
ar
X

iv
:1

40
9.

59
00

v2
  [

cs
.D

S]
  1

7 
A

pr
 2

01
6

Maximizing Symmetric Submodular Functions∗

Moran Feldman†

October 7, 2018

Abstract

Symmetric submodular functions are an important family of submodular functions capturing
many interesting cases including cut functions of graphs and hypergraphs. Maximization of
such functions subject to various constraints receives little attention by current research, unlike
similar minimization problems which have been widely studied. In this work, we identify a few
submodular maximization problems for which one can get a better approximation for symmetric
objectives than the state of the art approximation for general submodular functions.

We first consider the problem of maximizing a non-negative symmetric submodular function
f : 2N → R

+ subject to a down-monotone solvable polytope P ⊆ [0, 1]N . For this problem we
describe an algorithm producing a fractional solution of value at least 0.432·f(OPT ), whereOPT
is the optimal integral solution. Our second result considers the problem max{f(S) : |S| = k}
for a non-negative symmetric submodular function f : 2N → R

+. For this problem, we give an
approximation ratio that depends on the value k/|N | and is always at least 0.432. Our method
can also be applied to non-negative non-symmetric submodular functions, in which case it
produces 1/e− o(1) approximation, improving over the best known result for this problem. For
unconstrained maximization of a non-negative symmetric submodular function we describe a
deterministic linear-time 1/2-approximation algorithm. Finally, we give a [1 − (1 − 1/k)k−1]-
approximation algorithm for Submodular Welfare with k players having identical non-negative
submodular utility functions, and show that this is the best possible approximation ratio for
the problem.
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1 Introduction

The study of combinatorial problems with submodular objective functions has recently attracted
much attention, and is motivated by the principle of economy of scale, prevalent in real world
applications. Submodular functions are also commonly used as utility functions in economics and
algorithmic game theory. Symmetric submodular functions are an important family of submodular
functions capturing, for example, the mutual information function and cut functions of graphs and
hypergraphs.

Minimization of symmetric submodular functions subject to various constrains and approxi-
mating such functions by other functions received a lot of attention [10, 12, 20, 27, 28]. However,
maximization of symmetric submodular functions was the subject of only limited research, de-
spite an extensive body of works dealing with maximization of general non-negative submodular
functions (see, e.g., [2, 4, 8, 25, 30]). In fact, we are only aware of two papers dealing with max-
imization of symmetric submodular functions. First, Feige et al. [14] show an 1/2-approximation
algorithm for the problem of maximizing a symmetric submodular function subject to no constraint
(which is the best possible). This result was later complemented by an algorithm achieving the
same approximation ratio for general submodular functions [2]. Second, Lee et al. [24] show a
1/3-approximation algorithm for maximizing a symmetric submodular function subject to a general
matroid base constraint.

In this work, we identify a few submodular maximization problems for which one can get a
better approximation for symmetric objectives than the state of the art approximation for general
submodular functions. Our first result is an improved algorithm for maximizing a non-negative
symmetric submodular function1 f : 2N → R

+ subject to a down-monotone solvable polytope2

P ⊆ [0, 1]N . More formally, given a set function f : 2N → R, its multilinear extension is the
function F : [0, 1]N → R defined by F (x) = E[f(R(x))], where R(x) is a random set containing
every element u ∈ N with probability xu, independently. Our result is an approximation algorithm
for the problem max{F (x) : x ∈ P} whose approximation ratio is about: 1/2 · [1− (1− d(P)2/d(P))],
where d(P) is the density3 of P. In the following theorem, and throughout the paper, we use n to
denote |N |.

Theorem 1.1. Given a non-negative symmetric submodular function f : 2N → R
+, a down-

monotone solvable polytope P ⊆ [0, 1]N and a constant T ≥ 0, there exists an efficient algorithm
that finds a point x ∈ [0, 1]N such that F (x) ≥ 1/2 · [1− e−2T − o(1)] ·max{F (x) : x ∈ P ∩ {0, 1}N }.
Additionally,
(a) x/T ∈ P.
(b) Let TP = − ln(1− d(P) + n−4)/d(P). Then, T ≤ TP implies x ∈ P.

Theorem 1.1 improves over the result of [17], who gave an approximation ratio of e−1− o(1) for
the case of general submodular functions. More specifically, Theorem 1.1 provides an approximation
ratio of at least 1/2 · [1 − e−2] − o(1) ≥ 0.432 for an arbitrary down-monotone solvable polytope
since T can always be set to be at least 1. For many polytopes the fractional solution produced by

1A set function f : 2N → R
+ is symmetric if f(S) = f(N \S) for every set S ∈ N , and submodular if f(A)+f(B) ≥

f(A ∪B) + f(A ∩B) for every pair of sets A,B ⊆ N .
2A polytope P ⊆ [0, 1]N is solvable if one can optimize linear functions subject to it, and down-monotone if for

every two vectors x, y ∈ [0, 1]N , x ≤ y and y ∈ P imply x ∈ P .
3Consider a representation of P using m inequality constraints, and let

∑
u∈N ai,uxu ≤ bi denote the i

th inequality
constraint. By Section 3.A of [15], we may assume all the coefficients are non-negative and each constraint has at least
one non-free non-zero coefficient. The density d(P) of P is defined as the maximum value of min1≤i≤m

bi∑
u∈N ai,u

for

any such representation.
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Theorem 1.1 can be rounded using known rounding methods (see, e.g., pipage rounding [4], swap
rounding [7] and contention resolution schemes [8]). For example, matroid polytopes allow rounding
without any loss in the approximation ratio. Moreover, due to property (a) of Theorem 1.1, the
combination of our algorithm with the contention resolution schemes rounding described by [8]
produces better approximation ratios than might be expected by a black box combination (see [17]
for details).

Our next result considers the problem max{f(S) : |S| = k} for a non-negative symmetric
submodular function f : 2N → R

+. For this problem we prove the following theorem.

Theorem 1.2. There exists an efficient algorithm that given a non-negative symmetric submodular
function f : 2N → R

+ and an integer cardinality parameter 1 ≤ k ≤ n/2, achieves an approximation
of 1/2[1 − (1 − k/n)2n/k] − o(1) for the problem: max{f(S) : |S| = k}. If k > n/2, then the same
result holds with the cardinality parameter replaced by n− k.

Notice that Theorem 1.2 achieves for the problem max{f(S) : |S| = k} the same approximation
ratio achieved by Theorem 1.1 for the problem max{f(S) : |S| ≤ k} (as long as k ≤ n/2). Using
the same technique we get a result also for the more well-studied case of general (non-symmetric)
submodular functions.

Theorem 1.3. There exists an efficient algorithm that given a non-negative submodular function
f : 2N → R

+ and an integer cardinality parameter 1 ≤ k ≤ n, achieves an approximation of
e−1 − o(1) for the problem: max{f(S) : |S| = k}.

Theorems 1.2 and 1.3 improve over results achieved by [3] when k/n ≤ 0.204 and k/n ≤
0.093, respectively. Most practical applications of maximizing a submodular function subject to a
cardinality constraint use instances having relatively small k/n ratios, and thus, can benefit from
our improvements (see [3] for a list of such applications). We complement Theorem 1.2 by showing
that one cannot get an approximation ratio better than 1/2 for any ratio k/n.

Theorem 1.4. Consider the problems max{f(S) : |S| = p/q · n} and max{f(S) : |S| ≤ p/q · n}
where p < q are positive constant integers and f is a non-negative symmetric submodular function
f : 2N → R

+ obeying n/q ∈ Z. Then, every algorithm with an approximation ratio of 1/2+ε for one
of the above problems (for any constant ε > 0) uses an exponential number of value oracle queries.4

The result of Theorem 1.4 follows quite easily from the symmetry gap framework of [30] and
is known for the case of general submodular functions as well as for some pairs of p and q (e.g.,
the case p/q = 1/2 follows immediately from the work of [30]). We give the theorem here mainly for
completeness, and defer its proof to Appendix A.

We also consider the unconstrained submodular maximization problem (i.e., max{f(S) : S ⊆
N}). For symmetric submodular functions, Feige et al. [14] give for this problem a simple linear-
time randomized algorithm and a slower deterministic local search, both achieving an optimal
approximation ratio of 1/2 (up to a low order error term in the case of the local search). We show
that for such functions there exists also a deterministic linear-time 1/2-approximation algorithm.

Theorem 1.5. There exists a deterministic linear-time 1/2-approximation algorithm for the problem
max{f(S) : S ⊆ N}, where f : 2N → R

+ is a non-negative symmetric submodular function.

Theorem 1.5 improves over the time complexity of the local search algorithm of [14] and also
avoids the low order error term. It is interesting to note that a deterministic algorithm with

4See Section 2 for the definition of value oracles.
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the same approximation ratio (but a worse time complexity) for the case of general submodular
functions was only very recently presented by Buchbinder and Feldman [1].

Our final result considers a variant of the Submodular Welfare problem (SW). An instance of SW
consists of m players p1, p2, . . . , pm and n items N . Each player pi is associated with a non-negative
submodular utility function up : 2

N → R
+. The objective is to find a partition S1, S2, . . . Sm of the

items maximizing
∑m

i=1 up(Si). We consider the case of identical utility functions, i.e., the utility
function up is identical for all players. This problem is interesting for two reasons. First, it
generalizes max{f(S) : S ⊆ N} for symmetric submodular functions.5 Second, it is related to the
Submodular Multiway Partition problem considered by [5, 6, 13, 31].

Theorem 1.6. There exists a linear-time [1− (1− 1/k)k−1]-approximation algorithm for SW with
k players having identical non-negative submodular utility functions. Moreover, any algorithm for
this problem whose approximation ratio is [1 − (1 − 1/k)k−1] + ε (for some constant ε > 0) must
use an exponential number of value oracle queries.

Theorem 1.6 improves over a result of Iwata et al. [22], who give a 1/2-approximation for SW

with identical non-negative symmetric utility functions. Interestingly, Theorem 1.6 also shows that
SW with identical utility functions is a rare example of a submodular maximization problem with
a non-monotone6 objective having an approximation ratio strictly better than 1/2 (for k > 2).
On the other hand, the hardness result of Theorem 1.6 complements a result of Khot et al. [23]
who showed that, even when the utility functions have a succinct representation (and thus, can
be evaluated directly instead of being accessed by a value oracle), no polynomial time algorithm
can obtain a better than (1− 1/e)-approximation for SW with identical monotone utility functions
unless P = NP .

1.1 Our Techniques

Some of our results are based on variants of the measured continuous greedy algorithm of [17]. We
modify the measured continuous greedy in two main ways.

• The analysis of [17] relies on the observation that F (1OPT ∨ x) ≥ [1−maxu∈N xu] · f(OPT )
for an arbitrary vector x ∈ [0, 1]N .7 To get better results for symmetric functions we use an
alternative lower bound on F (1OPT ∨ x) given by Lemma 1.7.

Lemma 1.7. Given a non-negative symmetric submodular function f : 2N → R
+, a set

S ⊆ N and a vector x ∈ [0, 1] obeying F (y) ≤ F (x) for every {y ∈ [0, 1]N : y ≤ x}, then
F (1S ∨ x) ≥ f(S)− F (x).

Using the bound given by Lemma 1.7 in the analysis requires a slight modification of the
measured continuous greedy algorithm to guarantee that its solution always obeys the re-
quirements of the lemma. We defer the proof of Lemma 1.7 to Section 2.

• The measured continuous greedy algorithm can handle only constraints specified by a down-
monotone polytope. Thus, it cannot handle problems of the form max{f(S) : |S| = k}.

5When f is symmetric, the problem max{f(S) : S ⊆ N} is equivalent to SW with two players having f as their
common utility function.

6A submodular function f : 2N → R
+ is monotone if f(A) ≤ f(B) for every two sets A ⊆ B ⊆ N .

7For every set S ⊆ N , we use 1S to denote the characteristic vector of S. Given two vectors x, y ∈ [0, 1]N , we use
x ∨ y to denote the coordinate-wise maximum of x and y. In other words, for every u ∈ N , (x ∨ y)u = max{xu, yu}.
Similarly, x ∧ y denotes the coordinate-wise minimum of x and y.
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To bypass this difficulty, we use two instances of the measured continuous greedy algorithm
applied to the problems max{f(S) : |S| ≤ k} and max{f(N \ S) : |S| ≤ n − k}. Note
that the optimal solutions of both problems are at least as good as the optimal solution of
max{f(S) : |S| = k}. A careful correlation of the two instances preserves their approximation
ratios, and allows us to combine their outputs into a solution for max{f(S) : |S| = k}
achieving the same approximation ratio.

Our result for the problem max{f(S) : S ⊆ N} is based on a linear-time deterministic algo-
rithm suggested by [2] for this problem. Buchbinder et al. [2] showed that this algorithm has an
approximation ratio of 1/3 for general non-negative submodular functions. The algorithm maintains
two solutions X and Y that become identical when the algorithm terminates. The analysis of the
algorithm is based on a set OPT (X,Y ) that starts as OPT and converts gradually to the final
value of X (and Y ). The key observation of the analysis is showing that in each iteration (of the
algorithm) the value of OPT (X,Y ) deteriorates by at most the increase in f(X) + f(Y ). In this
work we show that the exact same algorithm provides 1/2-approximation for non-negative symmet-
ric submodular functions. To that aim, we consider two sets OPT (X,Y ) and OPT (X,Y ). These
sets start as OPT and OPT = N \OPT respectively, and convert gradually into the final value of
X (and Y ). We prove that the deterioration of f(OPT (X,Y )) + f(OPT (X,Y )) lower bounds the
increase in f(X) + f(Y ).

1.2 Related Work

The literature on submodular maximization problems is very large, and therefore, we mention
below only a few of the most relevant works. Feige et al. [14] provided the first constant factor
approximation algorithms for max{f(S) : S ⊆ N}. Their best approximation algorithm achieved
an approximation ratio of 2/5 − o(1). Oveis Gharan and Vondrák [19] used simulated annealing
techniques to provide an improved approximation of roughly 0.41. Feldman et al. [16] combined
the algorithm of [19] with a new algorithm, yielding an approximation ratio of roughly 0.42. Finally,
Buchbinder et al. [2] gave a 1/2-approximation for this problem, matching a lower bound proved
by [14].

The problem of maximizing a (not necessary monotone) submodular function subject to a
general matroid constraint was given a 0.309-approximation by [30]. Using simulated annealing
techniques this was improved to 0.325 [19], and shortly later was further pushed to 1/e − o(1)
by [17] via the measured continuous greedy algorithm. Recently, Buchbinder et al. [3] showed that
for the problem max{f(S) : |S| ≤ k} (which is a special case of a matroid constraint) it is possible
to get an approximation ratio in the range [1/e + ε, 1/2 − o(1)] for some small constant ε > 0 (the
exact approximation ratio in this range depends on the ratio k/n). A hardness result of 0.491 was
given by [19] for the case k ≪ n.

The problem of maximizing a (not necessary monotone) submodular function subject to a
matroid base constraint was shown to have no constant approximation ratio by [30]. Buchbinder
et al. [3] showed that the special case of max{f(S) : |S| = k} admits an approximation ratio in
the range [0.356, 1/2− o(1)] (again, the exact approximation ratio within this range depends on the
ratio k/n). On the other hand, the hardness of 0.491 by [19] applies also to this problem when
k ≪ n.

The Submodular Welfare problem was studied in the case of monotone utility functions. The
greedy algorithm achieves 1/2-approximation for this problem [18]. This was improved to 1/(2−1/k)
by [11], and then to 1−1/e by [4] using the celebrated continuous greedy algorithm. Finally, Feldman
et al. [17] gave a

(

1− (1− 1/k)k
)

-approximation algorithm, matching the hardness result of [26].
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2 Preliminaries

For every set S ⊆ N and an element u ∈ N , we denote the union S ∪ {u} by S + u, the expression
S \{u} by S−u and the set N \S by S̄. Additionally, we use 1S and 1u to denote the characteristic
vectors of S and {u}, respectively. Given a submodular function f : 2N → R and its corresponding
multilinear extension F : [0, 1]N → R, we denote the partial derivative of F at a point x ∈ [0, 1]N

with respect to an element u by ∂uF (x). Since F is multilinear, ∂uF (x) = F (x∨1u)−F (x∧1N−u).
Additionally, we use f̄ and F̄ to denote the functions f̄(S) = f(N \ S) and F̄ (x) = F (1N − x).
Finally, given a vector x ∈ [0, 1]N , we denote |x| =

∑

u∈N xu.
We look for algorithms of polynomial in n (the size of N ) time complexity. However, an explicit

representation of a submodular function might be exponential in the size of its ground set. The
standard way to bypass this difficulty is to assume access to the function via a value oracle. For a
submodular function f : 2N → R, given a set S ⊆ N , the value oracle returns the value of f(S).
Some of our algorithms assume a more powerful oracle that given a vector x ∈ [0, 1]N , returns the
value of F (x). If such an oracle is not available, one can approximate it arbitrarily well using a
value oracle to f by averaging enough samples, which results in an o(1) loss in the approximation
ratio of the relevant algorithms (which has already been taken into account in the results presented
in Section 1). This is a standard practice (see, e.g., [4]), and we omit details.

The following lemma gives a few useful properties of submodular functions used throughout the
paper.

Lemma 2.1. If f : 2N → R is a submodular function and F : [0, 1]N → R is its multilinear exten-
sion, then:
• For every vector x ∈ [0, 1]N , F̄ (x) = F (1N − x) is the multilinear extension of f̄ .
• If f is symmetric, then for every vector x ∈ [0, 1]N , F (x) = F̄ (x).
• For every three vectors z ≤ y ≤ x ∈ [0, 1]N , F (x)− F (y) ≤ F (x− z)− F (y − z).

Proof. The first part of the lemma holds since:

F̄ (x) = F (1N − x) = E[f(R(1N − x))] = E[f(N \R(x))] = E[f̄(R(x))] .

Using the above observation, the second part of the lemma follows since, for a symmetric f ,

F (x) = E[f(R(x))] = E[f̄(R(x))] = F̄ (x) .

Finally, for the third part of the lemma, let us assume R(x),R(y) and R(z) are chosen using
the following process: for every element u ∈ N an independent and uniformly random threshold
tu ∈ [0, 1] is selected. Then, u is added to R(x),R(y) or R(z) if tu ≤ xu, tu ≤ yu or tu ≤ zu,
respectively. Observe that this process indeed results in sets R(x),R(y) and R(z) having the right
distributions. Moreover, R(z) ⊆ R(y) ⊆ R(x). Thus,

F (x)− F (y) = E[f(R(x))− f(R(y))] ≤ E[f(R(x) \ R(z))− f(R(y) \ R(z))]

= E[f(R(x− z))]− E[f(R(y − z))] = F (x− z)− F (y − z) .

We are now ready to give the promised proof of Lemma 1.7.

Lemma 1.7. Given a non-negative symmetric submodular function f : 2N → R
+, a set S ⊆ N

and a vector x ∈ [0, 1] obeying F (y) ≤ F (x) for every {y ∈ [0, 1]N : y ≤ x}, then F (1S ∨ x) ≥
f(S)− F (x).

5



Proof. Since f is symmetric,

f(S)− F (x ∨ 1S) = f(S̄)− F ((1N − x) ∧ 1S̄) ≤ F (x ∧ 1S̄)− f(∅) ≤ F (x ∧ 1S̄) ≤ F (x) ,

where the equality and first inequality hold by Lemma 2.1, the second inequality holds by the
non-negativity of f and the last inequality holds since x ∧ 1S̄ ≤ x.

The following lemma shows that the multilinear extension behaves like a linear function within
small neighborhoods. Similar lemmata appear in many works. A proof of this specific lemma can
be found in [15] (as Lemma 2.3.7).

Lemma 2.2. Consider two vectors x, x′ ∈ [0, 1]N such that for every u ∈ N , |xu − x
′
u| ≤ δ. Then,

F (x′)− F (x) ≥
∑

u∈N (x′u − xu) · ∂uF (x)−O(n3δ2) ·maxu∈N f({u}).

We also use the following lemma, which comes handy in proving the feasibility of the solutions
produced by some of our algorithms. This lemma is implicitly proved by [17] (some parts of the
proof, which are omitted in [17], can be found in [15]).

Lemma 2.3. Fix some δ ≤ n−5, and let {I(i)}ℓi=1 be a set of ℓ points in a down-monotone polytope
P ⊆ [0, 1]N . Let {y(i)}ℓi=0 be a a set of ℓ + 1 vectors in [0, 1]N obeying the following constraints.
For every element u ∈ N ,

yu(i) ≤

{

0 if i = 0 ,

yu(i− 1) + δIu(i) · (1− yu(i− 1)) otherwise .

Then,
• yu(i)/(δi) ∈ P.
• Let TP = − ln(1− d(P) + n−4)/d(P). Then, δi ≤ TP implies y(i) ∈ P.

3 Measured Continuous Greedy for Symmetric Functions

In this section we prove Theorem 1.1.

Theorem 1.1. Given a non-negative symmetric submodular function f : 2N → R
+, a down-

monotone solvable polytope P ⊆ [0, 1]N and a constant T ≥ 0, there exists an efficient algorithm
that finds a point x ∈ [0, 1]N such that F (x) ≥ 1/2 · [1− e−2T − o(1)] ·max{F (x) : x ∈ P ∩ {0, 1}N }.
Additionally,
(a) x/T ∈ P.
(b) Let TP = − ln(1− d(P) + n−4)/d(P). Then, T ≤ TP implies x ∈ P.

To simplify the proof of the theorem, we assume the following reduction was applied.

Reduction 1. We may assume in the proof of Theorem 1.1 that 1u ∈ P for every u ∈ N .

Proof. An element u ∈ N such that 1u 6∈ P cannot appear in any integral solution. Thus, removing
all such elements from N results in a new instance with the same value of max{F (x) : x ∈ P ∩
{0, 1}N }. Moreover, such a removal can only increase d(P), and thus, the guarantee of Theorem 1.1
for the new polytope must be as strong as for the original polytope.

6



Algorithm 1: Measured Continuous Greedy for Symmetric Functions(f,P, T )

// Initialization

1 Set: δ ← T (⌈n5T ⌉)−1.
2 Initialize: t← 0, y(0)← 1∅.

// Main loop

3 while t < T do

4 foreach u ∈ N do Let wu(t)← F (y(t) ∨ 1u)− F (y(t)). Let I(t) be a vector in P
maximizing I(t) · w(t).

5 foreach u ∈ N do Let yu(t+ δ)← yu(t) + δIu(t) · (1− yu(t)). foreach u ∈ N do

6 if ∂uF (y(t+ δ)) < 0 then yu(t+ δ)← 0.

7 Return y(T ).

The algorithm we use to prove Theorem 1.1 is Algorithm 1, which is a variant of the Measured
Continuous Greedy algorithm presented by [17]. Notice that the definition of δ in the algorithm
guarantees two properties: δ ≤ n−5 and t = T after ⌈n5T ⌉ iterations. These properties imply, by
Lemma 2.3, that the output of Algorithm 1 obeys properties (a) and (b) guaranteed by Theorem 1.1.
Thus, to complete the proof of Theorem 1.1, it is only necessary to show that the approximation
ratio of Algorithm 1 matches the approximation ratio guaranteed by the theorem.

First, we need a lower bound on the improvement achieved in each iteration of the algorithm.
The following lemma is a counterpart of Lemma III.2 of [17].

Lemma 3.1. For every time 0 ≤ t < T ,
∑

u∈N (1 − yu(t)) · Iu(t) · ∂uF (y(t)) ≥ F (y(t) ∨ 1OPT ) −
F (y(t)).

Proof. Let us calculate the weight of OPT according to the weight function w(t).

w(t) · 1OPT =
∑

u∈OPT

wu(t) =
∑

u∈OPT

[F (y(t) ∨ 1u)− F (y(t))] ≥ F (y(t) ∨ 1OPT )− F (y(t)) ,

where the inequality follows from submodularity. Since 1OPT ∈ P, we get:

w(t) · I(t) ≥ w(t) · 1OPT ≥ F (y(t) ∨ 1OPT )− F (y(t)) .

Hence,

∑

u∈N

(1− yu(t)) · Iu(t) · ∂uF (y(t)) =
∑

u∈N

Iu(t) · [F (y(t) ∨ 1u)− F (y(t))] = I(t) · w(t)

≥ F (y(t) ∨ 1OPT )− F (y(t)) .

Corollary 3.2. For every time 0 ≤ t < T , F (y(t+ δ))−F (y(t)) ≥ δ · [F (y(t)∨1OPT )−F (y(t))]−
O(n3δ2) · f(OPT ).

Proof. Notice that maxu∈N f({u}) ≤ f(OPT ) by Reduction 1. Hence, by combining Lemmata 2.2
and 3.1, we get:

F (y(t+ δ)) − F (y(t)) ≥ δ · [F (y(t) ∨ 1OPT )− F (y(t))]−O(n3δ2) · f(OPT ) ,

where y(t+ δ) represents its value before the loop starting on Line 5 of Algorithm 1. The corollary
follows by noticing that the above loop can only increase the value of F (y(t+ δ)).

7



The last corollary gives a lower bound on the improvement achieved in every step of the al-
gorithm in terms of F (y(t) ∨ 1OPT ). To make this lower bound useful, we need to lower bound
the term F (y(t) ∨ 1OPT ) using Lemma 1.7. The following lemma shows that the conditions of
Lemma 1.7 hold.

Lemma 3.3. F (x) ≤ F (y(t)) for every 0 ≤ t ≤ T and vector x ∈ [0, 1]N such that x ≤ y(t).

Proof. First observe that the lemma is trivial for t = 0 since y(0) = 1∅. Hence, we assume in the
rest of the proof t > 0.

Let u1, u2, . . . , un be the order in which the algorithm scans the elements in the loop starting
on Line 5. Let yi(t) be the vector y(t) immediately after the iteration of this loop corresponding
to ui. Notice that y(t) = yn(t). Then,

F (y(t)) = F (x) +
n
∑

i=1

∫ 1

0
(yui(t)− xui) · ∂uiF ((1 − z)x+ z · y(t))dz

≥ F (x) +
n
∑

i=1

∫ 1

0
(yui(t)− xui) · ∂uiF (y

i(t))dz ,

where the equality follows from the chain rule and the inequality follows from submodularity and
the observation that x ≤ y(t) ≤ yi(t). The algorithm guarantees that for every ui ∈ N , either
∂uiF (y

i(t)) ≥ 0 or xui = yui(t) = 0. Notice that, in both cases, (yui(t)− xui) · ∂uiF (y
i(t)) ≥ 0.

Corollary 3.4. For every time 0 ≤ t < T , F (y(T + δ)) − F (y(T )) ≥ δ · [f(OPT )− 2 · F (y(t))] −
O(n3δ2) · f(OPT ).

Proof. Combining Lemmata 1.7 and 3.3 implies F (y(t)∨1OPT ) ≥ f(OPT )−F (y(t)). The corollary
now follows by plugging this inequality into Corollary 3.2.

At this point we have a lower bound on the improvement achieved in each iteration in terms of
f(OPT ) and F (y(t)). In order to complete the analysis of the algorithm, we need to derive from
it a bound on the value of F (y(t)) for every time t. Let g(t) be defined as follows: g(0) = 0 and
g(t+ δ) = g(t)+ δ[f(OPT )− 2 · g(t)]. The next lemma shows that a lower bound on g(t) also gives
a lower bound on F (y(t))

Lemma 3.5. For every 0 ≤ t ≤ T , g(t) ≤ F (y(t)) +O(n3δ) · t · f(OPT ).

Proof. Let c be the constant hiding behind the big O notation in Corollary 3.4. We prove by
induction on t that g(t) ≤ F (y(t)) + cn3δ2t · f(OPT ). For t = 0, g(0) = 0 ≤ F (y(0)). Assume now
that the claim holds for some t, and let us prove it for t+ δ. Corollary 3.4 gives:

g(t+ δ) = g(t) + δ[f(OPT )− 2 · g(t)] = (1− 2δ)g(t) + δ · f(OPT )

≤ (1− 2δ)[F (y(t)) + cn3δt · f(OPT )] + δ · f(OPT )

= F (y(t)) + δ[f(OPT )− 2 · F (y(t))] + c(1− 2δ)n3δt · f(OPT )

≤ F (y(t+ δ)) + cn3δ2 · f(OPT ) + c(1− 2δ)n3δt · f(OPT )

≤ F (y(t+ δ)) + cn3δ(t + δ) · f(OPT ) .

The function g is given by a recursive formula, thus, evaluating it is not immediate. Instead,
we show that the function h(t) = 1/2 · [1− e−2t] · f(OPT ) lower bounds g.

Lemma 3.6. For every 0 ≤ t ≤ T , g(t) ≥ h(t).

8



Proof. The proof is by induction on t. For t = 0, g(0) = 0 = 1/2 · [1 − e−2·0] · f(OPT ) = h(0).
Assume now that the lemma holds for some t, and let us prove it holds for t+ δ.

h(t+ δ) = h(t) +

∫ t+δ

t
h′(τ)dτ = h(t) + f(OPT ) ·

∫ t+δ

t
e−2τdτ

≤ h(t) + f(OPT ) · δe−2t = (1− 2δ)h(t) + δ · f(OPT )

≤ (1− 2δ)g(t) + δ · f(OPT ) = g(t) + δ[f(OPT )− 2 · g(t)] = g(t+ δ) .

We are now ready to prove the approximation ratio of Theorem 1.1 using the last lemmata.

Proof of the Approximation Ratio of Theorem 1.1. By Lemmata 3.5 and 3.6,

F (y(T )) ≥ g(T )−O(n3δ) · T · f(OPT )

≥ h(T )−O(n3δT ) · f(OPT ) = (1/2) · [1− 2e−T −O(n3δT )] · f(OPT ) .

The proof is now complete since T is a constant and δ ≤ n−5.

4 Equality Cardinality Constraints

In this section we prove Theorem 1.2.

Theorem 1.2. There exists an efficient algorithm that given a non-negative symmetric submodular
function f : 2N → R

+ and an integer cardinality parameter 1 ≤ k ≤ n/2, achieves an approximation
of 1/2[1 − (1 − k/n)2n/k] − o(1) for the problem: max{f(S) : |S| = k}. If k > n/2, then the same
result holds with the cardinality parameter replaced by n− k.

The proof of Theorem 1.3 is based on similar ideas, and is deferred to Appendix B. To simplify
the proof of Theorem 1.2, we assume the following reduction was applied.

Reduction 2. We may assume in the proof of Theorem 1.2 that 2k ≤ n.

Proof. The reduction follows immediately from the proof of Corollary 5.3 in [24]. The idea is that
if this is not the case, then let k̄ = n − k. It can be verified that 2k̄ ≤ n, that the problem
max{f̄(S) : |S| = k̄} is equivalent to the original problem and that f̄ is a a non-negative symmetric
submodular function if and only if f has these properties (in fact, if f is symmetric then f = f̄).

The algorithm we use to prove Theorem 1.2 is Algorithm 2. One can think of this algorithm as
two synchronized instances of Algorithm 1. One instance starts with the solution 1∅ and looks for
a solution obeying the constraint

∑

u∈N xu ≤ k. The other instance starts with the solution 1N
and looks for a solution obeying the constraint

∑

u∈N xu ≥ k (alternatively, we can think of the
second instance as having the objective f̄ and the constraint

∑

u∈N xu ≤ n−k). The two instances
are synchronized in two senses:
• In each iteration, the two instances choose direction vectors I1 and I2 obeying I1 + I2 = 1N

(i.e., the direction vector of one instance implies the direction vector of the other instance).
• The direction vectors are selected in a way that improves the solutions of both instances.
The output of Algorithm 2 is a fractional solution. This solution can be rounded into an integral

solution using a standard rounding procedure such as pipage rounding [4].
We begin the analysis of Algorithm 2 by showing it can be implemented efficiently using an LP

solver.
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Algorithm 2: Double Measured Continuous Greedy(f,N , k)

// Initialization

1 Set: T ← −n/k · ln(1− k/n+ n−4) and δ ← T (⌈n5T ⌉)−1.
2 Initialize: t← 0, y1(0)← 1∅ and y2(0)← 1N .

// Main loop

3 while t < T do

4 foreach u ∈ N do

5 Let w1
u(t)← F (y1(t) ∨ 1u)− F (y

1(t)) and w2
u(t)← F (y2(t) ∧ 1N−u)− F (y

2(t)).

6 Let I1(t) ∈ [0, 1]N and I2(t) ∈ [0, 1]N be two vectors maximizing

min{I1(t) · w1(t) + 2 · F (y1(t)), I2(t) · w2(t) + 2 · F (y2(t))}

among the vectors obeying |I1(t)| = k, |I2(t)| = n− k and I1(t) + I2(t) = 1N .
7 foreach u ∈ N do

8 Let y1u(t+ δ)← y1u(t) + δI1u(t) · (1− y
1
u(t)) and y

2
u(t+ δ)← y2u(t)− δI

2
u(t) · y

2
u(t).

9 foreach u ∈ N do

10 if ∂uF (y
1(t+ δ)) < 0 then y1u(t+ δ)← 0. if ∂uF (y

2(t+ δ)) > 0 then y2u(t+ δ)← 1.

11 t← t+ δ.

12 if |y1(T )| = |y2(T )| then return y1(T ). else return

y1(T ) · |y2(T )|−k
|y2(T )|−|y1(T )| + y2(T ) · k−|y1(T )|

|y2(T )|−|y1(T )| .

Observation 4.1. There exists an efficient algorithm for calculating the vectors I1(t) and I2(t)
defined on Line 6 of Algorithm 2.

Proof. The calculation of I1(t) and I2(t) can be done by solving the following linear program.

max m
s.t.

∑

u∈N wiu(t) · I
i
u(t) + 2 · F (yi(t)) ≥ m ∀i ∈ {1, 2}

∑

u∈N I1u(t) = k
∑

u∈N I2u(t) = n− k
I1u(t) + I2u(t) = 1 ∀u ∈ N
Iiu(t) ≥ 0 ∀u ∈ N , i ∈ {1, 2}

The following lemma follows from Lemma 2.3.

Lemma 4.2. For every time 0 ≤ t ≤ T , the vectors y1(t) and y2(t) obey:
• y1(t), y2(t) ∈ [0, 1]N .
• y1(t) ≤ y2(t) (element-wise).
• |y1(t)| ≤ k ≤ |y2(t)|.

Proof. We first prove the first part of the lemma by induction on t. For t = 0 the claim is trivial.
Assume the claim holds for time t, and let us prove it for time t+δ. By definition, for every element
u ∈ N , either:

y1u(t+ δ) = 0 or y1u(t+ δ) = y1u(t) + δI1u(t) · (1− y
1
u(t)) ≤ y

1
u(t) + (1− y1u(t)) = 1 .
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Similarly, we also get either:

y2u(t+ δ) = 1 or y2u(t+ δ) = y2u(t)− δI
2
u(t) · y

2
u(t) ≥ 0 .

To prove the second part of the lemma, let y3(t) = 1N − y
2(t) for every time t. It is easy to see

that for every time 0 ≤ t < T and element u ∈ N :

y3u(t+ δ) ≤ y3u(t) + δI2u(t) · (1− y
3
u(t)) .

Think of (y1u(t), y
3
u(t)) as a point in the polytope y1u + y3u ≤ 1. The density of this polytope is 1/2,

and thus, by Lemma 2.3,
y1u(T ) + y3u(T ) ≤ 1⇒ y1u(T ) ≤ y

2
u(T )

as long as T ≤ −n/k · ln(1− k/n+ n−4) ≤ −2 ln(1/2 + n−4).
To prove the third part of the lemma, notice that the densities of both polytopes

∑

u∈N xu ≤ k
and

∑

u∈N xu ≤ n − k are at least k/n. Thus, by Lemma 2.3, |y1(T )| ≤ k and |y3(T )| ≤ n − k as
long as T ≤ −n/k · ln(1− k/n+ n−4). The third part of the lemma follows from these observations
since |y2(T )| = n− |y3(T )|.

As a corollary of Lemma 4.2, we can guarantee feasibility. Let y be the vector produced by
Algorithm 2.

Corollary 4.3. y is a feasible solution.

Proof. Consider first the case |y2(T )| = |y1(T )|. Since y1(T ) ≤ k ≤ y2(T ), we must have |y1(T )| =
k. Hence, y = y1(T ) is indeed feasible in this case.

Consider now the case |y1(T )| 6= |y2(T )|. In this case, the vector y is defined by:

y1(T ) ·
|y2(T )| − k

|y2(T )| − |y1(T )|
+ y2(T ) ·

k − |y1(T )|

|y2(T )| − |y1(T )|
.

Observe that y is a convex combination of y1(T ) and y2(T ), and thus, it is a vector in [0, 1]N .
Moreover,

|y| = |y1(T )| ·
|y2(T )| − k

|y2(T )| − |y1(T )|
+ |y2(T )| ·

k − |y1(T )|

|y2(T )| − |y1(T )|
= k .

Our next objective is lower bounding F (y) in terms of F (y1(T )) and F (y2(T )). Let r : [0, 1]→
R
+ be the function:

r(x) = F (y1(T ) + x(y2(T )− y1(T ))) .

Intuitively, r(x) evaluates F on a vector that changes from y1(T ) to y2(T ) as x increases.

Observation 4.4. r is a non-negative concave function.

Proof. The non-negativity of r follows immediately from the non-negativity of F . Thus, it only
remains to prove that r is concave. Let r̂(x) = y1(T ) + x(y2(T ) − y1(T )), i.e., r(t) = F (r̂(t)). By
the chain rule,

dr(x)

dx
=
dF (r̂(x))

dx
=
∑

u∈N

[

∂r̂u(x)

∂x
· ∂uF (r̂(x))

]

=
∑

u∈N

[

(y2u(T )− y
1
u(T )) · ∂uF (r̂(x))

]

.

By Lemma 4.2, y2u(T ) − y
1
u(T ) is a non-negative constant for every u ∈ N . On the other hand,

by submodularity, ∂uF (r̂(x)) is a non-increasing function of x since r̂(x) is a linear non-decreasing

function (coordinate-wise). Hence, dr(x)dx is a non-increasing function of x.
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Corollary 4.5. F (y) ≥ min{F (y1(T )), F (y2(T ))}.

Proof. If |y1(T )| = |y2(T )| then y = y1(T ), which makes the corollary trivial. Thus, we may assume
from now on: |y1(T )| 6= |y2(T )|. Observe that in this case:

F (y) = F

(

y1(T ) ·
|y2(T )| − k

|y2(T )| − |y1(T )|
+ y2(T ) ·

k − |y1(T )|

|y2(T )| − |y1(T )|

)

= F

(

y1(T ) + (y2(T )− y1(T )) ·
k − |y1(T )|

|y2(T )| − |y1(T )|

)

= r

(

k − |y1(T )|

|y2(T )| − |y1(T )|

)

.

Notice that (k − |y1(T )|)/(|y2(T )| − |y1(T )|) ∈ [0, 1]. Thus, the concavity of r implies:

F (y) = r

(

k − |y1(T )|

|y2(T )| − |y1(T )|

)

≥ min{r(0), r(1)} = min{F (y1(T )), F (y2(T ))} .

The proof of Theorem 1.2 now boils down to lower bounding min{F (y1(T )), F (y2(T ))}. The fol-
lowing lemma is a counter-part of Lemma 3.1. Let ∆(t) = min{F (y1(t)∨1OPT )+F (y

1(t)), F (y2(t)∧
1OPT ) + F (y2(t))}.

Lemma 4.6. For every time 0 ≤ t < T :
∑

u∈N

(1− y1u(t)) · I
1
u(t) · ∂uF (y

1(t)) + 2 · F (y1(t)) ≥ ∆(t) ,

−
∑

u∈N

y2u(t) · I
2
u(t) · ∂uF (y

2(t)) + 2 · F (y2(t)) ≥ ∆(t) .

Proof. Let us calculate the weights of OPT and OPT according to the weight functions w1(t) and
w2(t), respectively.

w1(t) · 1OPT =
∑

u∈OPT

w1
u(t) =

∑

u∈OPT

[

F (y1(t) ∨ 1u)− F (y
1(t))

]

≥ F (y1(t) ∨ 1OPT )− F (y
1(t)) ,

and

w2(t) ·1OPT =
∑

u∈OPT

w2
u(t) =

∑

u∈OPT

[

F (y2(t) ∧ 1N−u)− F (y
2(t))

]

≥ F (y2(t)∧1OPT )−F (y
2(t)) ,

where the inequalities follow from submodularity. Since |OPT | = k,

min{I1(t) · w1(t) + 2 · F (y1(t)), It(t) · w2(t) + 2 · F (y2(t))}

≥ min{1OPT · w
1(t) + 2 · F (y1(t)),1OPT · w

2(t) + 2 · F (y2(t))}

≥ min{F (y1(t) ∨ 1OPT ) + F (y1(t)), F (y2(t) ∧ 1OPT ) + F (y2(t))} = ∆(t) .

Hence,
∑

u∈N

(1− y1u(t)) · I
1
u(t) · ∂uF (y

1(t)) =
∑

u∈N

I1u(t) · [F (y
1(t) ∨ 1u)− F (y

1(t))] = I1(t) · w1(t)

≥ ∆(t)− 2 · F (y1(t)) ,

and

−
∑

u∈N

y2u(t) · I
2
u(t) · ∂uF (y

2(t)) =
∑

u∈N

I2u(t) · [F (y
2(t) ∧ 1N−u)− F (y

2(t))] = I2(t) · w2(t)

≥ ∆(t)− 2 · F (y2(t)) .
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Lemma 4.7. f(OPT ) ≥ maxu∈N f({u})/2.

Proof. Let u∗ be the element of N for which f({u∗}) = maxu∈N f({u}), and let A,B ⊆ N − u∗ be
two disjoint subsets of size k − 1 (there are such sets since |N − u∗| = n− 1 ≥ 2(k − 1)). Then,

f(OPT ) ≥
f(A+ u∗) + f(B + u∗)

2
≥
f({u∗})

2
.

Corollary 4.8. For every time 0 ≤ t < T ,

F (y1(t+ δ))− F (y1(t)) ≥ δ · [∆(t)− 2 · F (y1(t))] −O(n3δ2) · f(OPT ) ,

and
F (y2(t+ δ))− F (y2(t)) ≥ δ · [∆(t)− 2 · F (y2(t))] −O(n3δ2) · f(OPT ) .

Proof. Lemmata 2.2, 4.6 and 4.7 imply:

F (y1(t+ δ)) − F (y1(t)) ≥ δ · [∆(t)− 2 · F (y1(t))]−O(n3δ2) · f(OPT ) ,

where y1(t+δ) represents its value at the beginning of the loop starting on Line 9. The first part of
the corollary now follows by noticing that the last loop can only increase the value of F (y1(t+ δ)).
The second part of the corollary is analogous.

To make the lower bounds given by the above lemma useful, we need a lower bound on ∆(t).
This lower bound is obtained using Lemma 1.7. Proving that the conditions of Lemma 1.7 hold
can be done using ideas from the proof of Lemma 3.3.

Lemma 4.9. For every time 0 ≤ t < T , ∆(t) ≥ f(OPT ).

Proof. It can be easily verified that Lemma 3.3 applies here (for y1(t)), i.e., for every vector
x ≤ y1(t), F (x) ≤ F (y1(t)). Combining this observation with Lemma 1.7 gives:

F (y1(t) ∨ 1OPT ) ≥ f(OPT )− F (y
1(t)) . (1)

Using an analogous proof to the one of Lemma 3.3, it can be shown that for every vector
x ≥ y2(t), F (x) ≤ F (y2(t)). This implies that F̄ (x) ≤ F̄ (1N − y

2(t)) for every x ≤ 1N − y
2(t).

Combing this observation with Lemma 1.7 gives:

F (y2(t)∧1OPT ) = F̄ ((1N −y
2(t))∨1OPT ) ≥ f̄(OPT )− F̄ (1N −y

2(t)) = f(OPT )−F (y2(t)) . (2)

The lemma now follows by plugging inequalities (1) and (2) into the definition of ∆(t).

Corollary 4.8 and Lemma 4.9 imply together the following counterpart of Corollary 3.4.

Corollary 4.10. For every time 0 ≤ t < T ,

F (y1(T + δ))− F (y1(T )) ≥ δ · [f(OPT )− 2 · F (y1(t))] −O(n3δ2) · f(OPT ) ,

and
F (y2(T + δ))− F (y2(T )) ≥ δ · [f(OPT )− 2 · F (y2(t))] −O(n3δ2) · f(OPT ) .

Repeating the same line of arguments used in Section 3, the previous corollary implies:

Lemma 4.11. F (y1(T )) ≥ 1/2 · [1− e−2T − o(1)] · f(OPT ) and F (y2(T )) ≥ 1/2 · [1− e−2T − o(1)] ·
f(OPT ).
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We are now ready to prove the approximation ratio guaranteed by Theorem 1.2.

Proof of the Approximation Ratio of Theorem 1.2. By Corollary 4.5 and Lemma 4.11, the approx-
imation ratio of Algorithm 2, up to an error term of o(1), is at least:

1− e−2[−(n/k)·ln(1−k/n+n−4)]

2
=

1− (1− k/n)2n/k ·
(

1 + n−4

1−k/n

)2n/k

2
≥

1− (1− k/n)2n/k · e4n
−3k−1

2

≥
1− (1− k/n)2n/k − [e4n

−3k−1

− 1]

2
=

1− (1− k/n)2n/k

2
− o(1) .

5 Deterministic 1/2-Approximation for Unconstrained Symmetric

Submodular Maximization

In this section we prove Theorem 1.5.

Theorem 1.5. There exists a deterministic linear-time 1/2-approximation algorithm for the problem
max{f(S) : S ⊆ N}, where f : 2N → R

+ is a non-negative symmetric submodular function.

Algorithm 3 is a restatement of Algorithm 1 of [2]. Buchbinder et al. [2] proved that this
algorithm provides a 1/3-approximation for the problem max{f(S) : S ⊆ N} when f is a non-
negative submodular function. Moreover, they showed a tight example for which the algorithm
achieves only 1/3 + ε approximation. We prove that when f is also symmetric, the approximation
ratio of this algorithm improves to 1/2, and thus, prove Theorem 1.5.

Algorithm 3: Two-Sided Greedy(f,N )

1 X0 ← ∅, Y0 ← N .
2 for i = 1 to n do

3 ai ← f(Xi−1 + ui)− f(Xi−1).
4 bi ← f(Yi−1 − ui)− f(Yi−1).
5 if ai ≥ bi then Xi ← Xi−1 + ui, Yi ← Yi−1. else Xi ← Xi−1, Yi ← Yi−1 − ui.

6 return Xn (or equivalently Yn).

Following [2], we defineOPTi , (OPT∪Xi)∩Yi, i.e., OPTi agrees withXi (and Yi) on the first i
elements and with OPT on the last n−i elements. Similarly, we also defineOPT i , (OPT∪Xi)∩Yi.

Observation 5.1. OPT0 = OPT , OPT 0 = OPT and OPTn = OPTn = Xn = Yn.

Consider the change in the value of f(OPTi) + f(OPT i) as i increases. The value of this
expression starts as 2f(OPT ) (for i = 0) and deteriorates to 2f(Xn) (for i = n). The main idea of
the proof is to bound the total loss of value. This goal is achieved by the following lemma which
upper bounds the loss in value occurring whenever i increases by 1. More formally, the lemma
shows that the decrease in f(OPTi) + f(OPT i) is no more than the total increase in value of both
solutions maintained by the algorithm, i.e., f(Xi) + f(Yi).

Lemma 5.2. For every 1 ≤ i ≤ n,

[f(OPTi−1)− f(OPTi)] + [f(OPT i−1)− f(OPT i)] ≤ [f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)] .

Before proving Lemma 5.2, let us show that Theorem 1.5 follows from it.
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Proof of Theorem 1.5. Adding up Lemma 5.2 for every 1 ≤ i ≤ n gives:

n
∑

i=1

[f(OPTi−1)− f(OPTi)] +
n
∑

i=1

[f(OPT i−1)− f(OPT i)]

≤
n
∑

i=1

[f(Xi)− f(Xi−1)] +

n
∑

i=1

[f(Yi)− f(Yi−1)] .

The above sums are telescopic. Collapsing them and using the non-negativity of f results in:

[f(OPT0)− f(OPTn)] + [f(OPT 0)− f(OPTn)] ≤ [f(Xn)− f(X0)] + [f(Yn)− f(Y0)]

≤ f(Xn) + f(Yn) .

Using the equalities of Observation 5.1, we obtain:

[f(OPT )− f(Xn)] + [f(OPT )− f(Xn)] ≤ f(Xn) + f(Xn)⇒ f(Xn) =
f(OPT ) + f(OPT )

4
.

The theorem now follows from the symmetry of f .

It all boils down now to proving Lemma 5.2.

Proof of Lemma 5.2. Assume ai ≥ bi (the other case is analogous). This assumption implies Xi =
Xi−1 + ui and Yi = Yi−1, which induce:

• OPTi = (OPT ∪Xi) ∩ Yi = OPTi−1 + ui.

• OPT i = (OPT ∪Xi) ∩ Yi = OPT i−1 + ui.

Thus, the lemma we want to prove can be rewritten as:

[f(OPTi−1)− f(OPTi−1 + ui)] + [f(OPT i−1)− f(OPT i−1 + ui)] ≤ f(Xi)− f(Xi−1) = ai . (3)

We have to consider two cases. If ui ∈ OPT , then the left side of Equation (3) is equal to:

f(OPT i−1)− f(OPT i−1 + ui) ≤ f(Yi−1 − ui)− f(Yi−1) = bi ≤ ai ,

where the first inequality follows by submodularity: OPT i−1 = (OPT ∪Xi−1) ∩ Yi−1 ⊆ Yi−1 − ui
since ui 6∈ OPT ∪Xi−1. If ui 6∈ OPT , then the left side of Equation (3) is equal to:

f(OPTi−1)− f(OPTi−1 + ui) ≤ f(Yi−1 − ui)− f(Yi−1) = bi ≤ ai ,

where the first inequality follows, again, by submodularity: OPTi−1 = (OPT ∪ Xi−1) ∩ Yi−1 ⊆
Yi−1 − ui since ui 6∈ OPT ∪Xi−1.

6 Submodular Welfare with Identical Utilities

In this section we prove Theorem 1.6. The positive and negative parts of the theorem are proved
in Sections 6.1 and 6.2, respectively.

Theorem 1.6. There exists a linear-time [1− (1− 1/k)k−1]-approximation algorithm for SW with
k players having identical non-negative submodular utility functions. Moreover, any algorithm for
this problem whose approximation ratio is [1 − (1 − 1/k)k−1] + ε (for some constant ε > 0) must
use an exponential number of value oracle queries.
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6.1 Proof of the Positive Part of Theorem 1.6

Consider the algorithm assigning every element u ∈ N to a random one out of the k players. A
formal description of this algorithm is given as Algorithm 4 (the notation [k] used by Algorithm 4
denotes the set {1, 2, . . . , k}). We show that Algorithm 4 has the approximation ratio guaranteed
by Theorem 1.6.

Algorithm 4: Random Assignment(f, k,N )

1 for i = 1 to k do

2 Initialize Si ← ∅.

3 for each element u ∈ N do

4 Choose a uniformly random i ∈ [k].
5 Update Si ← Si + u.

6 for i = 1 to k do

7 Assign the elements of Si to player pi.

Despite the simplicity of Algorithm 4, we do not have a simple analysis of its approximation ratio
making it intuitively clear why the approximation ratio is what it is. Instead we give two analyses
which prove this approximation ratio through, somewhat involved and unintuitive, mathematical
manipulations. One analysis of the algorithm can be found in Appendix C. Below we give a quite
different simpler analysis suggested by Uri Feige. Both analyses use the two following known
lemmata.

Lemma 6.1 (Lemma 2.2 of [14]). Let f : 2N → R be submodular. Denote by A(p) a random subset
of A where each element appears with probability p. Then, E[f(A(p))] ≥ (1− p)f(∅) + p · f(A).

Following the notation of Lemma 6.1, given a set A and a probability p, we use A(p) in the rest of
the paper to denote a random set containing every element of A with probability p, independently.

Lemma 6.2 (Lemma 2.2 of [3] (rephrased)). Let f : 2N → R
+ be a non-negative submodular

function, and let R be a random set in which each element appears with probability at most p (not
necessarily independently). Then, E[f(R)] ≥ (1− p)f(∅).

For every 1 ≤ i ≤ k, let OPTi denote the set of elements assigned by the optimal solution to
player pi. Additionally, let π : [k] → [k] be a uniformly random permutation of [k]; and for every
0 ≤ i ≤ k, let Ti be the set of the elements assigned by the optimal solution to the first i players
according to the order defined by the permutation π. More formally,

Ti =

i
⋃

j=1

OPTπ(j) ∀ 0 ≤ i ≤ k .

The following lemma bounds the change in E[f(Ti(k
−1))] as a function of i. Let opt be the

value of the optimal solution (i.e., opt =
∑k

i=1 f(OPTi)).

Lemma 6.3. For every 1 ≤ i ≤ k,

E[f(Ti(k
−1))] ≥

(

1−
1

k

)

· E[f(Ti−1(k
−1))] +

(

1−
i− 1

k(k + 1)

)

·
opt

k2
.
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Proof. Let us fix the permutation π and the set Ti−1(k
−1). Observe that after these fixes each ele-

ment of OPTπ(i) belongs to Ti−1(k
−1)∪OPTπ(i)(k

−1) with probability k−1. Moreover, f(Ti−1(k
−1)∪

S) is a non-negative submodular function of S. Hence, by Lemma 6.1:

E[f(Ti−1(k
−1) ∪OPTπ(i)(k

−1))] ≥

(

1−
1

k

)

· f(Ti−1(k
−1)) +

1

k
· f(Ti−1(k

−1) ∪OPTπ(i)) .

We now unfix the set Ti−1(k
−1) and the permutation π, except for π(i). By the law of total

expectation, the previous inequality now becomes:

E[f(Ti−1(k
−1)∪OPTπ(i)(k

−1))] ≥

(

1−
1

k

)

·E[f(Ti−1(k
−1))]+

1

k
·E[f(Ti−1(k

−1)∪OPTπ(i))] , (4)

where the expectations are over the random choice of the entries other than π(i) in π, the subset
of the elements of Ti−1 that remain in Ti−1(k

−1) and the subset of the elements of OPTπ(i) that
remain in OPTπ(i)(k

−1)).
Observe that an element u ∈ N belongs to Ti−1 if and only if it belongs to one of the sets

{OPTπ(j)}
i−1
j=1, which happens with probability at most i−1

k−1 (we say “at most” since this probability
is 0 for elements of OPTπ(i)). Moreover, notice that OPTπ(i) is deterministic (as we are still fixing
π(i)), and f(S ∪OPTπ(i)) is a non-negative submodular function of S. Hence, by Lemma 6.2,

E[f(Ti−1(k
−1) ∪OPTπ(i))] ≥

(

1−
maxu∈N Pr[u ∈ Ti−1]

k

)

· f(OPTπ(i))

≥

(

1−
i− 1

k(k − 1)

)

· f(OPTπ(i)) .

Plugging the last inequality into Inequality (4) and unfixing π(i), we get:

E[f(Ti−1(k
−1) ∪OPTπ(i)(k

−1))] ≥

(

1−
1

k

)

· E[f(Ti−1(k
−1))] +

(

1−
i− 1

k(k − 1)

)

·
E[f(OPTπ(i))]

k

=

(

1−
1

k

)

· E[f(Ti−1(k
−1))] +

(

1−
i− 1

k(k − 1)

)

·
opt

k2
.

The lemma now follows since Ti(k
−1) has the same distribution as Ti−1(k

−1)∪OPTπ(i)(k
−1).

Lemma 6.3 gives a recursive formula for a lower bound on E[f(Ti(k
−1))]. The next lemma

proves a closed form of this lower bound.

Lemma 6.4. For every 0 ≤ i ≤ k,

E[f(Ti(k
−1))] ≥

[

k2 − i

k(k − 1)
−

(

1−
1

k

)i−1
]

·
opt

k
.

Proof. We prove the lemma by induction on i. First, let us prove the base case. Since f is non-
negative:

E[f(T0(k
−1))] = f(∅) ≥ 0 =

[

k

k − 1
−

k

k − 1

]

·
opt

k
=

[

k2 − 0

k(k − 1)
−

(

1−
1

k

)0−1
]

·
opt

k
.
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Next, assume the lemma holds for i − 1 ≥ 0, and let us prove it for i. By Lemma 6.3 and the
induction hypothesis,

E[f(Ti(k
−1))] ≥

(

1−
1

k

)

· E[f(Ti−1(k
−1))] +

(

1−
i− 1

k(k − 1)

)

·
opt

k2

≥

(

1−
1

k

)

·

[

k2 − i+ 1

k(k − 1)
−

(

1−
1

k

)i−2
]

·
opt

k
+

(

1−
i− 1

k(k − 1)

)

·
opt

k2

=

[

(1− 1/k)(k2 − i+ 1) + (k − 1)− (i− 1)/k

k(k − 1)
−

(

1−
1

k

)i−1
]

·
opt

k
.

The lemma now follows by plugging the next equality into the previous inequality.

(

1−
1

k

)

(k2 − i+ 1) + (k − 1)−
i− 1

k
= (k2 − i+ 1)− k +

i− 1

k
+ (k − 1)−

i− 1

k
= k2 − i .

We are now ready to prove the positive part of Theorem 1.6.

Proof of the Positive Part of Theorem 1.6. Observe that Tk(k
−1) is a random set containing every

element of N with probability k, independently. Hence, Tk(k
−1) has the same distribution as every

one of the sets {Si}
k
i=1. Thus, by Lemma 6.4:

E

[

k
∑

i=1

f(Si)

]

= k · E[f(Tk(k
−1))]

≥ k ·

[

k2 − k

k(k − 1)
−

(

1−
1

k

)k−1
]

·
opt

k
=

[

1−

(

1−
1

k

)k−1
]

· opt .

The theorem now follows since
∑k

i=1 f(Si) is the value of the solution produced by Algorithm 4.

6.2 Proof of the Negative Part of Theorem 1.6

Let us begin with a tight example showing that our analysis of Algorithm 4 is tight. Consider an
instance of SW with k ≥ 2 players and a set N of k items. The utility function of all the players is
the non-negative submodular function f(S) : N → R

+ defined as follows.

f(S) =

{

1− |S|−1
k−1 if S 6= ∅ ,

0 otherwise .

Observation 6.5. E[f(N (1/k))] = 1− (1− 1/k)k−1.

Proof. Observe that:

E[f(N (1/k))] = E

[

1−
|N (1/k)| − 1

k − 1

]

− Pr[N (1/k) = ∅] ·

[

1−
0− 1

k − 1

]

= 1−
E[|N (1/k)|] − 1

k − 1
− (1− 1/k)k ·

k

k − 1
= 1− (1− 1/k)k−1 .

Corollary 6.6. There exists an instance of SW with k players having identical non-negative sub-
modular utility functions for which the approximation ratio of Algorithm 4 is 1− (1− 1/k)k−1.
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Proof. The above instance of SW has an optimal solution OPT assigning a single (arbitrary but
unique) element to every player. The value of this solution is k. On the other hand, the solution
produced by Algorithm 4 has an expected value of:

E

[

k
∑

i=1

f(Si)

]

= k · E[f(N (1/k))] = k[1− (1− 1/k)k−1] .

In order to convert the above tight example into an hardness result, we need the following
lemma from [30].

Lemma 6.7 (Lemma 3.2 of [30]). Consider a function f : 2N → R
+ invariant under a group of

permutations G on the ground set N . Let F be the multilinear extension of f , x̄ = Eσ∈G [σ(x)] and
fix any ε > 0. Then there is δ > 0 and functions F̂ , Ĝ : [0, 1]N → R

+ (which are also symmetric
with respect to G), satisfying:
• For all x ∈ [0, 1]N , Ĝ(x) = F̂ (x̄).
• For all x ∈ [0, 1]N , |F̂ (x)− F (x)| ≤ ε.
• Whenever ‖x− x̄‖22 ≤ δ, F̂ (x) = Ĝ(x) and the value depends only on x̄.
• The first partial derivatives of F̂ , Ĝ are absolutely continuous.

• If f is monotone, then ∂F̂
∂xi
≥ 0 and ∂Ĝ

∂xi
≥ 0 everywhere.

• If f is submodular, then ∂2F̂
∂xi∂xj

≤ 0 and ∂2Ĝ
∂xi∂xj

≤ 0 almost everywhere.

Observe that the function f depends only on the size of its input set, and thus, is invariant
under any permutation of N . In other words, in our context: x̄ is a vector having the value |x|/k
in all the coordinates. Let F̂ and Ĝ be the function guaranteed by Lemma 6.7 when it is applied
to f (with the group of all permutations).

Lemma 6.8. There exists a set of k integral vectors o1, o2, . . . , ok ∈ {0, 1}
N such that

∑k
i=1 oi = 1N

and
∑k

i=1 F̂ (oi) ≥ k(1 − ε). On the other hand, for every set of k vectors x1, x2, . . . , xk ∈ [0, 1]N

obeying
∑k

i=1 xi = 1N , it must hold that
∑k

i=1 Ĝ(xi) ≤ k[1 − (1− 1/k)k−1 + ε] and
∑k

i=1 F̂ (xi) ≤
k(1 + ε).

Proof. Recall that N contains exactly k elements, and let us name them v1, v2, . . . , vk (in an
arbitrary order). Let oi = 1vi , then, clearly,

∑k
i=1 oi = 1N . On the other hand:

k
∑

i=1

F̂ (oi) ≥
k
∑

i=1

F (oi)− kε =
k
∑

i=1

f({vi})− kε = k(1− ε) .

Consider now an arbitrary set of k vectors x1, x2, . . . , xk ∈ [0, 1]N such that:
∑k

i=1 xi = 1N .
First observe that for every vector x ∈ [0, 1]N :

F (x̄) = E

[

1−
|R(x̄)| − 1

k − 1

]

− Pr[R(x̄) = ∅] ·

[

1−
0− 1

k − 1

]

= 1−
E[|R(x̄)|]− 1

k − 1
−

(

1−
|x|

k

)k

·
k

k − 1
= 1−

|x| − 1

k − 1
−

(

1−
|x|

k

)k

·
k

k − 1
.
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Thus:

k
∑

i=1

Ĝ(xi) =

k
∑

i=1

F̂ (x̄i) ≤
k
∑

i=1

F (x̄i) + kε = k −

∑k
i=1 |xi| − k

k − 1
−

k

k − 1
·
k
∑

i=1

(

1−
|xi|

k

)k

+ kε

≤ k −

∑k
i=1 |xi| − k

k − 1
−

k

k − 1
·
k
∑

i=1

(

1−

∑k
i=1 |xi|

k2

)k

+ kε

= k −
k2

k − 1

(

1−
1

k

)k

+ kε = k[1− (1− 1/k)k−1 + ε] .

Finally,
k
∑

i=1

F̂ (xi) ≤
k
∑

i=1

F (xi) + kε ≤ k(1 + ε) .

Given an arbitrary n ≥ 1, we construct two instances of SW as follows. Both instance share a
single ground set Nn = N × [n], and have k players. The utility function (of all the players) in the
first and second instances are:

f̂(S) = F̂

(

1

n
· ψ(S)

)

and ĝ(S) = Ĝ

(

1

n
· ψ(S)

)

,

respectively, where ψ(S) ∈ [0, 1]N is a vector whose v coordinate counts the number of pairs in S
containing v. More formally, for every v ∈ N ,

ψv(S) = |S ∩ ({v} × [n])| .

The following lemma of [30] shows (together with the gurantees of Lemma 6.7) that both f̂ and
ĝ are submodular.

Lemma 6.9 (Lemma 3.1 of [30]). Let F : [0, 1]N → R, n ≥ 1, and define f : 2N×[n] → R so that
f(S) = F (x) where xi =

1
n |S ∩ ({i} × [n])|. Then:

• If ∂F
∂xi
≥ 0 everywhere for each i, then f is monotone.

• If the first partial derivatives of F are absolutely continuous and ∂2F
∂xi∂xj

≤ 0 almost everywhere

for all i, j, then f is submodular.

The following lemma uses Lemma 6.8 to bound the values of the optimal solutions of the SW

instances corresponding to f̂ and ĝ.

Lemma 6.10. Let optf̂ and optĝ denote the optimal values of the two SW instances having Nn as

the set of items and k players whose (common) objective functions are f̂ and ĝ, respectively. Then:
k(1− ε) ≤ optf̂ ≤ k(1 + ε) and optĝ ≤ k[1− (1− 1/k)k−1 + ε].

Proof. By Lemma 6.8 there exists a set of k integral vectors o1, o2, . . . , ok ∈ {0, 1}
N such that

∑k
i=1 oi = 1N and

∑k
i=1 F̂ (oi) ≥ k(1 − ε). Since each vector oi is integral, there exists a corre-

sponding set Si for which oi = 1Si
. Since

∑k
i=1 oi = 1N , the sets S1, S2, . . . , Sk form a partition of

N .
Define Ai = Si × [n]. Clearly the sets A1, A2, . . . , An form a partition of Nn, and

1

n
· ψ(Ai) = oi .
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Hence,

optf̂ ≥
k
∑

i=1

f̂(Ai) =
k
∑

i=1

F̂ (oi) ≥ k(1− ε) .

Next, fix arbitrary k sets B1, B2, . . . , Bk partitioning Nn. For every element v ∈ N ,

k
∑

i=1

ψv(Bi)

n
=

k
∑

i=1

|Bi ∩ ({v} × [n])|

n
=
|{v} × [n]|

n
= 1 .

Hence,
∑k

i=1
ψ(Bi)
n = 1N . The last equality implies, by Lemma 6.8,

k
∑

i=1

f̂(Bi) =

k
∑

i=1

F̂

(

ψ(Bi)

n

)

≤ k(1 + ε) ,

and
k
∑

i=1

ĝ(Bi) =

k
∑

i=1

Ĝ

(

ψ(Bi)

n

)

≤ k[1− (1− 1/k)k−1 + ε] .

The following lemma shows that it is difficult to distinguish between the two above instances
of SW (in some sense).

Lemma 6.11. Assume a uniformly random renaming is applied to the ground set (i.e., every
element of Nn is unified with a unique uniformly random element from [nk]), then any deterministic
algorithm distinguishing between f̂ and ĝ with a constant probability requires an exponential number
of value oracle queries.

Proof. Consider a deterministic algorithm ALG, and let D1, . . . ,Dh be the list of sets whose value
is queried by ALG when it is given ĝ as the input. Observe that ĝ depends on nothing except for
the size of its input set, hence, the sets D1, . . . ,Dh are identical regardless of the random renaming
applied.

Assume, w.l.o.g., that ALG returns one of the sets whose values it queries, and consider what
happens when ALG gets f̂ as its input. If f̂(Di) = ĝ(Di) for every set 1 ≤ i ≤ h, then ALG
is guaranteed to follow the same computation path as when it gets ĝ, and outputs a set of the
same value in both cases. Hence, we only need to show that if h is sub-exponential then with high
probability g(Di) = f(Di) for every 1 ≤ i ≤ h.

Fix some 1 ≤ i ≤ h. Let x = 1
nψ(Di). By definition,

x̄ =
|Di|

nk
· 1N .

Due to the random renaming, Di is in fact a random subset of size |Di| of Nn. For every v ∈ N , n·xv
has a hypergeometric distribution. We bound the probability n · xv deviates from its expectation
using bounds given in [29] (these bounds are based on results of [9, 21]). First, observe that
E[n · xv] = |Di|/k. Hence,

Pr

[

∣

∣

∣

∣

xv −
|Di|

nk

∣

∣

∣

∣

>

√

δ

k

]

= Pr

[

|n · xv − E[n · xu]| > |Di| ·

√

n2δ

k|Di|2

]

≤ 2e
−2· n2δ

k|Di|
2 ·|Di|

≤ 2e−2·nδ

k2 .
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By the union bound, with probability at least 1− 2ke−2·nδ

k2 , |xv − |Di|/(nk)| ≤
√

δ/k for every
v ∈ N , and thus:

‖x− x̄‖22 ≤ k ·

(

√

δ

k

)2

= δ .

Hence, by Lemma 6.7, with probability at least 1− 2ke−2·nδ

k2 ,

ĝ(Di) = Ĝ(x) = F̂ (x) = f̂(Di) .

Using the union bound again, we get that with probability 1 − 2khe−2·nδ

k2 , f̂(Di) = ĝ(Di) for
every 1 ≤ i ≤ h. The lemma now follows since δ and k are constants and h is sub-exponential in
n.

We are now ready to prove the negative part of Theorem 1.6.

Proof of the Negative Part of Theorem 1.6. Fix an arbitrary deterministic algorithm ALG for SW

with identical utility functions making a sub-exponential number of value oracle queries. By
Lemma 6.11, there exists a distribution of instances D (produced via the random renaming) such
that:
• Given an instance drawn from D, ALG finds with probability at least 1−ε a solution of value

at most optĝ.
• No instance in D has a solution of value more than optf̂ .

Hence, given an instance drawn from D, the expected value of ALG’s solution is at most:

(1− ε) · optĝ + ε · optf̂ ≤ k[1− (1− 1/k)k−1 + ε] + εk(1 + ε) ≤ k[1− (1− 1/k)k−1 + ε] + 2εk ,

where the first inequality follows from Lemma 6.10 and the second one follows by assuming ε ≤ 1
(notice that we may assume ε is smaller than any arbitrary positive constant since proving the
theorem for a small value of ε proves it also for larger values of ε). The approximation ratio of
ALG is, therefore, no better than:

k[1− (1− 1/k)k−1 + ε] + 2εk

optf̂
≤
k[1 − (1− 1/k)k−1 + ε] + 2εk

k(1− ε)

=
1− (1− 1/k)k−1 + 3ε

1− ε
≤ 1− (1− 1/k)k−1 + 6ε ,

where the last inequality assumes ε ≤ 1/3. This completes the proof of the theorem for deterministic
algorithms. The proof extends to randomized algorithms via Yao’s Principle since we have found
a single distribution D which is difficult for every deterministic algorithm using a sub-exponential
number of value oracle queries.

Acknowledgment. We would like to thank Uri Feige for pointing out the relevance of the result
of Khot et al. [23] for our work, and for simplifying the proof of Theorem 1.6.
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A Hardness of Cardinality Constraints under Symmetric Objec-

tives

In this section we prove Theorem 1.4.

Theorem 1.4. Consider the problems max{f(S) : |S| = p/q · n} and max{f(S) : |S| ≤ p/q · n}
where p < q are positive constant integers and f is a non-negative symmetric submodular function
f : 2N → R

+ obeying n/q ∈ Z. Then, every algorithm with an approximation ratio of 1/2+ε for one
of the above problems (for any constant ε > 0) uses an exponential number of value oracle queries.

The classes of problems referred to by Theorem 1.4 are closed under the refinement defined
by Definition 1.7 of [30] (for given p and q). Thus, by Theorem 1.8 of [30], to prove Theorem 1.4
it is enough to find (for given p and q) a symmetric submodular function fp,q : 2

N → R
+ (and a

corresponding multilinear extension Fp,q) obeying:
• N = {1, 2, . . . , 2q}.
• There exists a set S′ ⊆ N of size 2p such that fp,q(S

′) = 1.
• There exists a permutation σ : N → N such that: fp,q(S) = fp,q(σ(S)) for every set S ⊆ N

and Fp,q(x) ≤ 1/2 for every vector x ∈ {z ∈ [0, 1]N : σ(z) = z}.

Proof of Theorem 1.4. We define fp,q as follows:

fp,q(S) =

{

1 if |{1, 2q} ∩ S| = 1 ,

0 otherwise .

Let us show that fp,q has all the required properties. First observe that fp,q can be presented
as the cut function of a graph containing 2q nodes and a single edge, hence, it is symmetric and
submodular. Also, the set S′ = {1, 2, . . . , 2p} is of size 2p and have fp,q(S

′) = 1.
Consider now the permutation σ mapping every node i to 2q − i + 1. Since this permutation

maps 1 and 2q to each other, we get fp,q(S) = fp,q(σ(S)) for every set S ⊆ N . Moreover, every
vector x ∈ {z ∈ [0, 1]N : σ(z) = z} must have: z1 = z2q. Hence,

Fp,q(x) = z1(1− z2q) + z2q(1− z1) = 2z1(1− z1) ≤
1

2
.

B Proof of Theorem 1.3

The algorithm we use to prove Theorem 1.3 is Algorithm 5, which is a close variant of Algorithm 2.
The two algorithms defer in three points:
• The way T is set.
• The method of choosing I1(t) (and therefore, also I2(t)).
• The third “foreach” loop is removed.

We observe that all the proofs of Section 4 up to Corollary 4.5 can be made to work with these
changes. In other words, we know that Algorithm 5 is a polynomial time algorithm whose output
y is a feasible solution obeying F (y) ≥ min{F (y1(T )), F (y2(T ))}.

The following lemma and corollary give a lower bound on the improvement of the solutions
maintained by Algorithm 5 in every iteration. These lemma and corollary are the counter-part of
Lemma 4.6 and Corollary 4.8 from Section 4. Let ∆(t) = min{F (y1(t) ∨ 1OPT ), F (y

2(t) ∧ 1OPT )}
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Algorithm 5: Double Measured Continuous Greedy - General Submodular Objectives(f,N , k)

// Initialization

1 Set: T ← 1 and δ ← T (⌈n5T ⌉)−1.
2 Initialize: t← 0, y1(0)← 1∅ and y2(0)← 1N .

// Main loop

3 while t < T do

4 foreach u ∈ N do

5 Let w1
u(t)← F (y1(t) ∨ 1u)− F (y

1(t)) and w2
u(t)← F (y2(t) ∧ 1N−u)− F (y

2(t)).

6 Let I1(t) ∈ [0, 1]N and I2(t) ∈ [0, 1]N be two vectors maximizing

min{I1(t) · w1(t) + F (y1(t)), I2(t) · w2(t) + F (y2(t))}

among the vectors obeying |I1(t)| = k, |I2(t)| = n− k and I1(t) + I2(t) = 1N .
7 foreach u ∈ N do

8 Let y1u(t+ δ)← y1u(t) + δI1u(t) · (1− y
1
u(t)) and y

2
u(t+ δ)← y2u(t)− δI

2
u(t) · y

2
u(t).

9 t← t+ δ.

10 if |y1(T )| = |y2(T )| then return y1(T ). else return

y1(T ) · |y2(T )|−k
|y2(T )|−|y1(T )| + y2(T ) · k−|y1(T )|

|y2(T )|−|y1(T )| .

Lemma B.1. For every time 0 ≤ t < T :
∑

u∈N

(1− y1u(t)) · I
1
u(t) · ∂uF (y

1(t)) + F (y1(t)) ≥ ∆(t) ,

−
∑

u∈N

y2u(t) · I
2
u(t) · ∂uF (y

2(t)) + F (y2(t)) ≥ ∆(t) .

Proof. Let us calculate the weights of OPT and OPT according to the weight functions w1(t) and
w2(t), respectively.

w1(t) · 1OPT =
∑

u∈OPT

w1
u(t) =

∑

u∈OPT

[

F (y1(t) ∨ 1u)− F (y
1(t))

]

≥ F (y1(t) ∨ 1OPT )− F (y
1(t)) ,

and

w2(t) ·1OPT =
∑

u∈OPT

w2
u(t) =

∑

u∈OPT

[

F (y2(t) ∧ 1N−u)− F (y
2(t))

]

≥ F (y2(t)∧1OPT )−F (y
2(t)) ,

where the inequalities follow from submodularity. Since |OPT | = k,

min{I1(t) · w1(t) + F (y1(t)), It(t) · w2(t) + F (y2(t))}

≥ min{1OPT · w
1(t) + F (y1(t)),1OPT · w

2(t) + F (y2(t))}

≥ min{F (y1(t) ∨ 1OPT ), F (y
2(t) ∧ 1OPT )} = ∆(t) .

Hence,
∑

u∈N

(1− y1u(t)) · I
1
u(t) · ∂uF (y

1(t)) =
∑

u∈N

I1u(t) · [F (y
1(t) ∨ 1u)− F (y

1(t))] = I1(t) · w1(t)

≥ ∆(t)− F (y1(t)) ,
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and

−
∑

u∈N

y2u(t) · I
2
u(t) · ∂uF (y

2(t)) =
∑

u∈N

I2u(t) · [F (y
2(t) ∧ 1N−u)− F (y

2(t))] = I2(t) · w2(t)

≥ ∆(t)− F (y2(t)) .

Corollary B.2. For every time 0 ≤ t < T ,

F (y1(t+ δ)) − F (y1(t)) ≥ δ · [∆(t)− F (y1(t))]−O(n3δ2) · f(OPT ) ,

and
F (y2(t+ δ)) − F (y2(t)) ≥ δ · [∆(t)− F (y2(t))]−O(n3δ2) · f(OPT ) ,

Proof. The corollary follows immediately from Lemmata 2.2, 4.78 and B.1.

To use the lower bounds give by Corollary B.2, we need the following lemma of [17].

Lemma B.3 (Lemma III.5 of [17]). Consider a vector x ∈ [0, 1]N . Assuming xu ≤ a for every
u ∈ N , then for every set S ⊆ N , F (x ∨ 1S) ≥ (1− a)f(S).

We notice that Lemma B.3 applies also to F̄ since f̄ is also submodular. The following lemma
is a counterpart of Lemma III.6 of [17].

Lemma B.4. For every time 0 ≤ t ≤ T and element u ∈ N , max{y1u(t), 1−y
2
u(t)} ≤ 1−(1−δ)t/δ ≤

1− e−t +O(δ).

Proof. We first prove the inequality y1u(t) ≤ 1 − (1 − δ)t/δ . The proof is done by induction on t.
For t = 0, the inequality holds because y1u(0) = 0 = 1− (1− δ)0/δ . Assume the inequality holds for
some t, and let us prove it for t+ δ.

y1u(t+ δ) = y1u(t) + δI1u(t)(1 − y
1
u(t)) = y1u(t)(1 − δI

1
u(t)) + δI1u(t)

≤ (1− (1− δ)t/δ)(1− δI1u(t)) + δI1u(t) = 1− (1− δ)t/δ + δI1u(t)(1 − δ)
t/δ

≤ 1− (1− δ)t/δ + δ(1 − δ)t/δ = 1− (1− δ)(t+δ)/δ .

The proof that 1− y2u(t) ≤ 1− (1− δ)t/δ is analogous to the above proof. To complete the proof of
the lemma, we still need show that the inequality 1− (1− δ)t/δ ≤ 1− e−t +O(δ) holds:

1− (1− δ)t/δ ≤ 1− [e−1(1− δ)]t = 1− e−t(1− δ)t ≤ 1− e−t(1− tδ) ≤ 1− e−t +O(δ) ,

where the last inequality holds since e−tt ≤ e−1 for every t.

Corollary B.5. For every time 0 ≤ t < T , ∆(t) ≥ (e−t −O(δ)) · f(OPT )

Proof. By Lemmata B.3 and B.4,

F (y1(t) ∨ 1OPT ) ≥ (e−t −O(δ)) · f(OPT ) ,

and

F (y2(t) ∧ 1OPT ) = F̄ ((1N − y
2(t)) ∨ 1OPT ) ≥ (e−t −O(δ)) · f̄(OPT ) = (e−t −O(δ)) · f(OPT ) .

The lemma follows by plugging both observations into the definition of ∆(t).

8The proof of Lemma 4.7 does not use the symmetry of f .
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Combining Corollaries B.2 and B.5, we get the following corollary.

Corollary B.6. For every time 0 ≤ t < T ,

F (y1(t+ δ)) − F (y1(t)) ≥ δ · [e−t · f(OPT )− F (y1(t))]−O(n3δ2) · f(OPT ) ,

and
F (y2(t+ δ)) − F (y2(t)) ≥ δ · [e−t · f(OPT )− F (y2(t))]−O(n3δ2) · f(OPT ) ,

In order to complete the analysis of Algorithm 5, we need to derive from the last corollary lower
bounds on F (y1(T )) and F (y2(T )). This derivation is identical to the one used by [17] to derive
their result from their Corollary III.7 (which is the counterpart of Corollary B.6). We give the
proof again below for completeness.

Let g(t) be defined as follows: g(0) = 0 and g(t+ δ) = g(t) + δ[e−t · f(OPT )− g(t)]. The next
lemma shows that a lower bound on g(t) also gives a lower bound on F (y1(t)) and F (y2(t)).

Lemma B.7. For every time 0 ≤ t ≤ T , g(t) ≤ min{F (y1(t)), F (y2(t))}+O(n3δ) · t · f(OPT ).

Proof. We prove g(t) ≤ F (y1(t)) + O(n3δ−2) · t · f(OPT ). The proof of the claim for F (y2(t)) is
analogous. Let c be the constant hiding behind the big O notation in Corollary B.6. We prove by
induction on t that g(t) ≤ F (y1(t)) + cn3δt · f(OPT ). For t = 0, g(0) = 0 ≤ F (y1(0)). Assume
now that the claim holds for some t, and let us prove it for t+ δ. Using Corollary B.6, we get:

g(t+ δ) = g(t) + δ[e−t · f(OPT )− g(t)] = (1− δ)g(t) + δe−t · f(OPT )

≤ (1− δ)[F (y1(t)) + cn3δt · f(OPT )] + δe−t · f(OPT )

= F (y1(t)) + δ[e−t · f(OPT )− F (y1(t))] + c(1 − δ)n3δt · f(OPT )

≤ F (y1(t+ δ)) + cn3δ2 · f(OPT ) + c(1− δ)n3δt · f(OPT )

≤ F (y1(t+ δ)) + cn3δ(t + δ) · f(OPT ) .

The function g is given by a recursive formula, thus, evaluating it is not immediate. Instead,
we show that the function h(t) = te−t · f(OPT ) lower bounds g within the range [0, 1] (recall that
Algorithm 5 sets T = 1).

Lemma B.8. For every 0 ≤ t ≤ 1, g(t) ≥ h(t).

Proof. The proof is by induction on t. For t = 0, g(0) = 0 = 0 · e−0 · f(OPT ) = h(0). Assume now
that the lemma holds for some t, and let us prove it holds for t+ δ.

h(t+ δ) = h(t) +

∫ t+δ

t
h′(τ)dτ = h(t) + f(OPT ) ·

∫ t+δ

t
e−τ (1− τ)dτ

≤ h(t) + f(OPT ) · δe−t(1− t) = (1− δ)h(t) + δe−t · f(OPT )

≤ (1− δ)g(t) + δe−t · f(OPT ) = g(t) + δ · [e−t · f(OPT )− g(t)] = g(t+ δ) .

The last result implies lower bounds on F (y1(T )) and F (y2(T ).

Corollary B.9. min{F (y1(T )), F (y2(T ))} ≥ [e−1 − o(1)] · f(OPT ).

Proof. By Lemmata B.7 and B.8:

min{F (y1(T )), F (y2(T ))} = min{F (y1(1)), F (y2(1))} ≥ g(1) −O(n3δ) · 1 · f(OPT )

≥ h(1) −O(n−2) · f(OPT ) = [e−1 −O(n−2)] · f(OPT ) .

The approximation ratio guaranteed by Theorem 1.3 follows immediately from Corollaries 4.5
and B.9.
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C An Alternative Proof of the Positive Part of Theorem 1.6

In this section we give an analysis of the approximation ratio of Algorithm 4 which is different
than the one given in Section 6.1. First, we need to define some notation. Given a collection A of
disjoint sets and an integer 0 ≤ h ≤ |A|, let R(A, h) be the random set resulting from taking the
union of h sets of A chosen uniformly at random (without replacements).

Lemma C.1 relates E[f(R(A, h))] with the average value of a set of A.

Lemma C.1. Given a non-negative submodular function f : 2N → R
+, a collection A of ℓ ≥ 2

disjoint subsets A1, A2, . . . , Aℓ of the ground set N , and an integer 1 ≤ h ≤ ℓ, then:

E[f(R(A, h))] ≥

(

1−
h− 1

ℓ− 1

)

·

∑ℓ
i=1 f(Ai)

ℓ
.

Proof. Observe that:

E[f(R(A, h))] =

(

ℓ

h

)−1

·
∑

B⊆A
|B|=h

f
(
⋃

Ai∈B
Ai
)

= h−1

(

ℓ

h

)−1

·
ℓ
∑

i=1

∑

B⊆A−Ai

|B|=h−1

f
(

Ai ∪
⋃

Aj∈B
Aj

)

=

∑ℓ
i=1 E[f(Ai ∪R(A−Ai, h− 1))]

ℓ
.

Since the sets of A are disjoint, an element appears in R(A− Ai, h − 1) with probability at most
(h − 1)/(ℓ − 1). On the other hand, since f(Ai ∪ S) is a non-negative submodular function of S,
we get by Lemma 6.2 that:

E[Ai ∪ f(R(A−Ai, h− 1))] ≥

(

1−
h− 1

ℓ− 1

)

· f(Ai ∪∅) =

(

1−
h− 1

ℓ− 1

)

· f(Ai) .

The lemma follows by combining the above results.

The next lemma bounds the value of a certain random set obtained by taking the union of
multiple random sets. Notice that Lemmata 2.2 and 2.3 of [14] correspond to the cases of ℓ = 1
and ℓ = 2 of this lemma. The proof of the lemma is based on the same technique used by Feige et
al. [14] to derive their Lemma 2.3 from their Lemma 2.2.

Lemma C.2. Given a non-negative submodular function f : 2N → R
+, ℓ subsets A1, A2, . . . , Aℓ of

the ground set N and a probability p, then:

E

[

f
(

⋃ℓ
i=1Ai(p)

)]

≥
∑

I⊆[ℓ]

p|I|(1− p)ℓ−|I| · f
(
⋃

i∈I Ai
)

,

assuming the random sets {Ai(p)}
ℓ
i=1 are independent and

⋃

Ai∈∅
Ai is defined as ∅.

Proof. The proof is by induction on ℓ. The case ℓ = 1 is identical to Lemma 6.1 (Lemma 2.2 of
[14]). Assume the lemma holds for ℓ− 1 ≥ 1, and let us prove it for ℓ. Then,

E

[

f
(

⋃ℓ
i=1Ai(p)

)]

=
∑

A′⊆Aℓ

Pr[Aℓ(p) = A′] · E
[

f
(

⋃ℓ
i=1Ai(p)

)

| Aℓ(p) = A′
]

=
∑

A′⊆Aℓ

Pr[Aℓ(p) = A′] · E
[

f
(

A′ ∪
⋃ℓ−1
i=1 Ai(p)

)]

.
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Since f(A′ ∪S) is a non-negative submodular function of S, we get by the induction hypothesis
that:

E

[

f
(

A′ ∪
⋃ℓ−1
i=1 Ai(p)

)]

≥
∑

I⊆[ℓ−1]

p|I|(1− p)(ℓ−1)−|I| · f
(

A′ ∪
⋃

i∈I Ai
)

.

Combining the above equality and inequality, and changing the order of summation, gives:

E

[

f
(

⋃ℓ
i=1Ai(p)

)]

≥
∑

I⊆[ℓ−1]

p|I|(1− p)(ℓ−1)−|I| ·





∑

A′⊆Aℓ

Pr[Aℓ(p) = A′] · f
(

A′ ∪
⋃

i∈I Ai
)





=
∑

I⊆[ℓ−1]

p|I|(1− p)(ℓ−1)−|I| · E
[

f
(

Aℓ(p) ∪
⋃

i∈I Ai
)]

≥
∑

I⊆[ℓ−1]

p|I|(1− p)(ℓ−1)−|I| ·
[

(1− p)f
(
⋃

i∈I Ai
)

+ p · f
(
⋃

i∈I+ℓAi
)]

,

where the last inequality follows from Lemma 6.1 since f
(

Aℓ(p) ∪
⋃

i∈I Ai
)

is a submodular function
of Aℓ(p).

We are now ready to prove the positive part of Theorem 1.6.

Proof of the Positive Part of Theorem 1.6. Let OPTi denote the set of elements assigned to player
pi by the optimal solution, and let O = {OPTi}

k
i=1. By the linearity of the expectation, we can

bound the value of the solution produced by Algorithm 4 as follows:

E

[

k
∑

i=1

f(Si)

]

= k · E[f(N (1/k))] = k · E
[

f
(

⋃k
i=1OPTi(1/k)

)]

. (5)

By Lemmata C.1 and C.2:

E

[

f
(

⋃k
i=1OPTi(1/k)

)]

≥
∑

I⊆[k]

(1/k)|I|(1 − 1/k)k−|I| · f
(
⋃

i∈I OPTi
)

≥
k−1
∑

h=1

[

(1/k)h(1− 1/k)k−h ·

(

k

h

)

· E[f(R(O, h))]

]

≥
k−1
∑

h=1

[

(1/k)h(1− 1/k)k−h ·

(

k

h

)

·

(

1−
h− 1

k − 1

)

·

∑k
i=1 f(OPTi)

k

]

.

Rearranging the rightmost hand side of the above inequality yields:

E

[

f
(

⋃k
i=1OPTi(1/k)

)]

≥

∑k
i=1 f(OPTi)

k
·
k−1
∑

h=1

[(

k − 1

h

)

· (1/k)h(1− 1/k)(k−1)−h

]

=

∑k
i=1 f(OPTi)

k
·

[

1−

(

k − 1

0

)

· (1/k)0(1− 1/k)(k−1)−0

]

=

∑k
i=1 f(OPTi)

k
· [1− (1− 1/k)k−1] ,

where the first equality holds since
∑k−1

h=0

[

(k−1
h

)

· ahb(k−1)−h
]

= 1 whenever a+b = 1. The theorem

now follows by plugging the last inequality into Equality (5).
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