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Abstract

The Min-sum single machine scheduling problem (denoted 1||∑ fj) generalizes a large
number of sequencing problems. The first constant approximation guarantees have been
obtained only recently and are based on natural time-indexed LP relaxations strength-
ened with the so called Knapsack-Cover inequalities (see Bansal and Pruhs, Cheung and
Shmoys and the recent (4 + ǫ)-approximation by Mestre and Verschae). These relax-
ations have an integrality gap of 2, since the Min-knapsack problem is a special case. No
APX-hardness result is known and it is still conceivable that there exists a PTAS. Inter-
estingly, the Lasserre hierarchy relaxation, when the objective function is incorporated as
a constraint, reduces the integrality gap for the Min-knapsack problem to 1 + ǫ.

In this paper we study the complexity of the Min-sum single machine scheduling
problem under algorithms from the Lasserre hierarchy. We prove the first lower bound
for this model by showing that the integrality gap is unbounded at level Ω(

√
n) even for a

variant of the problem that is solvable inO(n log n) time by the Moore-Hodgson algorithm,
namely Min-number of tardy jobs. We consider a natural formulation that incorporates
the objective function as a constraint and prove the result by partially diagonalizing the
matrix associated with the relaxation and exploiting this characterization.

1 Introduction

The Min-sum single machine scheduling problem (often denoted 1||∑ fj) is defined by
a set of n jobs to be scheduled on a single machine. Each job has an integral processing
time, and there is a monotone function fj(Cj) specifying the cost incurred when the job j is
completed at a particular time Cj ; the goal is to minimize

∑

fj(Cj). A natural special case
of this problem is given by the Min-number of tardy jobs (denoted 1||∑wjUj), with
fj(Cj) = wj if Cj > dj , and 0 otherwise, where wj ≥ 0, dj > 0 are the specific cost and
due date of the job j respectively. This problem is known to be NP-complete [11]. However,
restricting to unit weights, the problem can be solved in O(n log n) time [17].

The first constant approximation algorithm for 1||∑ fj was obtained by Bansal and Pruhs
[1], who considered an even more general scheduling problem. Their 16-approximation has

∗Supported by the Swiss National Science Foundation project 200020-144491/1 “Approximation Algorithms
for Machine Scheduling Through Theory and Experiments”.

†A preliminary version of this paper appeared in 23rd European Symposium on Algorithms - ESA 2015.
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been recently improved to 4 + ǫ: Cheung and Shmoys [5] gave a primal-dual algorithm and
claimed that is a (2 + ǫ)-approximation; recently, Mestre and Verschae [16] showed that the
analysis in [5] cannot yield an approximation better than 4 and provided a proof that the
algorithm in [5] has an approximation ratio of 4 + ǫ.

A particular difficulty in approximating this problem lies in the fact that the ratio (in-
tegrality gap) between the optimal IP solution to the optimal solution of “natural” LPs can
be arbitrarily large, since the Min-knapsack LP is a common special case. Thus, in [1, 5]
the authors strengthen natural time-indexed LP relaxations by adding (exponentially many)
Knapsack-Cover (KC) inequalities introduced by Wolsey [24] (see also [4]) that have proved
to be a useful tool to address capacitated covering problems.

One source of improvements could be the use of semidefinite relaxations such as the
powerful Lasserre/Sum-of-Squares hierarchy [13, 19, 22] (we defer the definition and related
results to Section 2). Indeed, it is known [10] that for Min-knapsack the Lasserre hierarchy
relaxation, when the objective function is incorporated as a constraint in the natural LP,
reduces the gap to (1 + ε) at level O(1/ε), for any ε > 0.1 In light of this observation, it
is therefore tempting to understand whether the Lasserre hierarchy relaxation can replace
the use of exponentially many KC inequalities to get a better approximation for the problem
1||∑ fj.

2

In this paper we study the complexity of the Min-sum single machine scheduling prob-
lem under algorithms from the Lasserre hierarchy. Our contribution is two-fold. We provide
a novel technique that is interesting in its own for analyzing integrality gaps for the Lasserre
hierarchy. We then use this technique to prove the first lower bound for this model by
showing that the integrality gap is unbounded at level Ω(

√
n) even for the unweighted Min-

number of tardy jobs problem, a variant of the problem that admits an O(n log n) time
algorithm [17]. This result is one of the few known examples where the Lasserre hierarchy
requires a non-constant number of levels to exactly solve a problem that admits a polynomial
time algorithm. Another well-known such example is the Matching problem, where the
Lasserre hierarchy is known to exhibit a vanishing gap at Ω(n) levels [9].

This is obtained by formulating the hierarchy as a sum of (exponentially many) rank-one
matrices (Section 2) and, for every constraint, by choosing a dedicated collection (Section 3)
of rank-one matrices whose sum can be shown to be positive definite by diagonalizing it; it is
then sufficient to compare its smallest eigenvalue to the smallest eigenvalue of the remaining
part of the sum of the rank-one matrices (Theorem 4.1). Furthermore, we complement the
result by proving a tight characterization of the considered instance by analyzing the sign of
the Rayleigh quotient (Theorem 4.2).

Finally, we show a different use of the above technique to prove that the class of uncon-
strained k (≤ n) degree 0/1 n-variate polynomial optimization problems cannot be solved
exactly within k − 1 levels of the Lasserre hierarchy relaxation. We do this by exhibiting
for each k a 0/1 polynomial optimization problem of degree k with an integrality gap. This
complements the recent results in [7, 12]: in [7] it is shown that the Lasserre relaxation does
not have any gap at level ⌈n2 ⌉ when optimizing n-variate 0/1 polynomials of degree 2; in [12]
the authors of this paper prove that the only polynomials that can have a gap at level n− 1
must have degree n.

1The same holds even for the weaker Sherali-Adams hierarchy relaxations.
2Note that in order to claim that one can optimize over the Lasserre hierarchy in polynomial time, one

needs to assume that the number of constraint of the starting LP is polynomial in the number of variables (see
the discussion in [14]).
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2 The Lasserre Hierarchy

In this section we provide a formal definition of the Lasserre hierarchy [13] together with a
brief overview of the literature. We refer the reader to Appendix A for an extended discussion
of the form of the hierarchy used here.

Related work. The Lasserre/Sum-of-Squares hierarchy [13, 19, 22] is a systematic proce-
dure to strengthen a relaxation for an optimization problem by constructing a sequence of
increasingly tight formulations, obtained by adding additional variables and SDP constraints.
The hierarchy is parameterized by its level t, such that the formulation gets tighter as t
increases, and a solution can be found in time nO(t). This approach captures the convex
relaxations used in the best available approximation algorithms for a wide variety of opti-
mization problems. Due to space restrictions, we refer the reader to [6, 14, 18, 20] and the
references therein.

The limitations of the Lasserre hierarchy have also been studied, but not many tech-
niques for proving lower bounds are known. Most of the known lower bounds for the hier-
archy originated in the works of Grigoriev [8, 9] (also independently rediscovered later by
Schoenebeck [21]). In [9] it is shown that random 3XOR or 3SAT instances cannot be solved
by even Ω(n) rounds of Lasserre hierarchy. Lower bounds, such as those of [3, 23] rely on
[9, 21] plus gadget reductions. For different techniques to obtain lower bounds see [2, 12, 15].

Notation and the formal definition. In the context of this paper, it is convenient to
define the hierarchy in an equivalent form that follows easily from “standard” definitions (see
e.g. [14]) after a change of variables.3

For the applications that we have in mind, we restrict our discussion to optimization prob-
lems with 0/1-variables andm linear constraints. We denoteK = {x ∈ R

n | gℓ(x) ≥ 0,∀ℓ ∈ [m]}
to be the feasible set of the linear relaxation. We are interested in approximating the convex
hull of the integral points in K. We refer to the ℓ-th linear constraint evaluated at the set
I ⊆ [n] (xi = 1 for i ∈ I, and xi = 0 for i /∈ I) as gℓ(xI). For each integral solution xI , where
I ⊆ N , in the Lasserre hierarchy defined below there is a variable ynI that can be interpreted
as the “relaxed” indicator variable for the solution xI .

For a set I ⊆ [n] and fixed integer t, let Pt(I) denote the set of the subsets of I of size at
most t. For simplicity we write Pt([n]) = Pt(n). Define d-zeta vectors: ZI ∈ R

Pd(n) for every

I ⊆ [n], such that for each |J | ≤ d, [ZI ]J =

{

1, if J ⊆ I
0, otherwise

. In order to keep the notation

simple, we do not emphasize the parameter d as the dimension of the vectors should be clear
from the context (we can think of the parameter d as either t or t+ 1).

Definition 2.1. The Lasserre hierarchy relaxation at level t for the set K, denoted by

3Notice that the used formulation of the Lasserre hierarchy given in Definition 2.1 has exponentially many
variables yn

I , due to the change of variables. This is not a problem for our purposes, since we are interested in
showing an integrality gap rather than solving an optimization problem.
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Last(K), is given by the set of values ynI ∈ R for I ⊆ [n] that satisfy

∑

I⊆[n]

ynI = 1, (1)

∑

I⊆[n]

ynI ZIZ
⊤
I � 0, where ZI ∈ R

Pt+1(n) (2)

∑

I⊆[n]

gℓ(xI)y
n
I ZIZ

⊤
I � 0, ∀ℓ ∈ [m], where ZI ∈ R

Pt(n) (3)

It is straightforward to see that the Lasserre hierarchy formulation given in Definition 2.1
is a relaxation of the integral polytope. Indeed consider any feasible integral solution xI ∈ K
and set ynI = 1 and the other variables to zero. This solution clearly satisfies Condition (1),
Condition (2) because the rank one matrix ZIZ

⊤
I is positive semidefinite (PSD), and Condi-

tion (3) since xI ∈ K.

3 Partial Diagonalization

In this section we describe how to partially diagonalize the matrices associated to Lasserre
hierarchy. This will be used in the proofs of Theorem 4.1 and Theorem 4.2.

Below we denote by wn
I either ynI or ynI gℓ(xI). The following simple observation describes

a congruent transformation (∼=) to obtain a partial diagonalization of the matrices used in
Definition 2.1. We will use this partial diagonalization in our bound derivation.

Lemma 3.1. Let C ⊆ Pn(n) be a collection of size |Pd(n)| (where d is either t or t+ 1). If
C is such that the matrix Z with columns ZI for every I ∈ C is invertible, then

∑

I⊆[n]

wn
I ZIZ

⊤
I

∼= D +
∑

I∈Pn(n)\C
wn
I Z

−1ZI(Z
−1ZI)

⊤

where D is a diagonal matrix with entries wn
I , for I ∈ C.

Proof. It is sufficient to note that
∑

I∈C w
n
IZIZ

⊤
I = ZDZ⊤.

Since congruent transformations are known to preserve the sign of the eigenvalues, the
above lemma in principle gives us a technique to check whether or not (2) and (3) are satisfied:
show that the sum of the smallest diagonal element of D and the smallest eigenvalue of the
matrix

∑

I∈[n]\C w
n
I Z

−1ZI(Z
−1ZI)

⊤ is non-negative. In what follows we introduce a method
to select the collection C such that the matrix Z is invertible.

Let Zd denote the matrix with columns [Zd]I = ZI indexed by sets I ⊆ [n] of size at
most d. The matrix Zd is invertible as it is upper triangular with ones on the diagonal. It
is straightforward to check that the inverse Z−1

d is given by
[

Z−1
d

]

I,J
= (−1)|J\I| if I ⊆ J

and 0 otherwise (see e.g. [14]). In Lemma 3.1 we require a collection C such that the matrix,
whose columns are the zeta vectors corresponding to elements in C, is invertible. The above
indicates that if we take C to be the set of subsets of [n] with size less or equal to d, then
this requirement is satisfied. We can think that the matrix Zd contains as columns the zeta
vectors corresponding to the set ∅ and all the symmetric differences of the set ∅ with sets of
size at most d. The observation allows us to generalize this notion: fix a set S ⊆ [n], and
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define C to contain all the sets S ⊕ I for |I| ≤ d (here ⊕ denotes the symmetric difference).
More formally, consider the following |Pd(n)| × |Pd(n)| matrix Zd(S), whose generic entry
I, J ⊆ Pd(n) is

[

Zd(S)

]

I,J
=

{

1 if I ⊆ J ⊕ S,
0 otherwise.

(4)

Note that Zd(∅) = Zd. In order to apply Lemma 3.1, we show that Zd(S) is invertible.

Lemma 3.2. Let Ad(S) be a |Pd(n)| × |Pd(n)| matrix defined as

[

Ad(S)

]

I,K
=

{

(−1)|K∩S| if (I \ S) ⊆ K ⊆ I
0 otherwise.

(5)

Then Z−1
d(S) = Z−1

d Ad(S).

Proof. The claim follows by proving that Zd = Ad(S)Zd(S). The generic entry (I, J) of
Ad(S)Zd(S) is

[

Ad(S)Zd(S)

]

I,J
=

∑

K∈Pd(N)

[Ad(S)]I,K [Zd(S)]K,J =
∑

K∈Pd(N)
(I\S)⊆K⊆I
K⊆J⊕S

(−1)|K∩S|

We first note that unless I ⊆ J ∪ S, the sum is over an empty set, and thus zero. Indeed,
assume there exists an element a ∈ I, a /∈ J∪S. Then, since I \S ⊆ K, we require that a ∈ K.
On the other hand, K ⊆ S ⊕ J implies that a ∈ S ⊕ J , which contradicts the assumption on
a, and hence no such K exists.

Since K ⊆ (J ⊕ S) ∩ I, and I \ S ⊆ J , we can partition K in the form K = (I \ S) ∪H,
where H is any subset of I ∩ (S \ J). Indeed, it is easy to see that such a K satisfies the
conditions of the sum, and that no other choice is possible. Then, the sum becomes of the
form

[

Ad(S)Zd(S)

]

I,J
=

m
∑

i=0

(−1)i
(

m

i

)

wherem is the size of the set S∩(I \J). Therefore, the sum equals 1 if m = 0 and 0 otherwise.
It follows that

[

Ad(S)Zd(S)

]

I,J
= 1 if and only if I ⊆ J , and 0 otherwise.

We also give a closed form of the elements of the matrix Z−1
d(S).

Lemma 3.3. For each I, J ⊆ Pd(N) the generic entry (I, J) of Z−1
d(S) is

[

Z−1
d(S)

]

I,J
= (−1)|J∩S|+|J\I|

{

(−1)d−|I∪J |(|S\(I∪J)|−1
d−|I∩J |

)

, if I \ S ⊆ J

0, otherwise.
(6)

Proof. From Lemma 3.2 we know that Z−1
d(S) = Z−1

d Ad(S), thus

[

Z−1
d(S)

]

I,J
=

∑

K∈Pd(N)

[Z−1
d ]I,K [Ad(S)]K,J =

∑

K∈Pd(N)
I⊆K

K\S⊆J⊆K

(−1)|K\I|+|J∩S|

5



First, note that K \ S ⊆ J implies that K ⊆ J ∪ S. This with I ⊆ K implies in particular
that the sum has no terms unless I ⊆ J ∪ S. Next, we see that I ∪ J ⊆ K, so we can write
K = I ∪ J ∪H for some set H disjoint from I ∪ J . Using the first observation we get that
H ⊆ S \ (I ∪ J). Since K ∈ Pd(N), we thus require that H ∈ Pd−|I∪J |(S \ (I ∪ J)). The
above sum then becomes

[

Z−1
d(S)

]

I,J
= (−1)|J∩S|+|J\I| ∑

H∈Pd−|I∪J|(S\(I∪J))
I⊆J∪S

(−1)|H|

This simplifies to

[

Z−1
d(S)

]

I,J
= (−1)|J∩S|+|J\I|

{

(−1)d−|I∪J |(|S\(I∪J)|−1
d−|I∩J |

)

, if I ⊆ J ∪ S

0, otherwise

4 A Lower Bound for Min-Number of Tardy Jobs

We consider the single machine scheduling problem to minimize the number of tardy jobs:
we are given a set of n jobs, each with a processing time pj > 0, and a due date dj > 0. We
have to sequence the jobs on a single machine such that no two jobs overlap. For each job j
that is not completed by its due date, we pay the cost wj.

4.1 The Starting Linear Program

Our result is based on the following “natural” linear programming (LP) relaxation that is a
special case of the LPs used in [1, 5] (therefore our gap result also holds if we apply those LP
formulations). For each job we introduce a variable xj ∈ [0, 1] with the intended (integral)
meaning that xj = 1 if and only if the job j completes after its deadline. Then, for any time
s ∈ {d1, . . . , dn}, the sum of the processing times of the jobs with deadlines less than s, and
that complete before s, must satisfy

∑

j:dj≤s(1 − xj)pj ≤ s. The latter constraint can be

rewritten as a capacitated covering constraint,
∑

j:dj≤t xjpj ≥ Dt, where Ds :=
∑

j:dj≤s pj−s

represents the demand at time s. The goal is to minimize
∑

j wjxj .

4.2 The Integrality Gap Instance

Consider the following instance with n = m2 jobs of unit costs. The jobs are partitioned into
m blocks N1, N2, . . . , Nm, each with m jobs. For i ∈ [m], the jobs belonging to block Ni have
the same processing time P i, for P > 1, and the same deadline di = m

∑i
j=1 P

j−∑i
j=1 P

j−1.

Then the demand at time di is Di =
∑i

j=1 P
j−1. For any t ≥ 0, let T be the smallest

value that makes Last (LP (T )) feasible, where LP (T ) is defined as follows for xij ∈ [0, 1], for
i, j ∈ [m]:

6



LP (T )
m
∑

i=1

m
∑

j=1

xij ≤ T, (7a)

ℓ
∑

i=1

m
∑

j=1

xij · P i ≥ Dℓ, for ℓ ∈ [m] (7b)

Note that, for any feasible integral solution for LP (T ), the smallest T (i.e. the optimal
integral value) can be obtained by selecting one job for each block, so the smallest T for
integral solutions is m =

√
n. The integrality gap of Last (LP (T )) (or LP (T )) is defined

as the ratio between
√
n (i.e. the optimal integral value) and the smallest T that makes

Last (LP (T )) (or LP (T )) feasible. It is easy to check that LP (T ) has an integrality gap P
for any P ≥ 1: for T =

√
n/P , a feasible fractional solution for LP (T ) exists by setting

xij =
1√
nP

.

4.3 Proof of Integrality Gap for Last(LP (T ))

Theorem 4.1. For any k ≥ 1 and n such that t =
√
n

2k − 1
2 ∈ N, the following solution is

feasible for Last(LP (
√
n/k))

ynI =

{

α, ∀I ∈ P2t+1(n)
0, otherwise

(8)

where α > 0 is such that
∑

I⊆[n] y
n
I = 1 and the parameter P is large enough.

Proof. We need to show that the solution (8) satisifies the feasibility conditions (1)–(2) for
the variables and the condition (3) for every constraint. The condition (1) is satisfied by
definition of the solution, and (2) becomes a sum of positive semidefinite matrices ZIZ

⊤
I with

non-negative weights ynI , so it is satisfied as well.
It remains to show that (3) is satisfied for both (7a) and (7b). Consider the equation (7a)

first, and let g(xI) = T −∑i,j xij be the value of the constraint when the decision variables

are xij = 1 whenever (i, j) ∈ I, and 0 otherwise.4 Now for every I ⊆ [n], it holds g(xI)y
n
I ≥ 0,

as we have ynI = 0 for every I containing more than 2t + 1 =
√
n
k

= T elements. Hence the
sum in (3) is again a sum of positive semidefinite matrices with non-negative weights, and
the condition is satisfied.

Finally, consider the ℓ-th constraint of the form (7b), and let gℓ(xI) =
∑l

i=1

∑m
j=1 xij ·P i−

Dℓ. In order to prove that (3) is satisfied, we apply Lemma 3.1 with the following collection
of subsets of [n]: C = {I ⊕ S | I ⊆ [m], |I| ≤ t}, where we take S = {(ℓ, j) | j ∈ [t+ 1]}. Now,
any solution given by the elements of C contains at least one job from the block ℓ, meaning
that the corresponding allocation xI satisfies the constraint.

By Lemma 3.2, the matrix Zt(S) is invertible and by Lemma 3.1 we have for (3) that
∑

I⊆[n] gℓ(xI)y
n
I ZIZ

⊤
I

∼= D +
∑

I∈[n]\C gℓ(xI)y
n
I Z

−1
t(S)ZI(Z

−1
t(S)ZI)

⊤, where D is a diagonal ma-

trix with elements gℓ(xI)y
n
I for each I ∈ C. We prove that the latter is positive semidefinite by

4Strictly speaking I ⊆ [n] is a set of numbers, so we associate to each pair i, j a number via the one-to-one
mapping (i−1)m+j. Hence, to keep the notation simple, we here understand (i, j) ∈ I to mean (i−1)m+j ∈ I .
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analysing its smallest eigenvalue λmin. Writing RI = Z−1
t(S)ZI(Z

−1
t(S)ZI)

⊤, we have by Weyl’s
inequality

λmin



D +
∑

I∈[n]\C
gℓ(xI)y

n
IRI



 ≥ λmin (D) + λmin





∑

I∈[n]\C
gℓ(xI)y

n
IRI





Since D is a diagonal matrix with entries gℓ(xI)y
n
I for I ∈ C, and for every I ∈ C the constraint

gℓ(xI) is satisfied, we have λmin(D) ≥ α
(

P ℓ −Dℓ

)

= α
(

P ℓ − P ℓ−1
P−1

)

.

On the other hand for every I ⊆ [n], gℓ(xI) ≥ −∑ℓ
j=1 P

j−1 = −P ℓ−1
P−1 . The nonzero

eigenvalue of the rank one matrix RI is
(

Z−1
t(S)ZI

)⊤
Z−1
t(S)ZI ≤ |Pt(n)|3tO(t) = nO(

√
n). This

is because by Lemma 3.3, for every I, J ∈ Pt(n), |[Z−1
t(S)

]I,J | ≤ tO(t), for |S| = t + 1, and

[ZI ]J ∈ {0, 1}. Thus

λmin



D +
∑

I∈[n]\C
gℓ(xI)y

n
IRI



 ≥ α

(

P k − P k − 1

P − 1

)

− α
P k − 1

P − 1
2nnO(

√
n) ≥ 0

for P = nO(
√
n).

The above theorem states that the Lasserre hierarchy has an arbitrarily large integrality

gap k even at level t =
√
n

2k − 1
2 . In the following we provide a tight analysis characterization for

this instance, namely we prove that the Lasserre hierarchy admits an arbitrarily large gap k

even at level t =
√
n
k
−1. Note that at the next level, namely t+1 =

√
n/k, Last+1(LP (

√
n/k))

has no feasible solution for k > 1,5 which gives a tight characterization of the integrality gap
threshold phenomenon. The claimed tight bound is obtained by utilizing a more involved
analysis of the sign of the Rayleigh quotient for the almost diagonal matrix characterization
of the Lasserre hierarchy.

Theorem 4.2. For any k ≥ 1 and n such that t =
√
n
k

− 1 ∈ N, the following solution is
feasible for Last(LP (

√
n/k))

ynI =

{

α, ∀I ∈ Pt+1(n)
0, otherwise

(9)

where α > 0 is such that
∑

I⊆[n] y
n
I = 1 and the parameter P is large enough.

Proof. The solution satisfies the conditions (1), (2) and (3) for (7a) by the same argument as
in the proof of Theorem 4.1.

We prove that the solution satisfies the condition (3) for any constraint ℓ of the form (7b).
SinceM � 0 if and only if v⊤Mv ≥ 0, for every unit vector v of appropriate size, by Lemma 3.1

5The constraint (7b) implies that any feasible solution for Last+1(LP (
√
n/k)) has yn

I = 0 for all |I | > √
n/k.

This in turn implies, with Lemma 3.1 for C = Pt(n), that
∑

I⊆[n] gℓ(xI)y
n
I ZIZ

⊤
I

∼= Dℓ, where Dℓ is a diagonal

matrix with entries gℓ(xI)y
n
I , for every |I | ≤ t, there exists ℓ such that gℓ(xI) < 0 which, in any feasible

solution implies yn
I = 0, contradicting (1).

8



(for the collection C = Pt(n)) and using the solution (9) we can transform (3) to the following
semi-infinte system of linear inequalities

∑

I∈Pt(n)

gℓ(xI)v
2
I +

∑

J⊆[n]:|J |=t+1









∑

I∈Pt(n)
I⊂J

vI(−1)|I|









2

gℓ(xJ ) ≥ 0, ∀v ∈ S
|Pt(n)|−1 (10)

Consider the ℓ-th covering constraint gℓ(x) ≥ 0 of the form (7b) and the corresponding
semi-infinite set of linear inequalities (10). Then consider the following partition of Pt+1(n):
A = {I ∈ Pt+1(n) : I ∩Nℓ 6= ∅} and B = {I ∈ Pt+1(n) : I ∩Nℓ = ∅}.

Note that A corresponds to the assignments that are guaranteed to satisfy the constraint

ℓ. More precisely, for S ∈ A we have gℓ(xS) ≥
(

P ℓ −∑ℓ
j=1 P

j−1
)

= P ℓ
(

1− P ℓ−1
P ℓ(P−1)

)

≥
P ℓ
(

1− 1
P−1

)

, and for S ∈ B we have gℓ(xS) ≥ −∑ℓ
j=1 P

j−1 ≥ P ℓ
(

− 1
P−1

)

. Since P > 0,

by scaling gℓ(x) ≥ 0 (see (7b)) by P ℓ, we will assume, w.l.o.g., that

gℓ(xS) ≥
{

1− 1
P−1 , if S ∈ A

− 1
P−1 , if S ∈ B

Note that, since v is a unit vector, we have v2I ≤ 1, and for any J ⊆ [n] such that |J | = t+1,

the coefficient of gℓ(xJ) is bounded by

(

∑

I∈Pt(n)
I⊂J

vI(−1)|I|
)2

≤ 2O(t). For all unit vectors

v, let β denote the smallest possible total sum of the negative terms in (10) (these are those

related to gℓ(xI) for I ∈ B). Note that β ≥ − |B|2O(t)

P
= −nO(t)

P
.

In the following, we show that, for sufficiently large P , the claimed solution satisfies (10).
We prove this by contradiction.

Assume that there exists a unit vector v such that (10) is not satisfied by the solution. We

start by observing that under the previous assumption the following holds v2I = nO(t)

P
for all

I ∈ A∩Pt(n). If not, we would have an I ∈ A∩Pt(n) such that v2Igℓ(xI) ≥ −β contradicting
the assumption that (10) is not satisfied. We claim that under the contradiction assumption,

the previous bound on v2I can be generalized to v2I = nO(t2)

P
for any I ∈ Pt(n). Then, by

choosing P such that v2I < 1/n2t, for I ∈ Pt(n), we have
∑

I∈Pt(n)
v2I < 1, which contradicts

the assumption that v is a unit vector.
The claim follows by showing that ∀I ∈ B ∩ Pt(n) it holds v2I ≤ nO(t2)/P . The proof is

by induction on the size of I for any I ∈ B ∩ Pt(n).
Consider the empty set, since ∅ ∈ B ∩Pt(n). We show that v2∅ = nO(t)/P . With this aim,

consider any J ⊆ Nℓ with |J | = t+1. Note that J ∈ A, so gℓ(xJ ) ≥ t+1− 1/(P − 1) and its

coefficient u2J =

(

∑

I∈Pt(n)
I⊂J

vI(−1)|I|
)2

is the square of the sum of v∅ and other terms vI , all

with I ∈ A ∩ Pt(n). Ignoring all the other positive terms apart from the one corresponding
to J in (10), evaluating the sum of all the negative terms as β and using a loose bound
gℓ(xJ ) ≥ 1/2 for large P , we obtain the following bound b0

|v∅| ≤
√

−2β +
∑

∅6=I⊂J

|vI | ≤ b0 = O

(

√

−β + 2O(t)n
O(t)

√
P

)

=
nO(t)

√
P

(11)
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which implies that v2∅ = nO(t)/P .
Similarly as before, consider any singleton set {i} with {i} ∈ B ∩ Pt(n) and any J ⊆

Nℓ with |J | = t. Note that J ∈ A, gℓ(xJ ) ≥ t − 1/(P − 1) and its coefficient u2J =
(

∑

I∈Pt(n)
I⊂J∪{i}

vI(−1)|I|
)2

is the square of the sum of v{i}, v∅ and other terms vI , with I ⊆ J

and therefore v2I = nO(t)

P
. Moreover, again note that u2J is smaller than −β (otherwise

(10) is satisfied). Therefore, for any singleton set {i} ∈ B ∩ Pt(n), we have that |v{i}| ≤
|v∅|+

√−2β +
∑

∅6=I⊂J |vI | ≤ 2b0.
Generalizing by induction, consider any set S ∈ B ∩ Pt(n) and any J ⊆ Nℓ with |J | =

t+ 1− |S|. We claim that |v|S|| ≤ b|S| where

b|S| = b0 +

|S|−1
∑

i=0

nibi (12)

This follows by induction hypothesis and by because again gℓ(J∪S)uJ∪S ≤ −β and therefore,

|vS | ≤
∑|S|−1

i=0

(

∑

I∈B
|I|=i

|vI |
)

+
√−2β +

∑

∅6=I⊂J |vI |.

From (12), for any S ∈ B ∩ Pt(n), we have that |vS | is bounded by bt = (nt−1 + 1)bt−1 =

nO(t2)b0 =
nO(t2)√

P
.

5 Application in 0/1 Polynomial Optimization

In this section we use the developed technique to prove an integrality gap result for the
unconstrained 0/1 n-variate polynomial optimization problem. We start with the following
definition of Lasserre hierarchy.

Definition 5.1. The Lasserre hierarchy at level t for the unconstrained 0/1 optimization
problem with the objective function f(x) : {0, 1}n → R, denoted by Last(f(x)), is given by
the feasible points ynI for each I ⊆ [n] of the following semidefinite program

∑

I⊆[n]

ynI = 1, (13)

∑

I⊆[n]

ynIZIZ
⊤
I � 0, where ZI ∈ R

Pt(n) (14)

The main result of this section is the following theorem.

Theorem 5.1. The class of unconstrained k–degree 0/1 n-variate polynomial optimization
problems cannot be solved exactly with a k − 1 level of Lasserre hierarchy.

Proof. For every k ≤ n we give an unconstrained n-variate polynomial optimization problem
with an objective function f(x) of degree k such that Lask−1(f(x)) has an integrality gap.
Consider a maximization problem with the following objective function over {0, 1}n: f(x) =

10



∑

I⊆[n]
|I|≤k

(n−|I|
k−|I|

)

(−1)|I|+1
∏

i∈I xi. We prove that the following solution is super-optimal and

feasible for Lask−1(f(x))

ynI =







α, ∀I ∈ [n], |I| ≥ n− k + 1
−ǫ, I = ∅
0, otherwise

(15)

where α > 0 is such that
∑

∅6=I⊆[n] y
n
I = 1 + ǫ and the ǫ is small enough.

It is easy to check that the objective function is equivalent to

f(x) =
∑

K⊆[n]
|K|=k

∑

J⊆K
J 6=∅

(−1)|J |+1
∏

j∈J
xj

Now, consider any integral 0/1 solution, for every K ⊆ [n] of size |K| = k, a partial summation
∑

∅6=J⊆K(−1)|J |+1
∏

j∈J xj takes value one, if for at least one j ∈ K, xj = 1, and zero

otherwise. Thus the integral optimum is
(

n
k

)

for any solution x ∈ {0, 1}n such that at least
n− k + 1 coordinates are set to 1.

On the other hand the objective value for the Lasserre solution (15) is given by the
formula6

∑

I∈[n]
f(xI)y

n
I =

∑

I∈[n]
|I|≥n−k+1

f(xI)y
n
I =

(

n

k

)

∑

I∈[n]
|I|≥n−k+1

ynI = (1 + ǫ)

(

n

k

)

where the first equality comes from the fact that f(x∅) = 0 and the second from the fact that
f(xI) =

(

n
k

)

for any I ⊆ [n], |I| ≥ n− k + 1.
Finally, we prove that the solution (15) is feasible for Lask−1(f(x)). The constraint (13)

is satisfied by definition. In order to prove that the constraint (14) is satisfied, we apply
Lemma 3.1 with the collection C = {I ⊕ S | I ⊆ [n], |I| ≤ k − 1} of subsets of [n], for S = [n],
and get that

D +
∑

I∈[n]\C
ynI Z

−1
t(S)ZI(Z

−1
t(S)ZI)

⊤ = D − ǫZ−1
t(S)Z∅(Z

−1
t(S)Z∅)

⊤ (16)

whereD is a diagonal matrix with diagonal entires equal to α ≥ 1/2n. Since the nonzero eigen-

value of the rank one matrix Z−1
t(S)Z∅(Z

−1
t(S)Z∅)

⊤ is equal to
(

Z−1
t(S)Z∅

)⊤
Z−1
t(S)Z∅ ≤ |Pt(n)|t2t =

nO(t), one can choose ǫ = 1/nO(t) such that by the Weyl’s inequality we have that the matrix
in (16) is PSD.
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Appendix

A Derivation of the Lasserre hierarchy

In this section we derive the formulation of the Lasserre hierarchy used in Section 2 and give
the missing proofs. In our notation we follow the survey by Rothvoß [20] and we use several
known derivations [14]. Let y ∈ R

P2t+2(n) be a vector indexed by the subsets of {1, ..., n} of size
at most 2t+ 2, and Mt+1(y) the moment matrix of the variables y defined by [Mt+1(y)]I,J =
yI∪J , for I, J subsets of [n] such that |I|, |J | ≤ t+ 1. Similarly, for every constraint ℓ define
the moment matrix of the constraint ℓ as [M ℓ

t (y)]I,J =
∑n

i=1 AℓiyI∪J∪{i} − bℓyI∪J , where
|I|, |J | ≤ t.

Definition A.1. The Lasserre hierarchy at level t for the set K, denoted by Last(K), is
given by the following semidefinite program

y∅ = 1, (17)

Mt+1(y) � 0, (18)

M ℓ
t (y) � 0 for every constraint ℓ (19)

Change of variables. A point in the Lasserre hierarchy is given by a vector y ∈ R
P2t+2(n),

as seen in Definition A.1. We now change this variable to a vector that is indexed by all the
subsets of [n] in order to obtain a useful decomposition of the moment matrix as a sum of
rank-one matrices. Here it is not necessary to distinguish between the moment matrix of the
variables and constraints, hence in what follows we denote a generic vector by w ∈ R

P2d(n),
where d is either t or t+ 1.

Definition A.2. Let w ∈ R
P2d(n). For every I ∈ Pn(n), define a vector wn ∈ R

Pn(n) such
that

wI =
∑

I⊆H⊆[n]

wn
H

To simplify the notation, we note that the moment matrix of the variables is structurally
similar to the moment matrix of the constraints: if z ∈ R

P2t(n) is a vector such that zI =
∑n

i=1AℓiyI∪{i} − bℓyI for some ℓ, then [M ℓ
t (y)]I,J = zI∪J . Hence, the following lemma holds

for the moment matrix of variables and constraints.

Lemma A.1. Let w ∈ R
P2d(n), and M ∈ R

Pd(n)×Pd(n) such that MI,J = wI∪J . Then

M =
∑

H⊆[n]

wn
HZHZ⊤

H

Proof. Since MI,J = wI∪J , we have by the change of variables that

[M ]I,J =
∑

I∪J⊆H⊆[n]

wn
H =

∑

H⊆[n]

χI∪J(H)wn
H

where χI∪J(H) is the 0-1 indicator function such that χI(H) = 1 if and only if I ∪ J ⊆ H.
On the other hand, [ZHZ⊤

H ]I,J = [ZH ]I [ZH ]J = 1 if I ∪ J ⊆ H, and 0 otherwise. Therefore
[ZHZ⊤

H ]I,J = χI∪J(H).
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Lemma A.2. Given y ∈ R
P2t+2(n), for the vector zI =

∑n
i=1AℓiyI∪{i} − bℓyI we have

znI = gℓ(xI)y
n
I (20)

where gℓ(xI) =
∑n

i=1 Aℓixi−bℓ is a linear function corresponding to the constraint ℓ, evaluated
at xI such that xi = 1 if i ∈ I and xi = 0 otherwise.

Proof. We need to show that this choice of znI yields zI =
∑

I⊆H⊆[n] z
n
H . Plug in (20)

∑

I⊆H⊆[n]

znH =
∑

I⊆H⊆[n]

gℓ(xH)ynH =
∑

I⊆H⊆[n]

[

n
∑

i=1

Aℓixi − bℓ

]

x=xH

ynH

=
∑

I⊆H⊆[n]

(

n
∑

i=1

[Aℓixi]x=xH
ynH − bℓy

n
H

)

=
∑

I⊆H⊆[n]

n
∑

i=1

[Aℓixi]x=xH
ynH − bℓyI

Here the term [Aℓixi]x=xH
ynH is Aℓiy

n
H if i ∈ H and 0 otherwise. Taking this into account

and changing the order of the sums, the above becomes

n
∑

i=1

∑

I∪{i}⊆H⊆[n]

Aℓiy
n
H − bℓyI =

n
∑

i=1

AℓiyI∪{i} − bℓyI

which proves the claim.

The above discussion justifies Definition 2.1.
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