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Abstract

In parameterized complexity, it is a natural idea to consider different generalizations of classic problems.
Usually, such generalization are obtained by introducing a “relaxation” variable, where the original problem
corresponds to setting this variable to a constant value. For instance, the problem of packing sets of size at
most p into a given universe generalizes the MAXIMUM MATCHING problem, which is recovered by taking
p = 2. Most often, the complexity of the problem increases with the relaxation variable, but very recently
Abasi et al. have given a surprising example of a problem — r-Simple k-Path — that can be solved by a

log r
Q0 (=5 )). That is, the complexity of the problem decreases

randomized algorithm with running time O™ (
with r.

In this paper we pursue further the direction sketched by Abasi et al. Our main contribution is a
derandomization tool that provides a deterministic counterpart of the main technical result of Abasi et al.:
the O* (20(’“10%)) algorithm for (r, k)-Monomial Detection, which is the problem of finding a monomial
of total degree k and individual degrees at most r in a polynomial given as an arithmetic circuit. Our
technique works for a large class of circuits, and in particular it can be used to derandomize the result of
Abeasi et al. for r-Simple k-Path. On our way to this result we introduce the notion of representative sets
for multisets, which may be of independent interest.

Finally, we give two more examples of problems that were already studied in the literature, where the
same relaxation phenomenon happens. The first one is a natural relaxation of the SET PACKING problem,
where we allow the packed sets to overlap at each element at most r times. The second one is DEGREE
BOUNDED SPANNING TREE, where we seek for a spanning tree of the graph with a small maximum degree.

1 Introduction

Many of the combinatorial optimization problems studied in theoretical computer science are idealized math-
ematical models of real-world problems. When the simplest model is well-understood, it can be enriched to
better capture the real-world problem one actually wants to solve. Thus it comes as no surprise that many
of the well-studied computational problems generalize each other: the CONSTRAINT SATISFACTION PROBLEM
generalizes SATISFIABILITY, the problem of finding a spanning tree with maximum degree at most d generalizes
HAMILTONIAN PATH, while the problem of packing sets of size 3 generalizes packing sets of size 2, also known
as the MAXIMUM MATCHING problem.

By definition, the generalized problem is computationally harder than the original. However it is sometimes
the case that the most difficult instances of the generalized problem are actually instances of the original
problem. In other words, the “further away” an instance of the generalized problem is from being an instance of
the original, the easier the instance is. Abasi et. al [I] initiated the study of this phenomenon in parameterized
complexity (we refer the reader to the textbooks [6] [7, [, [19] for an introduction to parameterized complexity).
In particular, they study the r-SIMPLE k-PATH problem. Here the input is a graph G, and integers k and r, and
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the objective is to determine whether there is an r-simple k-path in G, where an r-simple k-path is a sequence
v1,Va, ...,V of vertices such that every pair of consecutive vertices is adjacent and no vertex of G is repeated
more than r times in the sequence. Observe that for » = 1 the problem is exactly the problem of finding a
simple path of length k£ in G. On the other hand, for 7 = k the problem is easily solvable in polynomial time,
as one just has to look for a walk in G of length k. Thus, gradually increasing r from 1 to k should provide a
sequence of computational problems that become easier as r increases. Abasi et al. [I] confirm this intuition
by giving a randomized algorithm for 7-SIMPLE k-PATH with running time O(r2#/7n0)),

In this paper we continue the investigation of algorithms for problems with a relazation parameter r that
interpolates between an NP-hard and a polynomial time solvable problem. We show that in several interesting
cases one can get a sequence of algorithms with better and better running times as the relaxation parameter
r increases, essentially providing a smooth transition from the NP hard to the polynomial time solvable case.

Our main technical contribution is a new algorithm for the (r, k)-MONOMIAL DETECTION problem. Here
the input is an arithmetic circuit C that computes a polynomial f of degree k in n variables z1, ..., z,. The task
is to determine whether the polynomial f has a monomial IT" ;z7*, such that 0 < a; < r for every ¢ < n. The
main result of Abasi et al. [I] is a randomized algorithm for (7, k)-MONOMIAL DETECTION with running time
O(r?#/7|Cn®M), and their algorithm for r-SIMPLE k-PATH is obtained using a reduction to (r, k)-MONOMIAL
DETECTION. We give a deterministic algorithm for the problem with running time r©®*/7) |C |no(1) in the case
when the circuit C' is non-canceling. Formally, this means that the circuit contains only variables at its leaves
(i.e., no constants) and only addition and multiplication gates (i.e, no subtraction gates). Informally, all
monomials of the polynomials computed at intermediate gates of C' contribute to the polynomial computed
by C.

Comparing our algorithm with the algorithm of Abasi et al. [I], our algorithm is slower by a constant
factor in the exponent of r, and only works for non-cancelling circuits. However our algorithm is deterministic
(while the one by Abasi et al. is randomized) and also works for the weighted variant of the problem, while
the one by Abasi et al. does not. In the weighted variant each variable z; has a non-negative integer weight
w;, and the weight of a monomial I} ;z}" is defined as Z?Zl w;a;. The task is to determine whether there
exists a monomial IT?" , z7*, such that 0 < a; < r for every ¢ < n, and if so, to return one of minimum weight.
As a direct consequence we obtain the first deterministic algorithm for r-SIMPLE k-PATH with running time
ro(k/r)|C|nO(1), and the first algorithm with such a running time for weighted r-SIMPLE k-PATH.

The significance of an in-depth study of (r, k)-MONOMIAL DETECTION, is that it is the natural “relaxation
parameter”’-based generalization of the fundamental MULTI-LINEAR MONOMIAL DETECTION problem. The
MULTI-LINEAR MONOMIAL DETECTION problem is simply (r,k)-MONOMIAL DETECTION with r = 1. A
multitude of parameterized problems reduce to MULTI-LINEAR MONOMIAL DETECTION [4} 6] [T}, (14, [24]. Thus,
obtaining good algorithms (r, k)-MONOMIAL DETECTION is an important step towards efficient algorithms for
relaxation parameter-variants of these problems. For some problems, such as k-PATH, efficient algorithms
for the relaxation parameter variant (i.e 7-SIMPLE k-PATH) follow directly from the algorithms for (r, k)-
MoNOMIAL DETECTION. In this paper we give two more examples of fundamental problems for which efficient
algorithms for (r, k)-MONOMIAL DETECTION lead to efficient algorithms for their “relaxation parameter”-
variant.

Our first example is the (r, p, ¢)-PACKING problem. Here the input is a family F of sets of size ¢ over a
universe of size n, together with integers r and p. The task is to find a subfamily A C F of size at least p such
that every element of the universe is contained in at most r sets in 4. Observe that (r, p, ¢)-PACKING is the
relaxation parameter variant of the classic SET PACKING problem ((r,p, ¢)-PACKING with » = 1). We give an
algorithm for (r,p, q)-PACKING with running time 20(Pe lofT)|]:|nO(1). For r = 1 our algorithm matches the
best known algorithm [4] for SET PACKING, up to constants in the exponent, and when r grows our algorithm
is significantly faster than 2P9|F|n®®. Just as for r-SIMPLE k-PATH, our algorithm also works for weighted
variants of the problem. We remark that (r,p, ¢)-PACKING was also studied by Fernau et al. [8] from the
perspective of kernelization.

Our second example is the DEGREE-BOUNDED SPANNING TREE problem. Here, we are given as input a
graph G and integer d, and the task is to determine whether G has a spanning tree 7" whose maximum degree
does not exceed d. For d = 2 this problem is equivalent to HAMILTONIAN PATH, and hence the problem is
NP-complete in general, but for d = n — 1 it boils down to checking the connectedness of G. Thus, DEGREE-
BOUNDED SPANNING TREE can be thought of as a relaxation parameter variant of HAMILTONIAN PATH. The
problem has received significant attention in the field of approximation algorithms: there are classic results of
Goemans [13] and of Singh and Lau [22] that give additive approximation algorithms for the problem and its




weighted variant. From the point of view of exact algorithms, the currently fastest exact algorithm, working
for any value of d, is due to Fomin et al. [I0] and has running time O(2"*t°("). In this work, we give a

randomized algorithm for DEGREE-BOUNDED SPANNING TREE with running time 20("%), by reducing the
problem to an instance of (r, k)-MONOMIAL DETECTION. Thus, our algorithm significantly outperforms the
algorithm of Fomin et al. [TI0] for all super-constant d, and runs in polynomial time for d = Q(n). Interestingly,
the instance of (r, k)-MONOMIAL DETECTION that we create crucially uses subtraction, since the constructed
circuit computes the determinant of some matrix. Thus we are not able to apply our algorithm for non-
cancelling circuits, and have to resort to the randomized algorithm of Abasi et al. [I] instead. Obtaining a
deterministic algorithm for DEGREE-BOUNDED SPANNING TREE that would match the running time of our
algorithm, or extending the result to the weighted setting, remains as an interesting open problem.

Our methods. The starting point for our algorithms is the notion of representative sets. If A is a family
of sets, with all sets in A having the same size p, we say that a subfamily A’ C A g-represents A if for every
set B of size q, whenever there exists a set A € A such that A is disjoint from B, then there also exists a set
A’ € A" such that A’ is disjoint from B.

Representative sets were defined by Monien [I6], and were recently used to give efficient parameterized
algorithms for a number of problems [IT1, 12| 20} 211 25| 26], including k-PaTh [T11 12, 21], SET PACKING [21] 25|
26] and MULTI-LINEAR MONOMIAL DETECTION [I1]. It is therefore very tempting to try to use representative
sets also for the relaxation parameter variants of these problems. However, it looks very hard to directly
use representative sets in this setting. On a superficial level the difficulty lies in that representative sets are
useful to guarantee disjointedness, while the solutions to the relaxation parameter variants of the considered
problems may self-intersect up to r times.

We overcome this difficulty by generalizing the notion of representative sets to multisets. When taking the
union of two multisets A and B, an element that appears a times in A and b times in B will appear a + b times
in the union A+ B. Thus, if two regular sets A and B are viewed as multisets, they are disjoint if and only if
no element appears more than once in A+ B. We can now relax the notion of disjointedness and require that
no element appears more than r times in A+ B. Specifically, if A is a family of multisets, with all multisets in
A having the same size p (counting duplicates), we say that a subfamily A’ C A ¢-represents A if the following
condition is satisfied. For every multiset B of size ¢, whenever there exists an A € A such that no element
appears more than r times in A + B, there also exists an A’ € A’ such that no element appears more than
r times in A’ + B. The majority of the technical effort in the paper is spent on proving that every family
A of multisets has a relatively small g-representative family A’ in this new setting, and to give an efficient
algorithm to compute A’ from A. The formal statement of this result can be found in Corollary B8l

On the way to develop our algorithm for computing representative sets of multisets, we give a new con-
struction of a pseudo-random object called lopsided universal sets. Informally speaking, an (n, p, q)-lopsided
universal set is a set of strings such that, when focusing on any k £ p + ¢ locations, we see all patterns of
hamming weight p. These objects have been of interest for a while in mathematics and theoretical computer
science under the name Cover Free Families (Cf. [5]). We give, for the first time, an explicit construction
of an (n,p, q)-lopsided universal set whose size is only polynomially larger than optimal for all p and q. See
Theorem in Section M for a formal statement. Both our algorithm for computing representative sets of
multisets, and the new construction of lopsided universal sets may be of independent interest.

Outline of the paper. In Section[2l we give the necessary definitions and set up notational conventions. In
Section [l we give our construction of representative sets for multisets. This construction requires an auxiliary
tool called minimal separating families. The construction of representative sets for multisets in Section [3]
assumes that an appropriate construction of minimal separating families is given as a black box, while the
construction of minimal separating families is deferred to Sectiondl Our new construction of lopsided universal
sets is a corollary of the construction of minimal separating families, and is also explained in Section [d In
Section [Bl we use the new construction for representative sets of multisets to give efficient algorithms for (r, k)-
MONOMIAL DETECTION, (r,p,q)-PACKING and 7-SIMPLE k-PATH. In Section [6] we present our algorithm for
DEGREE-BOUNDED SPANNING TREE. Finally, we conclude by discussing open problems and directions for
future research in Section [



2 Preliminaries

Notation. Throughout the paper, we use the notation Oy, to hide k°™") terms. We denote [n] = {1,2,...,n}.
For sets A and B, by { A — B} we denote the set of all functions from A to B. The notation £ is used to
introduce new objects defined by formulas on the right hand side.

Hashing families. Recall that, for an integer t > 1, we say that a family of functions H C {[n] — [m] } is
a t-perfect hash family, if for every C C [n] of size |C| = ¢ there is f € H that is injective on T'. Alon, Yuster
and Zwick [3] used a construction of Moni Naor (based on ideas from Naor et al. [I8]) to hash a subset of size
t into a world of size t? using a very small set of functions:

Theorem 2.1 ([3] based on Naor). For integers 1 <t < n, a t-perfect hash family H C {[n] — [t?]} of size
t9W) ogn can be constructed in time O(t°M) - n -logn)

We will also use the following perfect hash family given by Naor, Schulman and Srinivasan [I§].

Theorem 2.2 ([I8]). For integers 1 < t < n, a t-perfect hash family H C { k%] — [t] } of size e!*O08” D) .1og k
can be constructed in time O(e!TO08* ) . k. log k).

Separating families. We will be interested in constructing families of perfect hash functions that, in ad-
dition to being injective on a set C, have the property of sending another large set D to an output disjoint
from the image of C. We call such a family of functions a separating family.

Definition 2.3 (Separating family). Fix integerst,k,s,n such that 1 <t < n. For disjoint subsets C, D C [n],
we say that a function h: [n] — [s] separates C from D if

e h is injective on C; and
e there are no collisions between C' and D. That is, h(C) N h(D) = (.

A family of functions H C {[n] — [s] } is (¢, k, s)-separating if for every disjoint subsets C, D C [n] with
|C| =t and |D| < k —t, there is a function h € H that separates C' from D.

We say that H is (t,k, s)-separating with probability v if for any fixzed C' and D with sizes as above, a
function h chosen uniformly at random from H separates C from D with probability at least .

For us, the most important case of separating families is when the range size is |C|+ 1. In this case we use
the term minimal separating family. It will also be convenient to assume in the definition that C' is mapped
to the first |C| elements in the range.

Definition 2.4 (Minimal separating family). A family of functions H C {[n] — [t + 1]} 4s (¢, k)-minimal
separating if for every disjoint subsets C, D C [n] with |C| =t and |D| < k —t, there is a function h € H such
that

e h(C) = [1].
e W(D) C {t+1}.

3 Multiset separators and representative sets

The purpose of this section is to formally define and construct representative sets for multisets. We will use,
as an auxiliary result, an efficient construction of a small separating family.

Theorem 3.1. Fiz integers n,t, k such that 1 < ¢t < min(n, k). Then a (t,k)-minimal separating family of
size Og((k/t)* - 200 “logn) can be constructed in time Oy ((k/t)? - 200 . n -logn).

We defer the proof of Theorem Bl to Section[d and now we shall use it as a blackbox in order to provide a
construction of representative sets for multisets. The primary tool for this is what we call a multiset separator
(see Definition B2)). Informally, a multiset separator is a not too large set of ‘witnesses’ for the fact that two
multisets of bounded size do not jointly contain too many repetitions per element.



Notation for multisets. Fix integers integers n,r, k > 1. We use [r]p to denote {0,...,r}. An r-set is a
multiset A where each element of [n] appears at most r times. It will be convenient to think of A as a vector
in [r]y, where A; denotes the number of times ¢ appears in A. We denote by |A| the number of elements in
A counting repetitions. That is, [A] = > | A;. We refer to |A| as the size of A. An (r,k)-set is an r-set
A € [r]§, where the number of elements with repetitions is at most k. That is, |A| < k. For two multisets
A, B over [n],

Fix r-sets A, B € [r]}. We say that A < B when A; < B, for all i € [n]. By A € [r]? we denote the
“complement” of r-set A, that is, A; = r — A; for all i € [n]. By A+ B we denote the “union” of A and B,
that is, (A + B); = A; + B; for all i € [n]. Suppose now that A and B are (r, k)-sets. We say that A and B
are (r, k)-compatible if A+ B is also an (r, k)-set, and |A+ B| = k. That is, the total number of elements with
repetitions in A and B together is k and any specific element i € [n] appears in A and B together at most r
times. With the notation above at hand, we can define the central object needed for our algorithms.

Definition 3.2 (Multiset separator). Let F be a family of r-sets. We say that F is an (r, k)-separator if for

any (r,k)-sets A, B € [r]g that are (r,k)-compatible, there exists F' € F such that A < F < B.

Construction of multiset separators. The following theorem shows how an (r, k)-separator can be con-
structed from a minimal separating family.

Theorem 3.3. Fiz integers n,r, k such that 1 < r < k, and let t £ |2k/r|. Suppose a (t,k)-minimal
separating family H C {[n] — [t + 1]} can be constructed in time f(r,k,n). Then an (r,k)-separator F of
size |H| - (r + 1)t can be constructed in time Ok (f(r, k, max(n,t)) - (r +1)%).

Proof. In the proof we will assume that n > t, since otherwise we can apply the same construction for n
increased to t, and at the end remove from each multiset of the obtained F all the elements from [¢] \ [n]. Note
that thus we apply the construction of a minimal separating family to the set of size max(n,t), rather than
n. Also, observe that from the assumption that r» > 1 it follows that ¢t < k.

Let H be the constructed (¢, k)-minimal separating family of functions from [n] to [t + 1]. For each
h:[n] = [t+ 1] in H, and for each w = (w1, ..., w;) € [r]§, we construct the following r-set F"* € [r]2. For
all j € [t] and all i € [n] with k(i) = j, we put F,"" = w;. For all i € [n] with k(i) = t+1, we put F/"" = r/2.
Let F consist of all the constructed r-sets Fih’w. Thus we have that

\Fl=IH]-(r+1)",

and F clearly can be constructed in time as claimed in the theorem statement. We are left with proving that
F is indeed an (r, k)-separator.

Fix (r, k)-compatible (r, k)-sets A, B € [r]j. Let U be the set of all elements that appear in A or in B,
that is, U = {i € [n] | A; > 0 or B; > 0}. Denote by Cy C U the sets of elements in A and B that appear
more than r/2 times in one of the sets, that is, Co = {i € [n] | A; > r/2 or B; > r/2}. Note that since A
and B are (r, k)-sets, we have that |Cy| < |2k/r| = t. Let C be a superset of Cj of size exactly ¢, constructed
by augmenting Cy with arbitrary elements of U \ Cy up to size ¢, and if there is not enough of them, then
by additionally augmenting it with the remaining number of arbitrary elements of [n] \ U. Note that this is
always possible since t <n. Let D = U \ C. Since A and B are (r, k)-compatible, we have that |U| < k and
from the construction of C it follows that |D| < k — t.

Therefore, there exists some h € H that separates C' from D. For j € [t], let i; be the unique element of
C mapped to j under h. Choose w; € [r]o such that A;; < w; <7 — B;;; such w; exists since A and B are
(r, k)-compatible. Let w = (w1, ..., w;). We claim that A < F* < B. For i € C, the choice of w guarantees
that 4; < Fih’w < B;. Fori € D we have Fih’w = |r/2], and from the definition of D we have that DNCy = 0.
So for such i it holds that A; < [r/2| < B;. Finally, for i ¢ C' U D we have that A; = 0 and B; = r, so surely
A; < ,Fl-h’w < Ei. O

By combining Theorems Bl and [3.3] we immediately obtain the following construction.

Corollary 3.4. Fiz integers n,r,k such that 1 <r < k. Then an (r,k)-separator F of size Oy, (er/T .0(k/r) .
logn) can be constructed in time Oy, (r®%/7 - 200/7) . n . logn)



Proof. Let t £ |2k/r|. By Theorem Bl a (t,k)-minimal separating family H C {[n] — [t + 1]} of size
Oy ((k/t)? - 291 .logn) can be constructed in time Oy ((k/t)?* - 29 .n -logn) from Theorem Bl Using this
construction in Theorem B3] we obtain an (r, k)-separator F such that

|F| = |H] - (r + 1)t = Op (/™. 20/7) ogn).

Moreover, from Theorem it follows that F can be constructed in time Oy (r8%/7 . 20(/7) .y . log ). (|

Multisets over a weighted universe. Before proceeding, we discuss the issue of how the considered
multisets will be equipped with weights. For simplicity, we assume that the universe {1,...,n} is weighted,
that is, each element ¢ € {1,...,n} is assigned an integer weight w(i). We define the weight of a multiset as
the sum of the weights of its elements counting repetitions. Formally, for A € [r]j we have

w(A) = ZAZ- ~wi(i).

Whenever we talk about a weighted family of multisets, we mean that the universe [n] is equipped with a
weight function and the weights of the multisets are defined as in the formula above.

Let us remark that the results to follow can be also extended to a more general setting where each multiset
is assigned its own weight that is not directly related to its elements. However, for concreteness we now focus
on the simpler case. We discuss briefly the generalization in Section [B] where we argue that our tools can be
also used to solve the edge-weighted variant of r-SIMPLE k-PATH.

Representative sets for multisets. We are ready to define the notion of a representative set for a family
of multisets.

Definition 3.5 (Representative sets for multisets). Let P be a weighted family of (r,k)-sets. We say that
a subfamily P C P represents P if for every (r,k)-set Q the following holds. If there exists some P € P
of weight w that is (r,k)-compatible with @, then there also exists some P’ € P of weight w' < w that is
(r, k)-compatible with Q.

The following definition and lemma show that having an (r, k)-separator is sufficient for constructing
representative sets.

Definition 3.6. Let P be a weighted family of r-sets and let F be a family of (r, k)-sets. The weighted family
Trimz(P) C P is defined as follows: For each F € F, and for each 1 < i < k, check if there exists some
P € P with |P| =i and P < F. If so, insert into Trimz(P) some P € P that is of minimal weight among
those with |P| =1 and P < F.

Lemma 3.7. Let F be an (r,k)-separator and let P be a weighted family of (r,k)-sets. Then Trimz(P)
represents P.

Proof. Fix an (r,k)-set @ and suppose there is an (r,k)-set P € P that is (r,k)-compatible with P. In
particular, we have |P| = k — |Q|. Since F is an (r, k)-separator, there exists F € F such that P < F < Q.
As P < F, when constructing Trimz(P) we must have inserted into it an (r, k)-set P’ € P of size k — |Q)|
such that P’ < F and w(P’) < w(P). Therefore P’ < @, which implies that P’ + @ is an (r, k)-set. As
|P" 4+ Q| = k, we have that P’ and @ are (r, k)-compatible. O

We can now combine Lemma [B.7] with the construction of an (r, k)-separator from Corollary B4 and thus
obtain a construction of a small representative family for a weighted family of multisets.

Corollary 3.8. There exists a deterministic algorithm that, given a weighted family P or (r,k)-sets, runs
in time Og(|P| - 7%/ . 20k/™) “nlogn) and returns returns a family P C P that represents P and has size
Oy (rOF/7 . 20(k/7) ogn).

Proof. Let F be the (r, k)-separator of size Oy, (r0%/".20(,/7) .1ogn) given by Corollary 3.4t recall that F can be
computed in time Oy (/7. 20(/7) . nlogn). We compute P = Trimy(P) which represents P by Lemma B
The construction of Trimz(P) amounts to going over all pairs of r-sets P € P and F € F and checking
whether P < F. Thus, the computation takes time at most O (|P|-|F|-n) = Ox(|P| - r®/™ . 20/7) . nlogn).

O



4 Construction of a separating family

The purpose of this section is to prove Theorem B.1] that is, to construct a small separating family of functions.
First, we need to introduce some auxiliary results.

Hitting combinatorial rectangles. We first recall the notion of a hitting set for combinatorial rectangles.
For a sequence of integers (my, ma, ..., my), by [];cp[ms] we denote [mi] x [ma] x ... x [my].

Definition 4.1. Let R C [[;c(mi] be a set of the form Ry x ... x Ry, where R; C [my] for alli € [t]. We say
that R is a combinatorial rectangle with sidewise density v, if for every i € [t] we have that |R;| > v-m;. A
set H C Hie[t] [m;] is a hitting set for rectangles with sidewise density v if for every set R C Hie[t] [m;] that
is a combinatorial rectangle of sidewise density -y, it holds that RN H # (.

Linial et al. [I5] gave the following construction of a hitting set for combinatorial rectangles.

Theorem 4.2 ([I5]). A hitting set H C [m]* for rectangles with sidewise density 1/3 of size |H| = 201 .m©O™)
can be constructed in time 20 . mOM),

We need a hitting set for combinatorial rectangles in a universe where the coordinates are from domains
of different sizes. We show that Theorem [4.2] can be adapted to this setting.

Corollary 4.3. Suppose mq,...,ms < m. Then a hitting set H C Hie[t] [m;] for rectangles with sidewise
density 1/2 of size |H| = 2°®) . mOM) can be constructed in time 20 . mO0),

Proof. For the purpose of the proof it will be convenient to redefine [a] as {0,...,a—1}. Let m’ = 3m. Define
mapping 7 [m']* = [];c(y[mi] as follows:

(a1, az,...,at) = (a3 mod mq,as mod ma, ..., a; mod my).

Observe that if R; C [my;] is such that |R;| > m;/2, and R; C [m/'] is the set of all elements of [m’] whose
remainders modulo m; belong to R;, then |R}| > m’/3. This follows from the fact that m’ = 3m > 3m;.
Therefore, if R C [];c(ylmi] is a combinatorial rectangle with sidewise density 1/2, then R’ £ 7~ (R) C [m']’
is a combinatorial rectangle with sidewise density 1/3. Let H' C [m/]" be the hitting set for combinatorial
rectangles with sidewise density 1/3 given by Theorem Moreover, let H = 7(H’); hence we have that
|H| < |H'| =2°® . mOP1) We have that H' N R’ # (), so also HNR = 7(H') N 7(R') 2 n(H' N R') # 0.
Since R was chosen arbitrarily, we infer that H is a hitting set for combinatorial rectangles with sidewise
density 1/2. O

Pairwise independent families. Another component in our construction is a family of e-pairwise inde-
pendent functions.

Definition 4.4. A family of functions H C {[n] — [m]} is e-pairwise independent if for all x,y € [n] and
a,b € [m], it holds that
Prew(flz)=an fly)=0b)—1/m? <e

The constructions of [I7] and [2] imply the following construction of an e-pairwise independent family of
functions (cf. [3 Section 4]).

Theorem 4.5 ([2,[17]). Fiz any m <n. Then a 1/m?-pairwise independent family H C { [n] — [m]} of size
mOPW “logn can be constructed in time O(m°™ -n -logn).

We now use Theorem to construct a small family that separates one element from k other elements
with non-negligible probability.

Lemma 4.6. Fix integers k,n with 1 < k < n. Then a family Hrar C {[n] — [4-k]} that is (1,k,4 - k)-
separating with probability 1/2 and has size k) -logn can be constructed in time k°M) - n -logn.



Proof. Let H C {[n] — [4k]} be the family of 1/(4k)?pairwise independent functions, given by Theorem FLF
Fix sets C = {a} and D = {b1,...,by—1} we want to separate. For j € [k—1], let X, be a random variable that
is equal to one if f(a) = f(b;) and to zero otherwise, where f is chosen uniformly at random from #. From
the 1/4k-pairwise independence of H, we have that E(X;) = P(X; = 1) < 4k - (1/(4k)? + 1/(4k)?) < 1/(2k).
Let us define X = Ef;ll X, so that we have E(X) < (k—1)/(2k) < 1/2. Note that X is precisely the number
of collisions between C' and D. From Markov’s inequality, we have that P(X > 1) < 1/2. So with probability
at least 1/2 over the choice of f € H, C' and D are separated by f. O

The next claim follows from the well-known theorem that the geometric mean of non-negative numbers is
never larger than their arithmetic mean.

Proposition 4.7. Let kq,...,kt be non-negative real numbers such that k1 + ...+ kit < k. Then H§:1 k; <

(k/t)".
The main construction. We are ready to proceed to the main construction.

Proof of Theorem [31l Fix disjoint subsets C, D C [n] with |C| =t and |D| < k —t. Recall that we want to
construct a family of functions H C { [n] — [t + 1] }, such that for any C' and D as above, there exists h € H
that separates C' from D. It will be convenient to present the family by constructing h adaptively given C'
and D. That is, for arbitrarily chosen C' and D, we will adaptively construct a function h that separates C
from D. Function h will be constructed by taking a number of choices, where each choice is taken among a
number of possibilities. The final family A will comprise all h that can be obtained using any such sequence
of choices; thus, the product of the numbers of possibilities will limit the size of H. As C' and D are taken
arbitrarily, it immediately follows that such #H separates every pair (C, D).

1. Let Ho C {[n] — [k?]} be the k-perfect hash family given by Theorem 21l Choose fo € Ho that is
injective on C'U D — there are k°() . logn choices for this stage.

From now on, we identify C and D with their images in [k?] under fo.

2. Let H1 C {[k?] — [t] } be the t-perfect hash family given by Theorem [ZZ Choose a function f; € Hj
that is injective on C' — there are et+0Ulogt) . log k choices for this stage.

For i € [t], we denote from now on by ¢; the (unique) element of C' with fi(¢;) = i. Moreover, elements
mapped to ¢ under f; will be denoted by B;, and we will think of them as the i-th bucket.

3. Choose non-negative integers ki, ..., k; such that k; is the number of elements a € D with fi(a) = i.
Note that k1 + ...+ k; < k — t, so the number of choices for this stage is at most (f) < (ek/t)t.

4. For i € [t], let Hi, ax, € {[k?] = [4- k;] } be family given by Lemma L6 That is, Hy, ax, is (1, k;, 4 - k;)-
separating with probability 1/2 and has size m; = kio(l) -logk.
Let R be the set of all vectors (hi,...,h;) such that for all i € [t], h; is an element of Hy, 4, that
separates ¢; from D;. Identify [m;] with Hg, ar, by ordering the functions in Hy, 4, arbitrarily. Observe
that R is a combinatorial rectangle of sidewise density 1/2 in [],c; [mi]. Note that for all i € [t], m; <m
for some m = k9. Let H be the hitting set for combinatorial rectangles with sidewise density 1/2

given by Corollary B3l Choose an element (hy,...,h) € HNR. As |[H| = 290 . g9 there are
20() . ;O choices for this stage.

For ¢ € [t], apply h; to partition bucket B; into buckets B; 1, ..., B; ak,; that is, element a € [n] is put
into bucket By, (4),n;, (4 (a)- Since (h1,...,ht) € R, we thus have that each ¢; is mapped to a separate
bucket from all elements of D;.

5. For each i € [t], choose the unique index j; € [4k;] such that ¢; was mapped to bucket B; ;,. Construct
the final function h by mapping all the elements of B; ;, to i, and mapping all the elements of B; ;; for
j§' # ji to t + 1, for all 4 € [t]. The number of choices for this stage is 4° - [['_, k; < (4k/t)’, where the
inequality follows from Proposition [£.7]



To sum up, the number of different functions enumerated in all the above stages is at most
kOW logn - e TOUE™ ) oo ;. (ek /)t - 20 . gOW) . (4k /1)t = (K /)2 - 20D . [OW) . 1og

= Ow((k/1)% - 2°®) logn).

Similarly, going over the construction times of the different components used in the above stages, we get that
the family can be constructed in time

O(k°M . n - logn - t+00og”t) L. logk - (ek/t)t - 200 . O . (4k /t)t)

= O((k/t)?* - 290 . O .y Jlogn) = O ((k/t)* - 2°) . n - logn).
O

Lopsided universal sets. Informally speaking, an (n, p, ¢)-lopsided universal set is a set of strings such that,
when focusing on any k £ p+ ¢ locations, we see all patterns of hamming weight p. Universal set families, and
in particular the lopsided ones, have important applications in the determinization of parameterized algorithms
that use the technique of color coding; cf. [12].

Definition 4.8. An (n,p, q)-lopsided universal set is a family of subsets F C [n] such that for every disjoint
subsets A, B C [n] with |A| = p and |B| = q there exists F € F with A C F and FN B = {.

A probabilistic argument shows the existence of (n, p, ¢)-lopsided universal sets of size (l;) “/p-q-k-logn
(cf. Lemma 52 in [5]). Fomin, Lokshtanov and Saurabh [12] used the technique of [I§] to construct an (n, p, q)-

k
lopsided universal set of size (2) . 20(1°g log(’“)) -logn. Consider the case p = o(g): For simplicity of discussion,

let us focus on the (Z) < (e-k/p)P term in the probablistic construction and omit logn terms. In this case the

k
20(10g i) term of [12] is much larger than (];) Bshouty [5] gives a better construction for such p achieving

size roughly kP2 (see Lemma 53 in [5]). We remark that Bshouty [5] referred to this object as a cover free
family. As a corollary of the last section we obtain an explicit construction of size (k/p)°®).

Theorem 4.9. Fiz integers p,q and n such that k = p+ q < n. Then an (n,p, q)-lopsided universal set of
size Og((k/p)>P - 2°®) logn) can be constructed in time Oy((k/p)>P - 2°®) . n - logn).

Proof. Let H C {[n] — [p+ 1]} be the (p, k)-minimal separating family of size Oy ((k/p)?? -2°®) .logn) given
by Theorem Bl For each h € H, construct set Fj, = h=1([p]), and let F £ {F}, | h € H}. The definition
of a minimal separating family immediately implies that F is an (n, p, ¢)-lopsided universal set, and the time
needed for the construction follows from Theorem [3.1] O

5 Algorithmic applications

In this section we present applications of our construction of representative sets for multisets to the design of
deterministic algorithms for problems with relaxed disjointness constraints. We first give some useful auxiliary
tools, and then present algorithms for three problems: r-SIMPLE k-PATH, (r, p, ¢)-PACKING, (r, k)-MONOMIAL
DETECTION. Let us remark that the algorithms for the first two problems follow from the algorithm for the
(more general) last problem. Nevertheless, we find it more didactic to present the applications in increasing
order of difficulty. Throughout this section, r always denotes an integer in the range 1 < r < k.

5.1 Algorithmic preliminaries

The following simple observation will be used in all of our algorithmic applications.

Lemma 5.1. Let P be a family of (r,k)-sets that constains a multiset P of size k and weight w. Then any
P C P that represents P contains a multiset P’ of size k and weight w' < w.

Proof. Take B = (). Then P and B are (r, k)-compatible. So there must exist P’ € P that is (r, k)-compatible
with B and has weight at most w. As |P’ + B| = k, we have |P'| = k. O



The following simple fact is immediate and will be used implicitly.
Proposition 5.2. If A” represents A’ and A’ represents A, then A" represents A.
We now show that representative sets behave robustly under union of families.

Lemma 5.3. Suppose A and B are two weighted families of (r,k)—sets, and suppose further that A represents
A and B represents B. Then AU B represents AU B.

Proof. Take any (r,k)-set D such that there exists C' € AUB that is (r, k)-compatible with D. If C' € A, then
there exists C’' € A with w(C’) < w(C) such that C’ is (r, k)-compatible with D. Then also C' € AU B and
we are done. The reasoning for the case when C' € B is symmetric. O

Finally, we introduce operation e that extends the considered weighted family of (r, k)-sets. This is the
crucial ingredient in the classic technique of iteratively extending the current family by a new object, and then
shrinking the size of the family by taking a representative subfamily.

Definition 5.4. We say that (r,k)-sets A and B are (r, k)-consistent, if |A+ B| < k and A; + B; <r for all
i € [n]. (Note that this is a weaker definition than being (r, k)-compatible, where it is required that |A+B| = k.)
Let A and B be weighted families of (r, k)-sets. We define the weighted family A e B as follows:

AeB2{A+B|Ac A BecB, A and B are (r,k)-consistent}.
In particular, for an element i € [n], we denote
Aei = {A+{i} | A€ A Al <k, A; <7}

Lemma 5.5. Suppose A and B are two weighted families of (r,k)—sets, and suppose further that A represents
A and B represents B. Then A e B represents Ae 5.

Proof. Fix an (r, k)-set D such that there exists C' € A o B that is (r, k)-compatible with D. Hence, we have
that C' = A+ B for some A € A and B € B that are (r, k)-consistent. In particular, A is (r, k)-compatible with
B+ D. Hence, there exists A’ € A with w(A’) < w(A) that is (r, k)-compatible with B + D. In other words,
A"+ B+ D is an (r, k)-set of size |A' + B+ D| = k. It follows that B is (r, k)-compatible with A’ + D. Hence,
there exists B’ € B with w(B’) < w(B) that is (r, k)-compatible with A+ D. Again, for this B’ we have that
A"+ B+ D is an (r, k)-set of size k. Therefore, A’ + B’ is an (r, k)-set of size at most k and weight not larger
than the weight of A+ B. In other words, A’ and B’ are (r, k)-consistent, and therefore A’+ B’ € A’ e 5'. As
A’ + B’ is (r, k)-compatible with D and w(A’ + B’) < w(A + B), we are done. O

5.2 r-Simple k-Path

We first introduce some notation for defining the r-SIMPLE k-PATH problem. Let G be a directed graph on n
vertices. A k-path in G is a simple walk P = v; — vo — ... — v in G, that is, all vertices traversed by the
walk are pairwise different An r-simple k-path is a walk P = vy — v2 — ... = v in G such that no vertex
is repeated more than r times. In case the vertex set of G is equipped with a weight function, the weight of
an r-simple k-path P is defined as the weight of the multiset of vertices traversed by P, where each vertex is
taken the number of times equal to the number of its visits on P.

r-SIMPLE k-PATH

Input: Directed graph G = (V, E), weight function w: V' — R, integers r and k.

Parameters: r, k

Question: Determine whether there exists an r-simple k-path in G, and if so then return one of minimal
possible weight.

Theorem 5.6. r-SIMPLE k-PATH can be solved in deterministic time Oy (r'2#/7 . 206/7) . n3 Jlogn).

Proof. Identify the vertex set V' with [n]. For u € [n] and ¢ € [k], let P;,, denote the set of r-simple paths in
G that have length ¢ and end in u. Note that an element P of such a set P; , can be viewed as an (r, k)-set
when we ignore the order of vertices in the path. We can thus view the sets P;, as families of (r, k)-sets.
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We will compute, using a dynamic programming algorithm, for each u € [n] and i € [k], a set ’ﬁi,u CPiu
that represents P; ,, and has size at most Oy, (er/ . 20(k/1) Jog n). By Lemma [5.1] a minimal-weight r-simple
k-path in G can be recovered by taking a minimum-weight multiset among families ’ﬁ;“u, for u € [n]. In
particular, if all these sets are empty, then no r-simple k-path exists in G. Thus, such an algorithm can be
used to solve r-SIMPLE k-PATH.

We proceed with the algorithm description. For ¢ = 1 and w € [n], family 7511u simply contains only
the length-one path u. Assume that we have computed families 751u for every u € [n]. We describe the
computation of P; 1, for a fixed v € [n], together with its running time.

1. We compute P’ £ U(u,u)eEﬁz}u e v. Clearly, we have that [P’/| < n - O (rS%/7 . 20(k/7) . 1ogn). We
now claim that P’ represents P, 1 ,. Note first that P11, = U(u V)EE P; v ®v. By Lemma [55 for any

u € [n], 75m e v represents P; , ev. Therefore, P’ = U(u,u)eE ﬁi,uov represents U(u,v)eE Pivwev ="Pit1.0.

Computing P’ directly from the definition requires time Ok (3| 1Pil) = Op(n-r8%/m.20(/7) Jogp).

2. Now, using the algorithm of Corollary B8] compute a set 73i+17v that represents P’ and has size |73i+17v| =
Oy, (r8%/m.20(k/7) Jog ). This takes time O (|P’|-r®%/7.20(/7) . nlogn) = Oy (n?-r12k/7.20/7) .Jog n).

Since during each of k steps of the algorithm, this procedure is applied to every vertex v € [n], we conclude
that the running time of the algorithm is Ok(rl%/T -20(k/1) .3 L og n), as claimed. O

We have considered the r-SIMPLE k-PATH problem where the weights are on the vertices. One could also
consider the edge weighted variant where every edge has a weight and the weight of a walk is the sum of the
weight of the edges on the walk (counting multiplicities of edges). One can reduce this variant to the vertex
weighted variant as follows. Let G be the input graph, we make a new graph G’ from G. Here each edge uv of
G is replaced by a new vertex x,, with u being the only in-neighbor and v being the only out-neighbor of x,,,.
The weight of z,, is set to the weight of the edge uv. The weight of the vertices of G’ that correspond to the
vertices of G is set to 0. An r-simple k-path in G corresponds to an r-simple (2k + 1)-path in G’ of the same
weight. On the other hand, a minimum weight r-simple (2k + 1)-path in G’ must start and end in vertices
corresponding to vertices of G, since these have weight 0. Such r-simple (2k 4 1)-paths in G’ correspond to
an r-simple k-path in G of the same weight. Thus we can run the algorithm for Theorem 5.6l on G’, obtaining
an algorithm for the edge weighted variant with running time r@*/7) 01

5.3 (r,p,q)-Packing

We say that P C [n] is a ¢g-set if |P| = q. We say that a family of ¢-sets A = {Py,..., P} is an r-packing if
every element j € [n] appears in at most r of the ¢g-sets in A. The (r, p, ¢)-PACKING problem asks whether a
given family of g-sets contains an r-packing. Again, in case universe [n] is equipped with a weight function,
we can say that a family of g-sets is weighted by setting the weight of a g-set to be the total weight of its
elements. The weight of an r-packing is defined as the sum of weights of its sets.

(r,p, q)-PACKING

Input: Weighted family F of ¢-sets, integers r, p, q

Parameters: 7,p, q

Question: Determine whether there exists a subfamily A C F with |.A| = p that is an r-packing, and if
so then return such A of minimal total weight.

Theorem 5.7. Let k 2 p-q. Then (r,p,q)-PACKING can be solved in deterministic time Oy (|F| - r12F/7 .
20(k/7) . plog?® n).

Proof. Let F be the input family of g-sets. For 0 < ¢ < p, denote by P; the set of r-packings of size 7 in F.
Note that an element A = {Py,..., P;} of P; can be viewed as an (r, k)-set: We think of A as the multiset
A= P, +...+ P;. We know that this multiset has size at most p- ¢ = k and every element j € [n] appears
in A at most 7 times. We will compute, for each 0 < i < p, a subfamily P; C P; that represents P; and has
size at most Ok(rﬁk/ r.20(k/7) log n). By Lemma 5]l a minimum-weight r-packing in F can be recovered by
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taking a minimum-weight element of ’ﬁp. In particular, if 75,, is empty, then no r-packing exists in F. Thus,
such an algorithm can be used to solve (r, p, ¢)-PACKING.
We proceed with the algorithm description. For i = 0, we take Py = Py = {#}. Assume we have computed
P, for some 0 < i < p. We describe the computation of 75i+1.
1. We compute P’ 2 P; e F. Clearly, we have that [P’| < | F|-|P;| < |F|- O (r%/7-20%:/7) .Jogn). We claim
that P’ represents P;.1. Note first that P;;1 = P; ¢ F. Hence, by Lemma 5.5 P’ = PieF represents
Pio F = PiJrl-

Computing P’ directly from the definition requires time Oy (|F|-|P;|-n) = O (|F|-r0%/7.20(*/7) .nlogn).

2. Now, using the algorithm of Corollary B.8 compute a set 75i+1 that represents P’ and has size |’ﬁi+1| =
Oy, (r8%/m.20(k/7) Jog n). This takes time Oy, (|P’|-%/7-20%-/™) .nlogn) = Oy (|F|-r12#/7.20k/7) .nlog? n).

Since we repeat this procedure p times, the claimed running time follows O

In Theorem 1.7l we gave an algorithm for (7, p, ¢)-PACKING where every element has a weight and the weight
of a set is equal to the sum of the weights of the elements. A related variant is one where a weight function
w : F — N is given as input. That is, every set P € F has its own weight w(P), and the weight of a subfamily
A C F is the sum of the weights of the sets in .A. We will call this the set weighted (r,p, q¢)-PACKING problem.
The set weighted problem can be reduced to the original by adding for every set P € F a new element ep of
weight w(P), inserting ep into P and giving ep weight w(P). Note that P is the only set in the new instance
that contains ep. All elements corresponding to the elements of the instance of set weighted (r, p, ¢)-PACKING
are given weight 0. All sets in the new instance have size ¢+ 1, and r-packings in the new instance correspond
to r-packings in the original instance with the same weight. Thus we can apply the algorithm of Theorem [5.7]
on the new instance in order to solve the instance of set weighted (r, p, ¢)-PACKING. This yields an algorithm
for set weighted (r,p, ¢)-PACKING with running time |F|r@*/mn0),

5.4 (r,k)-Monomial Detection

In this subsection we consider polynomials from ring Z[X;, ..., X,]. We say a monomial Xfl < Xdn s an
r-monomial if for all i € [n], we have d; < r. We say the monomial is an (r, k)-monomial if the above
holds and the total degree of the monomial is k. Let C' be an arithmetic circuit computing a polynomial
f(X1,...,X,) € Z[Xy,...,X,]. Wesay C is non-canceling if it contains only variables at its leaves (i.e., no
constants), and only addition and multiplication gates (i.e., no substractions). For a non-canceling circuit C,
we define |C| to be the number of multiplication and addition gates plus the number of leaves (each containing
a variable). We assume the fan-in of a non-canceling circuit is two, i.e., each multiplication and addition gate
has at most two wires coming in. (This will simply be convenient for bounding the running time as a function

of |C].)

(r,k)-MONOMIAL DETECTION

Input: A non-canceling circuit C' computing a polynomial f(X1,...,X,) € Z[X1,..., X,], integers r, k.
Parameters: 7,k

Question: Determine if there exists an (r, k)-monomial in f with non-zero coefficient and if so, then return
such a monomial.

Theorem 5.8. Given a non-canceling circuit C' computing a polynomial f(Xi,...,X,) € Z[X1,...,X,],
(r, k)-MONOMIAL DETECTION can be solved in deterministic time Oy (|C| - r'8%/7 . 20(/7) . plog3 n).

Proof. For each gate s of C, let f; be the polynomial computed at s. Define P to be the set of m-monomials of
total degree at most k that appear in fs with nonzero coefficient. We can view Py as a family of (r, k)-sets: An
r-monomial M = X fl -+ X of total degree at most k corresponds to the (r, k)-set where each j € [n] appears
d; times (in this case, we put uniform weights on the elements of universe [n]). We present an algorithm that
computes, for every gate s of C, a subfamily P, C P, of size Oy (r8%/7 . 20(k/7) .log n) that represents Ps. Let
Sout be the output gate of C. By Lemma [B1] if f contains an r-monomial of total degree k, then ’ﬁsom will
contain such a monomial. Hence, to solve (r, k)-MONOMIAL DETECTION it suffices to check whether 75501” is
nonempty.
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We compute the sets P, from bottom to top. For s being an input gate containing variable X;, we simply
put Py = Py = = {{i}}. Take then any non-input gate s, and suppose we have computed 7351 and 7352 for the
gates s1 and sg having wires into s.

1. If s is an addition gate, then we define P’ £ 75Sl U 7552. We claim that P’ represents Ps: Since C' is
non-canceling, the set of monomials that appear in f; with a nonzero coefficient is simply the union of the
sets of monomials of appearing in f,, and in fs,. In particular, Py = P,, UPs,. Therefore, by Lemma [(5.3]
we infer that P’ = P, UP,, represents Ps. Note that |P'| < 1Py, | + [Py, | = Og(rOk/7 . 20(k/T) [ 1og p)
and P’ can be computed in time O (|Py, | - [Ps,| - 1) = Op(r'2#/7 - 200/7) . log? n).

2. If s is a multiplication gate, then we define P’ £ 7351 . ’ﬁsZ. Since C is non-canceling, the set of
monomials appearing in fs is exactly the set of all products of a monomial appearing in fs, and a
monomial appearing in fs,. In particular, Ps is exactly the set of these products that are also (r, k)-
monomials. When viewed as a multiset, the product of monomials M7 and Ms is the multiset M7 + Mos.
Thus, we have that Ps = Ps, @ Ps, and therefore, using Lemma (.5 we infer that P’ = 75Sl ° 7552
represents Ps. Note that |[P!| < [Py, | - |Psy| = Or(r'28/7 . 200/7) [1og? n) and P’ can be computed in
time O (|Ps, | - [Ps,| - n) = Op (r126/7 . 20(:/7) . 1og? n).

3. Now, using the algorithm of Corollary B8, compute subfamily Py of size Oy (/7 . 20(/7) . 1og n) that
represents P’. This takes time Oy (|P’| - 7%/7 . 200:/7) . nlogn) = Oy (r'8*/7 . 200k/7) . log® n).

Since the above procedure is applied to every gate of C', the claimed running time follows. O

We remark that, after a trivial modification, the algorithm above can equally easily solve also a weighted
variant of (r, k)-MONOMIAL DETECTION, where each variable is equipped with a weight and we are interested
in extracting a monomial of minimum total weight, defined as the sum of the weights of variables times their
degrees. It is not hard to reduce the problems r-SIMPLE k-PATH and (r,p, q)-PACKING, considered in the
previous sections, to this variant; we leave the details to the reader.

6 Low degree monomials and low degree spanning trees

Let G be a simple, undirected graph with n vertices. Let 7 be the family of spanning trees of G; In particular,
if G is not connected then 7 = (. With every edge e € F(G) we associate a variable y.. The Kirchhoff’s

polynomial of G is defined as:
KG((ye)eeE(G)) = Z H Ye-
TeT ecE(T)

Thus, K¢ is a polynomial in Z[(ye)ce p(c)]- Let v1,v2,...,v, be an arbitrary ordering of V(G). The Laplacian
of G is an n X n matrix Lg = [a;;], where

Ze incident to v; Ye ifi= j7
Aij = § —Yv;v; if i # j and v,v; € E(G),
0 if i # j and v,v; ¢ E(G).

Observe that Lg is symmetric and the entries in every column and in every row of Lg sum up to zero. Then
it can be shown that all the first cofactors of Lg, i.e., the determinants of matrix L after removing a row
and a column with the same indices, are equal. Let Ng be this common value; then N¢ is again a polynomial
over variables (yc)eer(c)- The Kirchhoff’s Matrix Tree Theorem, in its general form, states that these two
polynomials coincide.

Theorem 6.1 (Matrix Tree Theorem). K = Ng.

We remark that the Matrix Tree Theorem is usually given in the more specific variants, where all variables y,
are replaced with 1; then the theorem expresses the number of spanning trees of G in terms of the first cofactors
of Lg. However, the proof can be easily extended to the above, more general form; see for instance [23].

Observe that Theorem [6.1] provides a polynomial-time algorithm for evaluating K¢ over a given field and
vector of values of variables (y.)cerp(g)- Indeed, we just need to construct matrix Lg, remove, say, the first
row and the first column, and compute the determinant. We now present how this observation can be used
to design a fast exact algorithm for the DEGREE-BOUNDED SPANNING TREE problem.
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Theorem 6.2. The DEGREE-BOUNDED SPANNING TREE problem can be solved in randomized time O* (d°™/4))
with false negatives.

Proof. Associate every vertex v of the given graph G with a distinct variable z,,. Let K¢ € Z[(xy)vev ()] be
a polynomial defined as K¢ with every variable y.,,,, for wv € F(G), evaluated to z,x,. Then it follows that

Ka((@m)vevic) =y, ] aier®

TET veV(G)

Observe also that K g is 2(n — 1)-homogenous, that is, all the monomials of K ¢ have their total degrees equal
to 2(n —1). Thus, graph G admits a spanning tree with maximum degree at most d if and only if polynomial
K¢ contains a (d,2(n — 1))-monomial. Using Theorem B.1] we can construct a n®()-sized circuit evaluating
K¢. Hence, verifying whether K¢ contains a (d,2(n — 1))-monomial boils down to applying the algorithm
of Abasi et al. [I] for (r, k)-MONOMIAL DETECTION with r = d and k = 2(n — 1). This algorithm runs in
randomized time O*(d°(™/9) and can only produce false negatives. O

Let us repeat that in the proof of Theorem we could not have used Theorem 5.8 instead of the result
of Abasi et al. [I], because the constructed circuit is not non-cancelling. Derandomizing the algorithm and
extending it to the weighted setting remains hence open.

Interestingly, the running time of the algorithm of Theorem [6.2]is essentially optimal, up to the log d factor
in the exponent. A similar lower bound for r-SIMPLE k-PATH was given by Abasi et al. [1].

Theorem 6.3. Unless ETH fails, there exists a constant s > 0 such that for no fixed integer d > 2 the
DEGREE-BOUNDED SPANNING TREE problem with the degree bound d can be solved in time O*(2S"/d).

Proof. Tt is known (see e.g. [6]) that, assuming ETH, there exists a constant s > 0 such that the HAMILTONIAN
PATH problem cannot be solved in time O*(2°") on n-vertex graphs. Consider the following reduction from
HAMILTONIAN PATH to DEGREE-BOUNDED SPANNING TREE with the degree bound d: given an instance G
of HAMILTONIAN PATH, create G’ by attaching to every vertex v € V(G) a set of d — 2 degree-1 vertices,
adjacent only to v. Since the new vertices have to be leaves in every spanning tree of G’, it follows that every
spanning tree T” of G’ is in fact a spanning tree of G with all the vertices of V(G’) \ V(G) attached as leaves.
In particular, G’ admits a spanning tree with maximum degree d if and only if G admits a spanning tree with
maximum degree 2, i.e., a hamiltonian path.

Observe that |[V(G')] = (d — 1) - |V(G)|. Hence, if there was an algorithm solving DEGREE-BOUNDED
SPANNING TREE with the degree bound d in time O* (25"/d), then by composing the reduction with the
algorithm we would be able to solve HAMILTONIAN PATH on an n-vertex graph in time O*(2S(d_1)"/d) <
O*(2°™), thus contradicting ETH. O

7 Conclusions

In this paper we considered relaxation parameter variants of several well studied problems in parameterized
complexity and exact algorithms. We proved, somewhat surprisingly, that instances with moderate values of
the relaxation parameter are significantly easier than instances of the original problems. We hope that our
work, together with the result of Abasi et al. [I] breaks the ground for a systematic investigation of relaxation
parameters in parameterized complexity and exact algorithms. We conclude with mentioning some of the
most natural concrete follow up questions to our work.

e We gave a determinstic algorithm for non-cancelling (r, k)-MONOMIAL DETECTION with running time

20 (k% 2)|Cn°M) | while Abasi et al. [I] gave a randomized algorithm with such a running time for (r, k)-

MoONOMIAL DETECTION without the non-cancellation restriction. Is there a determinstic algorithm for
log r

(7, k)-MONOMIAL DETECTION with running time 20~

=)0 nOM?

e Does there exist a deterministic algorithm with running time 20(n*%) for DEGREE-BOUNDED SPANNING

TREE? Note that a deterministic algorithm with running time 20+ )|Cn°M) for (r, k)-MONOMIAL
DETECTION immediately imply such an algorithm for DEGREE-BOUNDED SPANNING TREE.

14
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o Is there a 20 )00 time algorithm for the problem where we are given as input a graph G, integers
k and d, and asked whether G contains a subtree T" on at least k vertices, such that the maximum degree
of T is at most d? Observe that for £ = n this is exactly the DEGREE-BOUNDED SPANNING TREE
problem.

e [s it possible to obtain polynomial kernels for problems with relaxation parameters with smaller and
smaller size bounds as the relaxation parameter increases?

e Are the logr (or logd) factors in the exponents of our running time bounds necessary? For example, is
there an algorithm for r-SIMPLE k-PATH with running time 20*/"p0M? Or a 20(*/9) time algorithm
for DEGREE BOUNDED SPANNING TREE?
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