. Since A0 ⊆ L and no edit of F ′ is incident to any vertex of L, we infer that
there is no edit of F ′ between vertices of A: only at most one vertex of A does not belong to A0. Therefore
G[A] = G4F ′[A] and G[A] is an induced C4 or P4 in the graph G. However, A0 ⊆ L ⊆ V (G) \ X,
so |A ∩ X| ≤ 1. Thus, G[A] would be an obstacle in G that has at most one common vertex with
TP-modulator X, a contradiction with the definition of a TP-modulator (Definition 3.2). y

To obtain a contradiction, we shall construct a set A′0 satisfying the following properties:

(i) A′0 ⊆ Rα−1 ∪Bα−1 ∪Rα ∪Bα;

20

(ii) |A′0| = |A0| and G[A′0] is edgeless if and only if G[A0] is edgeless;

(iii) |A0 ∩Q| = |A′0 ∩Q| and hence |A0 ∩R| = |A′0 ∩R|.

Let us define A′ = A1 ∪A′0. For now we postpone the exact construction

Claim 3.27. If A′0 satisfies properties (i), (ii), and (iii), then G4F ′[A] is isomorphic to G4F ′[A′].

Proof. By property (iii) there exists a bijection η between A0 and A′0 that preserves belonging to Q or R
between the argument and the image. Extend η to A by defining η(u) = u for u ∈ A1; we claim that η is
an isomorphism between G4F ′[A] and G4F ′[A′]. To see this, observe that since A0, A

′
0 ⊆ L, then we

have that no vertex of A0 or A′0 is incident to any edit of F ′. Moreover, in G, all the vertices of L ∩R
have the same neighborhood in V (G) \ L, and the same holds also for the vertices of L ∩ Q. As the
neighborhoods of these vertices in G and in G4F ′ are exactly the same, we infer that each vertex u ∈ A0

is adjacent in G4F ′ to the same vertices of A1 as the vertex η(u) is.
To conclude the proof, we need to prove that η restricted to A′0 is also an isomorphism between

G4F ′[A0] and G4F ′[A′0]. Again, A0 and A′0 are not incident to any edit of F ′, so G4F ′[A0] = G[A0]
and G4F ′[A′0] = G[A′0]. By Claim 3.26 we have that |A0| = 1 or |A0| = 2, and we conclude by observing
that a pair of simple graphs with at most two vertices are isomorphic if and only if both of them are
edgeless or both of them contain an edge, and in both cases any bijection between the vertex sets is an
isomorphism. y

We now argue that the existence of a set A′0 satisfying properties (i), (ii), and (iii) leads to a
contradiction. Recall that the teeth Rα−1 and Rα are clean, which means that no vertex of Rα−1 ∪
Bα−1 ∪ Rα ∪ Bα is incident to any edit from F . Moreover, as β > α, we have that A′ ⊆ V (G − Rβ).
By the construction of F ′ and A′ we infer that G4F ′[A′] = (G−Rβ)4F [A′]. By Claim 3.27 we have
that G4F ′[A′] is a P4 or a C4, since G4F ′[A] was. This would, however, mean that (G−Rβ)4F would
contain an induced P4 or an induced C4, a contradiction to the assumption that (G−Rβ)4F is trivially
perfect.

Therefore, we are left with constructing a set A′0 satisfying properties (i), (ii), and (iii). We give
different constructions depending on the alignment of the vertices of A0. In each case we just define A′0;
verifying properties (i), (ii), and (iii) in each case is trivial.

Case 1. |A0| = 1.

Case 1a. A0 = {u} and u ∈ Q. Then A′0 = {u′} for any u′ ∈ Bα−1.

Case 1b. A0 = {u} and u ∈ R. Then A′0 = {u′} for any u′ ∈ Rα−1.

Case 2. |A0| = 2.

Case 2a. A0 = {u, v}, u, v ∈ Q. As G[Q] is a clique, it follows that uv ∈ E(G). Then A′0 = {u′, v′}
for any u′ ∈ Bα−1 and v′ ∈ Bα.

Case 2b. A0 = {u, v}, u ∈ Q, v ∈ R, and uv /∈ E(G). Then A′0 = {u′, v′} for any u′ ∈ Bα−1 and
v′ ∈ Rα.

Case 2c. A0 = {u, v}, u ∈ Q, v ∈ R, and uv ∈ E(G). Then A′0 = {u′, v′} for any u′ ∈ Bα and
v′ ∈ Rα−1.

Case 2d. A0 = {u, v}, u, v ∈ R, and uv /∈ E(G). Then A′0 = {u′, v′} for any u′ ∈ Rα and
v′ ∈ Rα−1.

Case 2e. A0 = {u, v}, u, v ∈ R, and uv ∈ E(G). As there are no edges in G between different
teeth, we observe that u, v ∈ Ri for some i such that Ri ⊆ L, i.e., α− 1 ≤ i ≤ β. In particular,
the tooth Ri must be complicated. If i = α− 1 or i = α, then we can take A′0 = A0. Otherwise
we have that α < i ≤ β and Ri is complicated, so by property (c) of β we infer that Rα is also
complicated. Then we take A′0 = {u′, v′} for any u′, v′ ∈ Rα such that u′v′ ∈ E(G).

This case study is exhaustive due to Claim 3.26.

We can finally gather all the pieces and prove our main theorem.

21

Theorem 6. The problem Trivially Perfect Editing admits a proper kernel with O(k7) vertices.

Proof. The algorithm first applies Reduction Rules 1—4 exhaustively. As each application of a reduction
rule either decreases n and does not change k, or decreases k while not changing n, the number of
applications of these rules will be bounded by O(n+k) until k becomes negative and we can conclude that
we are working with a no-instance. By Lemmas 3.1, 3.14, 3.15, and 3.17, these rules are safe, applicability
of each rule can be recognized in polynomial time, and applying the rules also takes polynomial time.

After Rules 1–4 have been applied exhaustively, we construct a small TP-modulator X using the
algorithm of Lemma 3.3. In case the construction fails, we conclude that we are working with a no-instance.
Otherwise, in polynomial time we construct the universal clique decomposition T of G−X, and then we
mark the set I of important bags. Both locating the important bags and performing the lowest common
ancestor closure can be done in polynomial time. After this, we examine all the combs of T − I. In case
there is a comb of length greater than (4k + 3)2, we apply Rule 5 on it and restart the whole algorithm.
Observe that each application of this rule reduces the vertex count by one while keeping k, so the total
number of times the algorithm is restarted is bounded by the vertex count of the original instance.

We are left with analyzing the situation when Reduction Rule 5 is not applicable, i.e., all the combs
have length less than (4k+ 3)2. As we have argued, the inapplicability of Rules 3 and 4 ensures that bags
of shafts of combs have sizes O(k) and teeth of combs have sizes O(k2). Hence, every comb has O(k4)
vertices. Since the number of combs is O(k), we infer that |V2| ≤ O(k5). Together with the upper bounds
on the sizes of VI , V0, and V1 given by Lemmas 3.20, 3.21, and 3.23, we conclude that

|V (G)| = |X|+ |VI |+ |V0|+ |V1|+ |V2| ≤ 4k +O(k6) +O(k6) +O(k7) +O(k5) = O(k7).

Hence, we can output the current instance as the obtained kernel.

4 Kernels for Trivially Perfect Completion/Deletion

We now present how the technique applied to Trivially Perfect Editing also yields polynomial kernels
for Trivially Perfect Completion and Trivially Perfect Deletion after minor modifications.
That is, we prove Theorems 2 and 3.

We show that all the rules given above, with only two minor modifications are correct for both
problems. Clearly, the running times of the algorithms recognizing applicability of the rule do not depend
on the problem we are solving, so we only need to argue for their safeness.

In the first two rules, Rules 1 and 2, we add and delete an edge, respectively, and the argument is
that any editing set of size at most k must necessarily include this edit. However, in the completion and
deletion version, we are not allowed both operations. Hence, for the first rule, in the deletion variant we
can immediately infer that we are working with a no-instance, and respectively for the second rule in the
completion variant.

Thus, the two following rules replace Rule 1 for deletion and Rule 2 for completion, and their safeness
is guaranteed by a trivial modification of the proof of Lemma 3.1:

Rule 1D. For an instance (G, k) with uv /∈ E(G), if there is a matching of size at least k + 1 in
G[N(u) ∩N(v)], then return a trivial no-instance as the computed kernel.

Rule 2C. For an instance (G, k) with uv ∈ E(G) and N1 = N(u) \N [v] and N2 = N(v) \N [u], if there
is a matching in G between N1 and N2 of size at least k + 1, then return a trivial no-instance as the
computed kernel.

Observe that Rules 1D and 2C are applicable in exactly the same instances as their unmodified
variants. Hence, exhaustive application of the basic rules with any of these modifications results in exactly
the same notion of a reduced instance as the one introduced in Section 3.1. We now argue that Rules 3
and 4 are safe for both the deletion and the completion variant, without any modifications.

Lemma 4.1. Rules 3 and 4 are safe both for Trivially Perfect Deletion and for Trivially
Perfect Completion.

Proof. The proof of the safeness of Rule 3 (Lemma 3.14) in fact argues that every editing set F for
(G− v, k) with |F | ≤ k is also an editing set for (G, k). This holds also for editing sets that consist only

22

of edge additions/deletions, so the reasoning remains the same for Trivially Perfect Deletion and
Trivially Perfect Completion.

The proof of the safeness of Rule 4 (Lemma 3.15) first argues that any minimum-size editing set F for
the reduced instance (G′, k) is not incident to any vertex of I. This is done by showing that otherwise F
would not be an inclusion-wise minimal editing set (proof of Claim 3.16), and the argumentation can be
in the same manner applied to minimum-size completion/deletion sets. Then it is argued that F is in
fact an editing set for the original instance (G, k), and the argumentation is oblivious to whether F is
allowed to contain edge additions or deletions.

We now proceed to the analysis of Rule 5 in the completion and deletion variants. First, let us consider
the construction of the modulator. In the completion/deletion variants we can construct the modulator
in exactly the same manner as for editing. Indeed, the main argument for the bound |X| ≤ 4k states
that if the construction was performed for more than k rounds, then we are dealing with a no-instance,
since then any editing set for G has size at least k + 1. Completion and deletion sets are editing sets
in particular, so the same argument holds also for Trivially Perfect Deletion and Trivially
Perfect Completion.

Results of Sections 3.3 and 3.4, i.e., the analysis of the X-neighborhoods and marking of the important
bags, work in exactly the same manner, since they are based on the same notions of a reduced instance
and of a TP-modulator. Thus, Lemma 3.8 holds as well, and we have marked the same set I of O(k)
important bags, with the same properties. Rules 3 and 4 are not modified, so the bounds on |VI |, |V0|
and |V1| from Lemmas 3.20, 3.21, and 3.23 also hold.

We are left with analyzing Rule 5, and we claim that this rule is also safe for Trivially Perfect
Deletion and Trivially Perfect Completion without any modifications. Indeed, in the proof of
the safeness of the rule (Lemma 3.25), we have argued that for every editing set F (|F | ≤ k) for the
new instance (G′, k), there exists some F ′ ⊆ F which is a solution to the original instance (G, k). In
case F consists of edge deletions or edge additions only, so does F ′. Hence, (G′, k) being a yes-instance of
Trivially Perfect Deletion, resp. Trivially Perfect Completion, implies that (G, k) is also a
yes-instance of the same problem. Thus Rule 5 is safe without any modifications, and the kernel size
analysis contained in the proof of Theorem 6 (end of Section 3.6) can be performed in exactly the same
manner. This concludes the proof of Theorems 2 and 3.

5 Hardness results

In this section we show that Trivially Perfect Editing is NP-hard, and furthermore not solvable
in subexponential parameterized time unless the Exponential Time Hypothesis fails. Recall that the
NP-hardness of the problem was already established by Nastos and Gao [27]. Their reduction (see the proof
of Theorem 3.3 in [27]) starts with an instance of Exact 3-Cover with universe of size n and set family
of size m, and constructs an instance (G, k) of Trivially Perfect Editing with k = Θ(mn2). Thus,
the parameter blow-up is at least cubic, and the reduction cannot be used to establish the non-existence
of a subexponential parameterized algorithm under ETH.

Here, we give a direct, linear reduction from 3Sat to Trivially Perfect Editing. Furthermore,
the resulting graph in our reduction has maximum degree equal to 4. Thus, we in fact prove that even on
input graphs of maximum degree 4, Trivially Perfect Editing remains NP-hard and does not admit
a subexponential parameterized algorithm, unless ETH fails. Formally, the following theorem will be
proved, where for an input formula ϕ of 3Sat, by V(ϕ) and C(ϕ) we denote the variable and clause sets
of ϕ, respectively:

Theorem 7. There exists a polynomial-time reduction that, given an instance ϕ of 3Sat, returns an
equivalent instance (Gϕ, kϕ) of Trivially Perfect Editing, where |V (Gϕ)| = 13|C(ϕ)|, |E(Gϕ)| =
18|C(ϕ)|, kϕ = 5|C(ϕ)|, and ∆(Gϕ) = 4. Consequently, even on instances with maximum degree 4,
Trivially Perfect Editing remains NP-hard and cannot be solved in time 2o(k)nO(1) or 2o(n+m),
unless ETH fails.

Theorem 7 clearly refines Theorem 4, and its conclusion follows from the reduction by an application
of Proposition 2.2. Hence, we are left with constructing the reduction, to which the rest of this section
is devoted. Our approach is similar to the technique used by Komusiewicz and Uhlmann to show the

23

>x1⊥x1
^x

0

Px1

>x2

⊥x2

^x
1

Px2

>x3

⊥x3

^x
2

Px3

>x4
⊥x4

^x
3

Px4

Gx

>y1

⊥y1

^y
0

Py1

>y2 ⊥y2
^y

1

Py2

>y3

⊥y3
^y

2

Py3

>y4

⊥y4

^y
3

Py4

Gy

>z1
⊥z1

^z
0

Pz1

>z2

⊥z2

^z
1

Pz2

>z3

⊥z3

^z
2

Pz3

>z4
⊥z4^z

3

Pz4

GzGc

Figure 7: Gadget c = x ∨ ¬y ∨ z. The clause c is now the second clause all variables x, y, and z appear
in, and x and z appears positively whereas y appears negatively.

hardness of a similar problem, Cluster Editing [22]; However, the gadgets are heavily modified to work
for the Trivially Perfect Editing problem.

Let ϕ be the input instance of 3Sat. By standard modifications of the formula we may assume that
every clause contains exactly three literals, all containing different variables, and that every variable
appears in at least two clauses. For a variable x ∈ V(ϕ), let px > 1 be the number of occurrences of x in
the clauses of ϕ; Moreover, we order these occurrences arbitrarily. Observe that

∑
x∈V(ϕ) px = 3|C(ϕ)|.

Now, for every x ∈ V(ϕ) we create a variable gadget, and for every c ∈ C(ϕ) we create a clause gadget.

Variable gadgets. For x ∈ V(ϕ), construct a graph Gx isomorphic to C3px , a cycle on 3px vertices.
The vertices of Gx are labeled ⊥xi ,>xi ,^

x
i for i ∈ [0, px − 1], in the order of their appearance on the cycle.

We then add a vertex Pxi adjacent to >xi and ⊥xi , for each i ∈ [0, px − 1], see Figure 7. Formally, the
vertices Pxi do not belong to Gx, but they will be used to wire variable gadgets with clause gadgets. This
concludes the construction of the variable gadget, and it should be clear that the number of created
vertices and edges is bounded linearly in px; More precisely, we created 4px vertices and 5px edges.

For the sake of later argumentation, we now define the deletion set Fαx for Gx. If, in an assignment of
variables α : V(ϕ)→ {>,⊥}, we have α(x) = >, then we let Fαx be the set consisting of every edge of the
form ^x

i⊥xi+1 mod px
for i ∈ [0, px − 1]. If, on the other hand, α(x) = ⊥, we define the deletion set Fαx to

be the set comprising the edges >xi ^
x
i for i ∈ [0, px − 1], see Figure 8. We will later show that these are

the only relevant editing sets of size at most px for Gx.

Clause gadget. The clause gadgets are very simple. A clause gadget consists simply of one vertex, i.e.,
for a clause c ∈ C(ϕ) construct the vertex vc. This vertex will be connected to Gx, Gy and Gz, for x, y,
and z being the variables appearing in c, in appropriate places, depending on whether the variable occurs
positively or negatively in c. More precisely, if c is the ith clause x appears in, then we make vc adjacent
to >xi provided that x appears positively in c, and to ⊥xi provided that x appears negatively in c. This
concludes the construction of a clause gadget. As every clause gadget contains one vertex and three edges,
the construction of all the clause gadgets creates |C(ϕ)| vertices and 3|C(ϕ)| edges.

The deletion set for a clause gadget will be as follows. Let α : V(ϕ) → {>,⊥}, be an assignment
of the variables that satisfies all the clauses. Suppose c = `x ∨ `y ∨ `z, where the literals `x, `y, and `z
contain variables x, y, and z, respectively. Pick any literal satisfying c, say `x, and delete the two other
edges in the connection, i.e., the two edges connecting vc with vertices of Gy and Gz. Thus vc remains a
vertex of degree 1, adjacent to a vertex of Gx.

24

>x1⊥x1
^x

0

Px1

>x2

⊥x2

^x
1

Px2

>x3

⊥x3

^x
2

Px3

>x4
⊥x4

^x
3

Px4

Gx

>y1

⊥y1

^y
0

Py1

>y2 ⊥y2
^y

1

Py2

>y3

⊥y3
^y

2

Py3

>y4

⊥y4

^y
3

Py4

Gy

>z1
⊥z1

^z
0

Pz1

>z2

⊥z2

^z
1

Pz2

>z3

⊥z3

^z
2

Pz3

>z4
⊥z4^z

3

Pz4

GzGc

Figure 8: Edited gadget of c = x ∨ ¬y ∨ z where α(x) = >, α(y) = > and α(z) = ⊥ and x has been
chosen (no choice) to satisfy c. Notice the formation of paws, except the one incident to c which induces
a cricket.

Let Gϕ be the constructed graph. We set the budget for edits to

kϕ =
∑
x∈V(ϕ) px + 2|C(ϕ)| = 5|C(ϕ)|.

Observe also that

|V (Gϕ)| =
∑
x∈V(ϕ) 4px + |C(ϕ)| = 13|C(ϕ)|,

|E(Gϕ)| =
∑
x∈V(ϕ) 5px + 3|C(ϕ)| = 18|C(ϕ)|,

and that ∆(Gϕ) = 4. Thus, all the technical properties stated in Theorem 7 are satisfied, and we are
left with proving that (Gϕ, kϕ) is a yes-instance of Trivially Perfect Editing if and only if ϕ is
satisfiable.

Before we state the main lemma, we give two auxiliary observations that settle the tightness of the
budget:

Claim 5.1. Suppose that a graph H is a cycle on 3p vertices for some p > 1, and suppose F is an editing
set for H. Then |F | ≥ p. Moreover, if |F | = p then F consists of deletions of every third edge of the
cycle.

Claim 5.2. Suppose a graph H is a subdivided claw, i.e., the star K1,3 with every leg subdivided once
(see Figure 9a). Furthermore, suppose that F is an editing set for H. Then |F | ≥ 2. Moreover, if |F | = 2
then F consists of deletions of two edges incident to the center of the subdivided claw (see Figure 9b).

We will prove the two claims in order now. The astute reader should already see that this implies the
tightness of the budget: every editing set needs to include exactly px edges of every variable gadget Gx (by
Claim 5.1), and exactly two edges incident to every vertex vc (by Claim 5.2). The additional vertices Pxi
will form the degree-1 vertices of subdivided claws created by clause gadgets, and all the subgraphs in
question pairwise share at most single vertices, which means that any edit can influence at most one of
them. This statement is made formal in the proof of Lemma 5.3.

Proof of Claim 5.1. Let v0, v1, . . . , v3p−1 be the vertices of H, in their order of appearance on the cycle.
For i = 0, 1, . . . , p − 1, let Ai = {v3i, v3i+1, v3i+2, v3i+3}; Here and in the sequel, the indices behave
cyclically in a natural manner. Observe that each Ai induces a P4 in H, hence F ∩

(
Ai

2

)
6= ∅. However,

the sets
(
Ai

2

)
are pairwise disjoint for i = 0, 1, . . . , p− 1, from which it follows that |F | ≥ p.

25

Suppose now that |F | = p. Hence |F ∩
(
Ai

2

)
| = 1 for each i ∈ [0, p − 1], and there are no edits

outside the sets
(
Ai

2

)
. There are five possible ways for an Ai of how F ∩

(
Ai

2

)
can look like: It is either a

deletion of the edge v3iv3i+1, v3i+1v3i+2, or v3i+2v3i+3 (henceforth referred to as types D−, D0, and D+,
respectively), or an addition of the edge v3iv3i+2 or v3i+1v3i+3 (henceforth called types C− and C+,
respectively)—the sixth possibility, which has been left out, creates an induced C4. Observe now that if
some Ai has type D−, then Ai+1 also has type D−, or otherwise a P4 v3i+1− v3i+2− v3i+3− v3i+4 would
remain in the graph. Similarly, if Ai has type D+ then Ai−1 also has type D+. Hence, if type D+ or D−

appears for any Ai, then all the Ais have the same type. Observe now that if some Ai had type C−

and C+, then Ai−1 would have to have type D+ and Ai+1 would have to have type D− or otherwise
an unresolved P4 would appear; This is a contradiction with the previous observations, since types D−

and D+ cannot appear simultaneously. Hence, we are left with only three possibilities: all the Ais have
type D−, or all have type D0, or all have type D+. y

Proof of Claim 5.2. Denote the vertices of H as in Figure 9a. Consider the following three P4s in H:

• a2 − a1 − v − c1,

• b2 − b1 − v − a1, and

• c2 − c1 − v − b1.

v

a1

a2

b1

b2

c1

c2

(a) A subdivided claw.

v

a1

a2

b1

b2

c1

c2

(b) An optimally edited subdivided claw.

Observe that any edge addition in H can destroy at most one of these P4s, and a deletion of any of
edges a1a2, b1b2, or c1c2 also can destroy at most one of these P4s. Moreover, a deletion of any of the
edges incident to the center v destroys only two of them. We infer that |F | ≥ 2 since no single edit can
destroy all three considered P4s, and moreover if |F | = 2, then F contains at least one deletion of an edge
incident to v, say va1. After deleting this edge we are left with a P5 b2 − b1 − v − c1 − c2, and it can be
readily checked that the only way to edit it to a trivially perfect graph using only one edit is to delete vb1
or vc1. Thus, any editing set F with |F | = 2 in fact consists of deletions of two edges incident to v. y

Lemma 5.3. The input 3Sat instance ϕ is satisfiable if and only if (Gϕ, kϕ) is a yes-instance of
Trivially Perfect Editing.

Proof. Suppose ϕ is satisfiable and let α : V(ϕ)→ {>,⊥} be a satisfying assignment. Define editing set
Fα =

⋃
x∈V(ϕ) F

α
x ∪

⋃
c∈C(ϕ) F

α
c ; Note that F consists of deletions only. Then we have that |Fα| = kϕ

and it can be easily seen that G4F is a disjoint union of components of constant size, each being a paw
or a cricket (see Figure 9). Both these graphs are trivially perfect, so a disjoint union of any number of
their copies is also a trivially perfect graph. Thus Fα is a solution to the instance (Gϕ, kϕ).

For the other direction, let F ⊆
(
V (Gϕ)

2

)
be an editing set such that Gϕ4F is trivially perfect, and

|F | ≤ kϕ. For every x ∈ V(ϕ) consider the subgraph Gx. For every c ∈ C(ϕ) consider the subgraph Gc
induced in G by

• vertex vc;

• the three neighbors of vc, say 2x
ix

, 2y
iy

, and 2z
iz

, where x, y, z are variables appearing in c and each
symbol 2 is replaced by ⊥ or > depending whether the variable’s occurrence is positive or negative;
and

26

(c) Paw (d) Cricket

Figure 9: Shapes of components of G after editing deletion sets Fαx and Fαc for α being a satisfying
assignment. Both of them are trivially perfect, so a disjoint union of any number of their copies is also
trivially perfect.

• vertices Pxix , Pyiy , and Pziz .

Observe that each Gx is isomorphic to a cycle on 3px vertices and each Gc is isomorphic to a subdivided
claw. Moreover, all these subgraphs pairwise share at most one vertex, which means that sets

(
V (Gx)

2

)
for

x ∈ V(ϕ) and
(
V (Gc)

2

)
for c ∈ C(ϕ) are pairwise disjoint. By Claim 5.1 we infer that |F ∩

(
V (Gx)

2

)
| ≥ px

for each x ∈ V(ϕ), and by Claim 5.2 we infer that |F ∩
(
V (Gc)

2

)
| ≥ 2 for each c ∈ C(ϕ). Thus

|F | ≥
∑

x∈V(ϕ)

px + 2|C(ϕ)| = kϕ.

Hence, in fact |F | = kϕ and all the used inequalities are in fact equalities: |F ∩
(
V (Gx)

2

)
| = px for each

x ∈ V(ϕ) and |F ∩
(
V (Gc)

2

)
| = 2 for each c ∈ C(ϕ). Using Claims 5.1 and 5.2 again, we infer that F has

the following form: it consists of deletions only, from every cycle Gx it deletes every third edge, and for
every vertex vc it deletes two out of three edges incident to it. In particular, no edit is incident to any of
the vertices Pxi for x ∈ V(ϕ) and i ∈ [0, px − 1].

Consider now the cycle Gx; We already know that the solution deletes either all the edges ⊥xi>xi for
i ∈ [0, px − 1], or all the edges >xi ^

x
i for i ∈ [0, px − 1], or all the edges ^x

i⊥xi+1 mod px
for i ∈ [0, px − 1].

Observe that the first case cannot happen, since then we would have an induced P4 ⊥xi − Pxi −>xi −^x
i

remaining in the graph — no other edit can destroy it. Hence, one of the latter two cases happen.
Construct an assignment α : V(ϕ) → {>,⊥} by, for each x ∈ V(ϕ), putting α(x) = ⊥ if all the edges
>xi ^

x
i are included in F , and α(x) = > if all the edges ^x

i⊥xi+1 mod px
are included in F . We now claim

that α satisfies ϕ.
For the sake of contradiction, suppose that a clause c = `x ∨ `y ∨ `z is not satisfied by α. Let e be

the edge incident to vc which has not been removed and suppose without loss of generality that this
edge connects vc with Gx. Suppose further that `x = x, i.e., x appears positively in c, so e = vc>xi
for some i ∈ [0, px − 1]. Since x does not satisfy c, α(x) = ⊥ and both edges ^x

i−1 mod px⊥
x
i and

⊥xi>xi are not deleted in F — the deleted edge is >xi ^
x
i . But then we have the following induced P4:

vc −>xi −⊥xi −^x
i−1 mod px , which contradicts the assumption that Gϕ4F is trivially perfect. The case

when `x = ¬x, i.e., x appears negatively in c, is symmetric.
Hence α is indeed a satisfying assignment for ϕ and we are done.

Lemma 5.3 guarantees that the reduction is correct, and hence Theorem 7 follows by a straightforward
application of Proposition 2.2. We can also observe that this reduction works immediately for Trivially
Perfect Deletion as well since every optimal edit set consisted purely of deletions (see Claims 5.1
and 5.2), however this result is known [9].

6 Conclusion

In this paper we gave the first polynomial kernels for Trivially Perfect Editing and Trivially
Perfect Deletion, which answers an open problem by Nastos and Gao [27], and Liu, Wang, and Guo [24].
We also proved that assuming ETH, Trivially Perfect Editing does not have a subexponential
parameterized algorithm. Together with the earlier results [9, 19], we thus obtain a complete picture of
the existence of polynomial kernels and subexponential parameterized algorithms for edge modification
problems related to trivially perfect graphs; see Figure 10 for an overview. In particular, the fact that
all three problems Trivially Perfect Editing, Trivially Perfect Completion, and Trivially
Perfect Deletion admit polynomial kernels, stands in an interesting contrast with the results of Cai

27

and Cai [6], who showed that this is not the case for any of C4-Free Editing, C4-Free Completion
and C4-Free Deletion.

The main contribution of the paper is the proof that Trivially Perfect Editing admits a polynomial
kernel with O(k7) vertices. We apply the existing technique of constructing a vertex modulator, but with
a new twist: The fact that we are solving an edge modification problem enables us also to argue about the
adjacency structure between the modulator and the rest of the graph, which is helpful in understanding
the structure of the instance. We believe that this new insight can be applied to other edge modification
problems as well.

Finally, we showed that Trivially Perfect Editing, in addition to being NP-complete, is not
solvable in subexponential parameterized time unless the Exponential Time Hypothesis fails. The
same result was known for Trivially Perfect Deletion, but contrasts the previous result that the
completion variant does admit a subexponential parameterized algorithm [9].

Problem Polynomial kernel Subexp. par. algorithm

Trivially Perfect Completion Yes [19] Yes [9]
Trivially Perfect Deletion Yes No [9]
Trivially Perfect Editing Yes No

Figure 10: Graph modification problems related to trivially perfect graphs

Let us conclude by stating some open questions. In this paper, we focused purely on constructing a
polynomial kernel for Trivially Perfect Editing and related problems, and in multiple places we
traded possible savings in the overall kernel size for simpler arguments in the analysis. We expect that
a tighter analysis of our approach might yield kernels with O(k6) or even O(k5) vertices, but we think
that the really challenging question is to match the size of the cubic kernel for Trivially Perfect
Completion of Guo [19].

Generally, we find the vertex modulator technique very well-suited for tackling kernelization of edge
modification problems, since it is at the same time versatile, and exposes well the structure of a large
graph that is close in the edit distance to some graph class. We have high hopes that this generic
approach will find applications in other edge modification problems as well, both in improving the sizes
of existing kernels and in finding new positive results about the existence of polynomial kernels. For
concrete questions where the technique might be applicable, we propose the following:

• Is it possible to improve theO(k3) vertex kernels for Cograph Editing and Cograph Completion
of Guillemot et al. [18]?

• Is it possible to improve the O(k4) vertex kernel for the Split Deletion problem of Guo [19]?

• Do the Claw-Free Edge Deletion or Line Graph Edge Deletion problems admit polynomial
kernels? Here, the task is to remove at most k edges to obtain a graph that is claw-free, i.e., does
not contain K1,3 as an induced subgraph, respectively is a line graph.

References

[1] N. Alon, D. Lokshtanov, and S. Saurabh. Fast FAST. In Proceedings of the 36th Colloquium of
Automata, Languages and Programming (ICALP 2009), volume 5555 of Lecture Notes in Computer
Science, pages 49–58. Springer, 2009.

[2] I. Bliznets, F. V. Fomin, M. Pilipczuk, and M. Pilipczuk. A subexponential parameterized algorithm
for Interval Completion. CoRR, abs/1402.3473, 2014.

[3] I. Bliznets, F. V. Fomin, M. Pilipczuk, and M. Pilipczuk. A subexponential parameterized algorithm
for Proper Interval Completion. In Proceedings of the 22nd Annual European Symposium on
Algorithms (ESA 2014), volume 8737 of Lecture Notes in Computer Science, pages 173–184. Springer,
2014.

28

[4] P. Burzyn, F. Bonomo, and G. Durán. NP-completeness results for edge modification problems.
Discrete Applied Mathematics, 154(13):1824–1844, 2006.

[5] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary properties.
Information Processing Letters, 58(4):171–176, 1996.

[6] L. Cai and Y. Cai. Incompressibility of H-free edge modification. In Proceedings of the 8th
International Symposium on Parameterized and Exact Computation (IPEC 2013), volume 8246 of
Lecture Notes in Computer Science, pages 84–96. Springer, 2013.

[7] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Subexponential parameterized
algorithms on graphs of bounded genus and H-minor-free graphs. J. ACM, 52(6):866–893, 2005.

[8] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New York, 1999.

[9] P. G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger. Exploring subexponential parameterized
complexity of completion problems. In Proceedings of the 31st International Symposium on Theoretical
Aspects of Computer Science (STACS 2014), volume 25 of LIPIcs, pages 288–299. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2014.

[10] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449–467, 1965.

[11] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer-Verlag, Berlin, 2006.

[12] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger. Tight bounds for parameterized
complexity of Cluster Editing with a small number of clusters. Journal of Computer and System
Sciences, 80(7):1430–1447, 2014.

[13] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Planar F -deletion: Approximation,
kernelization and optimal FPT algorithms. In Proceedings of the 53rd IEEE Annual Symposium on
Foundations of Computer Science (FOCS 2012), pages 470–479. IEEE, 2012.

[14] F. V. Fomin, S. Saurabh, and Y. Villanger. A polynomial kernel for Proper Interval Vertex Deletion.
SIAM Journal on Discrete Mathematics, 27(4):1964–1976, 2013.

[15] F. V. Fomin and Y. Villanger. Subexponential parameterized algorithm for minimum fill-in. SIAM
Journal on Computing, 42(6):2197–2216, 2013.

[16] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungarica,
18(1-2):25–66, 1967.

[17] E. Ghosh, S. Kolay, M. Kumar, P. Misra, F. Panolan, A. Rai, and M. Ramanujan. Faster parameterized
algorithms for deletion to split graphs. Algorithmica, 2013. Online first.

[18] S. Guillemot, F. Havet, C. Paul, and A. Perez. On the (non-)existence of polynomial kernels for
Pl-free edge modification problems. Algorithmica, 65(4):900–926, 2013.

[19] J. Guo. Problem kernels for NP-complete edge deletion problems: Split and related graphs. In
Proceedings of the 18th International Symposium on Algorithms and Computation (ISAAC 2007),
volume 4835 of Lecture Notes in Computer Science, pages 915–926. Springer, 2007.

[20] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63(4):512–530, 2001.

[21] Y. Jing-Ho, C. Jer-Jeong, and G. Chang. Quasi-threshold graphs. Discrete Applied Mathematics,
69(3):247–255, 1996.

[22] C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded modifications. Discrete
Applied Mathematics, 160(15):2259–2270, 2012.

29

[23] S. Kratsch and M. Wahlström. Two edge modification problems without polynomial kernels. In
Proceedings of the 4th International Workshop on Parameterized and Exact Computation (IWPEC
2009), volume 5917 of Lecture Notes in Computer Science, pages 264–275. Springer, 2009.

[24] Y. Liu, J. Wang, and J. Guo. An overview of kernelization algorithms for graph modification
problems. Tsinghua Science and Technology, 19(4):346–357, 2014.

[25] F. Mancini. Graph modification problems related to graph classes. PhD thesis, University of Bergen,
Norway, 2008.

[26] R. M. McConnell and J. Spinrad. Modular decomposition and transitive orientation. Discrete
Mathematics, 201(1-3):189–241, 1999.

[27] J. Nastos and Y. Gao. Familial groups in social networks. Social Networks, 35(3):439–450, 2013.

[28] M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing, 10(2):297–309, 1981.

30

	1 Introduction
	2 Preliminaries
	2.1 Graphs and complexity
	2.2 Trivially Perfect Graphs

	3 A Kernel for Trivially Perfect Editing
	3.1 Basic rules
	3.2 Modulator construction
	3.3 Bounding the number of neighborhoods in a TP-modulator
	3.4 Locating important bags
	3.5 Module reduction
	3.5.1 Twin reduction
	3.5.2 Module reduction

	3.6 Kernelizing non-important parts (irrelevant vertex deletion)

	4 Kernels for Trivially Perfect Completion/Deletion
	5 Hardness results
	6 Conclusion

