
Trip-Based Public Transit Routing

Sascha Witt
sascha.witt@kit.edu

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

We study the problem of computing all Pareto-optimal journeys in a public
transit network regarding the two criteria of arrival time and number of transfers
taken. We take a novel approach, focusing on trips and transfers between them,
allowing fine-grained modeling. Our experiments on the metropolitan network
of London show that the algorithm computes full 24-hour profiles in 70 ms after
a preprocessing phase of 30 s, allowing fast queries in dynamic scenarios.

1. Introduction

Recent years have seen great advances in route planning on continent-sized road networks [2].
Unfortunately, adapting these algorithms to public transit networks is harder than expected [4].
On road networks, one is usually interested in the shortest path between two points, according
to some criterion. On public transit networks, several variants of point-to-point queries exist.
The simplest is the earliest arrival query, which takes a departure time as an additional input
and returns a journey that arrives as early as possible. A natural extension is the multi-criteria
problem of minimizing both arrival time and the number of transfers, resulting in a set of
journeys. A profile query determines all optimal journeys departing during a given period of
time.

In the past, these problems have been solved by modeling the timetable information as
a graph and running Dijkstra’s algorithm or variants thereof on that graph. Traditional
graph models include the time-expanded and the time-dependent model [14]. More recently,
algorithms such as RAPTOR [10] and Connection Scan [11] have eschewed the use of graphs
(and priority queues) in favor of working directly on the timetable.

In this work, we present a new algorithm that uses trips (vehicles) and the transfers
between them as its fundamental building blocks. Unlike existing algorithms, it does not
assign labels to stops. Instead, trips are labeled with the stops at which they are boarded.

∗The final authenticated version is available online at https://doi.org/10.1007/978-3-662-48350-3_85

1

Then, a precomputed list of transfers to other trips is scanned and newly reached trips are
labeled. When a trip reaches the destination, a journey is added to the result set. The
algorithm terminates when all optimal journeys have been found.

A motivating observation behind this is the fact that labeling stops with arrival (or depar-
ture) times is not sufficient once minimum change times are introduced. Some additional
information is required to track which trips can be reached. For example, the realistic time-
expanded model of Pyrga et al. [16] introduces additional nodes to deal with minimum
change times, while Connection Scan [11] uses additional labels for trips. In contrast, once
we know passengers boarded a trip at a certain stop, their further options are fully defined:
Either they transfer to another trip using one of the precomputed transfers, or their current
trip reaches the destination, in which case we can look up the arrival time in the timetable.
In either case, there is no need to explicitly track arrival times at intermediary stops.

The core of the algorithm is similar to a breadth-first search, where levels correspond to
the number of transfers taken so far. As a result, it is inherently multi-criterial, similar to
RAPTOR [10]. Although a graph-like structure is used, there is no need for a priority queue.
A preprocessing step is required to compute transfers, but can be parallelized trivially and
only takes minutes, even on large networks (Section 4). By omitting unnecessary transfers,
space usage and query times can be improved at the cost of increased preprocessing time.

Section 2 introduces necessary notations and definitions, before Section 3 describes the
algorithm and its variants. Section 4 presents the experimental evaluation. Finally, Section 5
concludes the paper.

2. Preliminaries

2.1. Notation

We consider public transit networks defined by an aperiodic timetable, consisting of a set
of stops, a set of footpaths and a set of trips. A stop p represents a physical location where
passengers can enter or exit a vehicle, such as a train station or a bus stop. Changing
vehicles at a stop p may require a certain amount of time ∆τch(p) (for example, in order
to change platforms).1 Footpaths allow travelers to walk between two stops. We denote the
time required to walk from stop p1 to p2 by ∆τfp(p1, p2) and define ∆τfp(p, p) = ∆τch(p)
to simplify some algorithms. A trip t corresponds to a vehicle traveling along a sequence of
stops ~p(t) =

p0
t , p1

t , . . .
�

. Note that stops may occur multiple times in a sequence. For each
stop pi

t , the timetable contains the arrival time τarr(t, i) and the departure time τdep(t, i) of
the trip at this stop. Additionally, we group trips with identical stop sequences into lines2

such that all trips t and u that share a line can be totally ordered by

t � u ⇐⇒ ∀i ∈ [0, |~p(t)|) : τarr(t, i)≤ τarr(u, i) (1)

and define
t ≺ u ⇐⇒ t � u∧ ∃i ∈ [0, |~p(t)|) : τarr(t, i)< τarr(u, i) . (2)

1More fine-grained models, such as different change times for specific platforms, can be used without affecting
query times, since minimum change times are only relevant during preprocessing (Section 3.1).

2We chose line over route to avoid confusion with routing and the usage of route in the context of road networks.

2

If two trips have the same stop sequence, but cannot be ordered (because one overtakes the
other), we assign them to different lines. We denote the line of a trip t by Lt and define
~p(Lt) = ~p(t). We also define the set of lines at stop p as

L(p) =
�

(L, i)
�

� p = pi
L where L is a line and ~p(L) =

p0
L , p1

L , . . .
�	

. (3)

A trip segment pb
t → pe

t represents a trip t traveling from stop pb
t to stop pe

t . A transfer between
trips t and u (t 6= u) is denoted by pe

t → pb
u , where passengers exit t at the eth stop and board

u at the bth. For all transfers,

pe
t → pb

u =⇒ τarr(t, e) +∆τfp

�

pe
t , pb

u

�

≤ τdep(u, b) (4)

must hold. Finally, a journey is a sequence of alternating trip segments and transfers, with
optional footpaths at the beginning and end. Each leg of a journey must begin at the stop
where the previous one ended.

We consider two well-known problems. Since both of them are multi-criteria problems, the
results are Pareto sets representing non-dominated journeys. A journey dominates another if
it is no worse in any criterion; if they are equal in every criterion, we break ties arbitrarily.
Although multi-criteria Pareto optimization is NP-hard in general, it is efficiently tractable for
natural criteria in public transit networks [15]. In the earliest arrival problem, we are given a
source stop psrc, a target stop ptgt, and a departure time τ. The result is a Pareto set of tuples
(τjarr, n) of arrival time and number of transfers taken during non-dominated journeys from
psrc to ptgt that leave no earlier than τ. For the profile problem, we are given source stop psrc,
target stop ptgt, an earliest departure time τedt, and a latest departure time τldt. Here, we are
asked to compute a Pareto set of tuples (τjdep,τjarr, n) representing non-dominated journeys
between psrc and ptgt with τedt ≤ τjdep ≤ τldt. Note that for Pareto-optimality, later departure
times are considered to be better than earlier ones.

2.2. Related work

Some existing approaches solve these problems by modeling timetable information as a graph,
using either the time-expanded or the time-dependent model. In the (simple) time-expanded
model, a node is introduced for each event, such as a train departing or arriving at a station.
Edges are then added to connect nodes on the same trip, as well as between nodes belonging
to the same stop (corresponding to a passenger waiting for the next train). To model minimum
change times, additional nodes and edges are required [16]. One advantage of this model is
that all edge weights are constant, which allows the use of speedup techniques developed for
road networks, such as contraction. Unfortunately, it turns out that due to different network
structures, these techniques do not perform as well for public transit networks [4]. Also,
time-expanded graphs are rather large.

The time-dependent approach produces much smaller graphs in comparison. In the simple
model, nodes correspond to stops. Edges no longer have constant weight, but are instead
associated with (piecewise linear) travel time functions, which map departure times to travel
times (or, equivalently, arrival times). The weight then depends on the time at which this
function is evaluated. This model can be extended to allow for minimum change times by

3

adding a node for each line at each stop [16]. Some speedup techniques have been applied
successfully to time-dependent graphs, such as ALT [6] and Contraction [12], although not for
multi-criteria problems. For these, several extensions to Dijkstra’s algorithm exist, among them
the Multicriteria Label-Setting [13], the Multi-Label Correcting [7], the Layered Dijkstra [5],
and the Self-Pruning Connection Setting [9] algorithms. However, as Dijkstra-variants, each of
them has to perform rather costly priority queue operations.

Other approaches do not use graphs at all. RAPTOR (Round-bAsed Public Transit Optimized
Router) [10] is a dynamic program. In each round, it computes earliest arrival times for
journeys with n transfers, where n is the current round number. It does this by scanning
along lines and, at each stop, checking for the earliest trip of that line that can be reached.
It outperforms Dijkstra-based approaches in practice. The Connection Scan Algorithm [11]
operates on elementary connections (trip segments of length 1). It orders them by departure
time into a single array. During queries, this array is then scanned once, which is very fast in
practice due to the linear memory access pattern.

A number of speedup techniques have been developed for public transit routing. Transfer
Patterns [1,3] is based on the observation that for many optimal journeys, the sequence of
stops where transfers occur is the same. By precomputing these transfer patterns, journeys can
be computed very quickly at query time. Public Transit Labeling [8] applies recent advances in
hub labeling to public transit networks, resulting in very fast query times. Another example is
the Accelerated Connection Scan Algorithm [17], which combines CSA with multilevel overlay
graphs to speed up queries on large networks. The algorithm presented in this work, however,
is a new base algorithm; development of further speedup techniques is a subject for future
research.

3. Algorithm

3.1. Preprocessing

We precompute transfers so they can be looked up quickly during queries. A key observation
is that the majority of possible transfers is not needed in order to find Pareto-optimal journeys,
and can be safely discarded. Preprocessing is divided into several steps: Initial computation
and reduction. Initial computation of transfers is relatively straightforward. For each trip t
and each stop pi

t of that trip, we examine pi
t and all stops reachable via (direct) footpaths

from pi
t . For each of these stops q, we iterate over (L, j) ∈ L(q) and find the first trip u of

line L such that a valid transfer pi
t → p j

u satisfying (4) exists. Since, by definition, trips
do not overtake other trips of the same line, we can discard any transfers to later trips of
line L. Additionally, we do not add any transfers from the first stop (i = 0) or to the last stop
(j = |~p(L)|−1) of a trip. Furthermore, transfers to trips of the same line are only kept if either
u≺ t or j < i; otherwise, it is better to simply remain in the current trip. See Algorithm 1 for
a pseudocode description of this.

After initial computation is complete, we perform a number of reduction steps, where we
discard transfers that are not necessary to find Pareto-optimal journeys. First, we discard any

4

Algorithm 1 Initial transfer computation

Input: Timetable data
Output: Transfer set T

1: T ←∅
2: for each trip t do
3: for each stop pi

t on trip t with i > 0 do
4: for each stop q such that ∆τfp

�

pi
t , q
�

is defined do
5: for each line (L, j) ∈ L(q) with j < |~p(L)| − 1 do
6: u← earliest trip of line L such that τarr(t, i) +∆τfp

�

pi
t , q
�

≤ τdep(u, j)
7: if L 6= Lt ∨ u≺ t ∨ j < i then
8: T ← T ∪

�

pi
t → p j

u

�

. Add transfer

Algorithm 2 Remove U-turn transfers

Input: Timetable data, transfer set T
Output: Reduced transfer set T

1: for each transfer pi
t → p j

u ∈ T do

2: if pi−1
t = p j+1

u ∧τarr(t, i − 1) +∆τch

�

pi−1
t

�

≤ τdep(u, j + 1) then

3: T ← T \ pi
t → p j

u . Remove U-turn transfer

transfers pi
t → p j

u where p j+1
u = pi−1

t (we call these U-turn transfers) as long as

τarr(t, i − 1) +∆τch

�

pi−1
t

�

≤ τdep(u, j + 1) (5)

holds (Algorithm 2). In this case, we can already reach u from t at the previous stop, and
because

τarr(t, i − 1) ≤ τdep(t, i − 1) ≤ τarr(t, i)

≤ τdep(u, j) ≤ τarr(u, j + 1) ≤ τdep(u, j + 1) ,
(6)

all trips that can reach t at the previous stop can also reach u, and all trips reachable from u
are also reachable from t. Equation (5) may not hold if the stops in question have different
minimum change times.

Next, we further reduce the number of transfers by analyzing which transfers lead to
improved arrival times. We do this by moving backwards along a trip, keeping track of where
and when passengers in that trip can arrive, either by simply exiting the trip or by transferring
to another trip reachable from their current position. Again, we iterate over all trips t. For
each trip, we maintain two mappings τA and τC from stops to arrival time and earliest change
time, respectively. Initially, they are set to∞ for all stops. During execution of the algorithm,
they are updated to reflect when passengers arrive (τA) or can board the next trip (τC) at
each stop.3 We then iterate over stops pi

t of trip t in decreasing index order, meaning we
examine later stops first. At each stop, we update the arrival time and change time for that

3If there are no minimum change times, then τA = τC and we only maintain τA.

5

Algorithm 3 Transfer reduction

Input: Timetable data, transfer set T
Output: Reduced transfer set T

1: for each trip t do
2: τA(·)←∞ . Arrival time at stops
3: τC(·)←∞ . Earliest change time at stops
4: for i← |~p(t)| − 1, . . . , 1 do
5: τA

�

pi
t

�

←min
�

τA

�

pi
t

�

,τarr(t, i)
�

6: for each stop q such that ∆τfp

�

pi
t , q
�

is defined do
7: τA(q)←min

�

τA(q),τarr(t, i) +∆τfp

�

pi
t , q
��

8: τC(q)←min
�

τC(q),τarr(t, i) +∆τfp

�

pi
t , q
��

9: for each transfer pi
t → p j

u ∈ T do
10: keep← false
11: for each stop pk

u on trip u with k > j do
12: keep← keep∨τarr(u, k)< τA

�

pk
u

�

13: τA

�

pk
u

�

←min
�

τA

�

pk
u

�

,τarr(u, k)
�

14: for each stop q such that ∆τfp

�

pk
u, q
�

is defined do
15: η← τarr(u, k) +∆τfp

�

pk
u, q
�

16: keep← keep∨η < τA(q)∨η < τC(q)
17: τA(q)←min(τA(q),η)
18: τC(q)←min(τC(q),η)
19: if ¬keep then
20: T ← T \ pi

t → p j
u . No improvement, remove transfer

stop if they are improved:

τA

�

pi
t

�

←min
�

τA

�

pi
t

�

,τarr(t, i)
�

and

τC

�

pi
t

�

←min
�

τC

�

pi
t

�

,τarr(t, i) +∆τch

�

pi
t

��

.

Similarly, we update τA and τC for all stops q reachable via footpaths from pi
t :

τA(q)←min
�

τA(q),τarr(t, i) +∆τfp

�

pi
t , q
��

and

τC(q)←min
�

τC(q),τarr(t, i) +∆τfp

�

pi
t , q
��

.

We then determine, for each transfer pi
t → p j

u from t at that stop, if u improves arrival and/or
change times for any stop. To do this, we iterate over all stops pk

u of u with k > j and perform
the same updates to τA and τC as we did above, this time for pk

u and all stops reachable via
footpaths from pk

u. If this results in any improvements to either τA or τC, we keep the transfer,
otherwise we discard it. Discarded transfers are not required for Pareto-optimal journeys,
since we have shown that (a) taking later transfers (or simply remaining in the current trip)
leads to equal or better arrival times (τA), and (b) all trips reachable via that transfer can also
be reached via those later transfers (τC). Refer to Algorithm 3 for a pseudocode description.

6

All these algorithms are trivially parallelized, since each trip is processed independently.
Also, there is no need to perform them as separate steps; they can easily be merged into
one. We decided to keep them distinct to showcase the separation of concerns. Furthermore,
more complex reduction steps are possible, where there are dependencies between trips. For
example, to minimize the size of the transfer set, one could compute full profiles between all
stops (all-to-all), then keep only those transfers required for optimal journeys. However, that
would be computationally expensive. In contrast, the comparatively simple computations
presented here can be performed within minutes, even for large networks, while still resulting
in a greatly reduced transfer set (see Section 4 for details).

Note that this explicit representation of transfers allows fine-grained control over them.
For instance, one can easily introduce transfers between specific trips that would otherwise
violate the minimum change time or footpath restrictions, or remove transfers from certain
trips. Transfer preferences are another example. If two trips travel in parallel (for part of
their stop sequence), there may be multiple possible transfers between them. The algorithm
described above discards all but the last of them; by modifying it, preference could be given
to transfers that are more accessible, for instance. Since this only has to be considered during
preprocessing, query times are unaffected.

3.2. Earliest Arrival Query

As a reminder, the input to an earliest arrival query consists of the source stop psrc, the target
stop ptgt, and the (earliest) departure time τ, and the objective is to calculate a Pareto set of
�

τjarr, n
�

tuples representing Pareto-optimal journeys arriving at time τjarr after n transfers.
During the algorithm, we remember which parts of each trip t have already been processed
by maintaining the index R(t) of the first reached stop, initialized to R(t)←∞ for all trips.
We also use a number of queues Qn of trip segments reached after n transfers and a set L of
tuples (L, i,∆τ). The latter indicates lines reaching the target stop ptgt, and is computed by

L =
�

(L, i, 0)
�

� (L, i) ∈ L
�

ptgt

�	

∪
��

L, i,∆τfp

�

q, ptgt

�� �

� (L, i) ∈ L(q)∧ ∃ a footpath from q to ptgt

	

We start by identifying the trips travelers can reach from psrc at time τ. For this, we examine
psrc and all stops reachable via footpaths from psrc. For each of these stops q, we iterate over
(L, i) ∈ L(q) and find the first trip t of line L such that

τdep(t, i)≥

¨

τ if q = psrc,

τ+∆τfp(psrc, q) otherwise.

For each of those trips, if i < R(t), we add the trip segment pi
t → pR(t)

t to queue Q0 and then
update R(u)←min(R(u), i) where t � u∧ Lt = Lu, meaning we update the first reached stop
for t and all later trips of the same line. Due to the way � is defined in (1), none of these
later trips u can improve upon t. By marking them as reached, we eliminate them from the
search and avoid redundant work.

7

Algorithm 4 Earliest arrival query

Input: Timetable, transfer set T , source stop psrc, target stop ptgt, departure time τ
Output: Result set J

1: J ←∅
2: L ←∅
3: Qn←∅ for n= 0,1, . . .
4: R(t)←∞ for all trips t
5: for each stop q such that ∆τfp

�

q, ptgt

�

is defined do
6: ∆τ← 0 if ptgt = q, else ∆τfp

�

q, ptgt

�

7: for each (L, i) ∈ L(q) do
8: L ←L ∪ {(L, i,∆τ)}
9: for each stop q such that ∆τfp(psrc, q) is defined do

10: ∆τ← 0 if psrc = q, else ∆τfp(psrc, q)
11: for each (L, i) ∈ L(q) do
12: t ← earliest trip of L such that τ+∆τ≤ τdep(t, i)
13: E N Q U E U E(t, i, 0)
14: τmin←∞
15: n← 0
16: while Qn 6=∅ do
17: for each pb

t → pe
t ∈Qn do

18: for each (Lt , i,∆τ) ∈ L with b < i and τarr(t, i) +∆τ < τmin do
19: τmin← τarr(t, i) +∆τ
20: J ← J ∪ {(τmin, n)}, removing dominated entries

21: if τarr(t, b+ 1)< τmin then
22: for each transfer pi

t → p j
u ∈ T with b < i ≤ e do

23: E N Q U E U E(u, j, n+ 1)
24: n← n+ 1

1: procedure E N Q U E U E(trip t, index i, number of transfers n)
2: if i < R(t) then
3: Qn←Qn ∪

¦

pi
t → pR(t)

t

©

4: for each trip u with t � u∧ Lt = Lu do
5: R(u)←min(R(u), i)

After the initial trips have been found, we operate on the trip segments in Q0,Q1, . . .
until there are no more unprocessed elements. For each trip segment pb

t → pe
t ∈ Qn, we

perform the following three steps. First, we check if this trip reaches the target stop. For
each (Lt , i,∆τ) ∈ L with i > b, we generate a tuple (τarr(t, i) +∆τ, n) and add it to the
result set, maintaining the Pareto property. Second, we check if this trip should be pruned
because it cannot lead to a non-dominated journey. This is the case if we already found a
journey with τjarr < τarr(t, b+ 1). Third, if the trip is not pruned, we examine its transfers.

For each transfer pi
t → p j

u with b < i ≤ e, we check if j < R(u). If so, we add p j
u→ pR(u)

u to

8

Qn+1 and update R(v)←min(R(v), j) for all v with u� v ∧ Lu = Lv . Otherwise, we already
reached u or an earlier trip of the same line at j or an earlier stop, and we skip the transfer. A
pseudocode description can be found in Algorithm 4.

The main loop is similar to a breadth-first search: First, all trips reachable directly from the
source stop are examined, then all trips reached after a transfer from those, etc. Therefore, we
find journeys with the least number of transfers first. Any non-dominated journey discovered
later cannot have a lower number of transfers and must therefore arrive earlier. This property
enables the pruning in step two, which prevents us from having to examine all reachable
trips regardless of the target. However, it also means that the journey with the earliest arrival
time is the last one discovered, and all journeys with less transfers are found beforehand.
This is why we only consider the multi-criteria problem variants.

3.3. Profile Query

We perform profile queries by running the main loop of an earliest arrival query for each distinct
departure time in the given interval, preserving labels between runs to avoid redundant work.
Later journeys dominate earlier journeys, provided arrival time and number of transfers are
equal or better, while earlier journeys never dominate later ones. Therefore, we process later
departures first. However, in order to reuse labels across multiple runs, we need to keep
multiple labels for each trip, consisting of the index of the first reached stop and the number
of transfers required to reach it. Since the number of transfers is limited in practice, we use
Rn(t) to denote the first stop reached on trip t after at most n transfers and update Rn+1(t)
(and following) whenever we update Rn(t). To decide if a trip segment should be queued
while processing Qn, we compare against and update Rn+1(t). We also change the pruning
step so we compare against the minimum arrival time of journeys with no more than n+ 1
transfers.

To see why labels can be reused, consider two runs with departure times τ1 and τ2, where
τ1 < τ2, which both reach trip t at stop i after n transfers. Continuing from this point, both
will reach the destination at the same time and after the same number of transfers. However,
since τ1 < τ2, the journeys departing at τ2 dominate the journeys departing at τ1. Knowing
this, we can avoid computing them in the first place by computing τ2 first and keeping the
labels.

3.4. Implementation

We improve the performance of the algorithm by taking advantage of SIMD (single instruction,
multiple data) instructions, avoiding dynamic memory allocations and increasing locality of
reference (reducing cache misses). In our data instances, all lines have less than 200 stops.
Also, none of our tests found Pareto-optimal journeys with 16 or more transfers. Thus, we set
the maximum number of transfers to 15. During profile queries, we can then update R0(t) to
R15(t) using a single 128-bit vector minimum operation.

To avoid memory allocations during query execution, we replace the n queues with a
single, preallocated array. To see why this is possible, note that the maximum number of trip
segments queued is bounded by the number of elementary connections. We use pointers to

9

keep track of the current element, the end of the queue, and the level boundaries (where the
number of transfers n is increased).

We improve locality of reference by splitting the steps of the inner loop into three separate
loops. Thus, we iterate three times over each level, each time updating the elements in the
“queue”, before increasing n and moving on to the next level. In the first iteration, we look up
τarr(t, b+ 1) and store it next to the trip segment into the queue. Additionally, we check L
to see if the trip reaches the destination, and update arrival times as necessary. In the second
iteration, we perform the pruning step by comparing the time stored in the queue with the
arrival time at the destination. If the element is not pruned, we replace it with two indices
into the array of transfers, indicating the transfers corresponding to the trip segment. If the
element is pruned, we set both indices to 0, resulting in an empty interval. Finally, in the
third iteration, we examine this list of transfers and add new trip segments to the queue as
necessary. Thus, arrival times τarr(·, ·) are required only in the first loop, transfer indices only
in the second loop, and transfers and reached stops Rn(·) only in the final loop. This leads to
reduced cache pressure and therefore to less cache misses, which in turn results in improved
performance (see Section 4). For more details on the data structures used, please refer to
Appendix A.

3.5. Journey Descriptions

So far, we only described how to compute arrival time and number of transfers of journeys,
which is enough for many applications. However, we can retrieve the full sequence of trip
segments as follows. Whenever a trip segment is queued, we store with it a pointer to the
currently processed trip segment. Since we replaced the queue with a preallocated array, all
entries are preserved until the end of the query. Therefore, when we find a journey reaching
the destination, we simply follow this chain of pointers to reconstruct the sequence of trip
segments. If required, the appropriate transfers between the trips can be found by rescanning
the list of transfers.

4. Experiments

We ran experiments on a dual 8-core Intel Xeon E5-2650 v2 processor clocked at 2.6 GHz,
with 128 GB of DDR3-1600 RAM and 20 MB of L3 cache. Our code was compiled using
g++ 4.9.2 with optimizations enabled. We used two test instances, summarized in Table 1.
The first, available at data.london.gov.uk, covers Greater London and includes data for
underground, bus, and Docklands Light Railway services for one day. The second consists of
data used by bahn.de during winter 2011/2012, containing European long distance trains,
German local trains, and many buses over two days.

Table 1 also reports the number of transfers before and after reduction, as well as the total
space consumption (for the reduced transfers and all timetable data). Reduction eliminates
about 84% of transfers for London, and almost 90% for Germany. The times required for
preprocessing can be found in Table 2.

Running times reported for queries are averages over 10 000 queries with source and target

10

Table 1: Instances used for experiments

London Germany

Stops 20 764 249 724
Trips 129 263 2389 253
Connections 4991 130 46116 453
Footpaths 45 624 100 470
Lines (Routes) 2 161 232 644
Transfers (full) 121339 213 1 826424 894
Transfers (reduced) 19502 791 186296 771

Space consumption 115.5 MiB 1 140.9 MiB

Table 2: Preprocessing times for transfer computation and reduction

London
1 thread

London
16 threads

Germany
1 thread

Germany
16 threads

Computation 18 s 3 s 177 s 37 s
Reduction 357 s 27 s 2 174 s 183 s

Total 375 s 30 s 2 351 s 220 s

stops selected uniformly at random. For profile queries, the departure time range is the
first day covered by the timetable; for earliest arrival queries, the departure time is selected
uniformly at random from that range. We do not compute full journey descriptions.

We evaluated the optimizations described in Section 3.4, as well as the effect of transfer
reduction, on the London instance (Table 3). SIMD instructions are only used in profile
queries and enabling them has no effect on earliest arrival queries. With all optimizations,
running time for profile queries is improved by a factor of 2. Transfer reduction improves
running times by a factor of 3.

We compare our new algorithm to the state of the art in Table 4. We distinguish between
algorithms which optimize arrival time only (◦) and those that compute Pareto sets optimizing
arrival time and number of transfers (•), and between earliest arrival (◦) and profile (•)
queries. We report the average number of label comparisons per stop4, where available,
and the average running time. Direct comparison with the Accelerated Connection Scan
Algorithm (ACSA) [17] and Contraction Hierarchies (CH) [12] is difficult, since they do not
support bicriteria queries.5 We have faster query times than CSA [11] and RAPTOR [10],
at the cost of a few minutes of preprocessing time. Transfer Patterns (TP) [1,3] and Public
Transit Labeling (PTL) [8] have faster query times (especially on larger instances), however,
their preprocessing times are several orders of magnitude above ours.

4Note that in our algorithm, labels are not associated with stops, but with trips instead. For better comparison
with previously published work, we divided the total number of label comparisons by the number of stops.

5ACSA uses transfers to break ties between journeys with equal arrival times.

11

Table 3: Evaluation of optimizations in Section 3.4, using the London instance

variant earliest arr. (ms) profile (ms)

Basic, without SIMD 1.7 145.9
Basic, with SIMD 1.7 113.2
Optimized 1.2 70.0

Optimized, all transfers 3.5 226.0

Table 4: Comparison with the state of the art. Results taken from [2, 3, 8, 17]. Bicriteria
algorithms computing a set of Pareto-optimal journeys regarding arrival time and
number of transfers are marked in column “tr.” (others only optimize arrival time).
Profile queries are marked in column “pr.”.

algorithm instance stops
(·103)

conn.
(·106)

tr. pr. prep.
(h)

comp.
/stop

query
(ms)

TripBased London 20.8 5.0 • ◦ < 0.1 23.3 1.2
TP [2] Madrid 4.6 4.8 • ◦ 185.0 n/a 3.1
PTL [8] London 20.8 5.1 • ◦ 49.3 n/a 0.03
RAPTOR [10] London 20.8 5.1 • ◦ — 10.9 5.4
CSA [11] London 20.8 4.9 ◦ ◦ — 26.6 1.8
CH [12] Europe (LD) 30.5 1.7 ◦ ◦ < 0.1 n/a 0.3

TripBased Germany 249.7 46.1 • ◦ < 0.1 41.4 40.8
TP [3] Germany 248.4 13.9 • ◦ 372.0 n/a 0.3
CSA [17] Germany 252.4 46.2 ◦ ◦ — n/a 298.6
ACSA [17] Germany 252.4 46.2 ◦ ◦ 0.2 n/a 8.7

TripBased London 20.8 5.0 • • < 0.1 1061.7 70.0
TP [2] Madrid 4.6 4.8 • • 185.0 n/a 3.1
rRAPTOR [10] London 20.8 5.1 • • — 1634.0 922.0
CSA [11] London 20.8 4.9 • • — 3824.9 466.0

TripBased Germany 249.7 46.1 • • < 0.1 228.0 301.7
TP [3] Germany 248.4 13.9 • • 372.0 n/a 5.0
ACSA [17] Germany 252.4 46.2 ◦ • 0.2 n/a 171.0

12

4 6 8 10 12 14 16

10

100

geo-rank (2r)

ru
nn

in
g

ti
m

e
(m

s)

Figure 1: Earliest arrival query times by geo-
rank on Germany

4 6 8 10 12 14 16

10

100

1 000

geo-rank (2r)

ru
nn

in
g

ti
m

e
(m

s)

Figure 2: Profile query times by geo-rank on
Germany

To examine query times further, we ran 1 000 geo-rank queries [17]. A geo-rank query picks
a stop uniformly at random and orders all other stops by geographical distance. Queries are
run from the source stop to the 2r -th stop, where r is the geo-rank. Results for the Germany
instance are reported in Figure 1 (earliest arrival queries) and Figure 2 (profile queries). Note
the logarithmic scale on both axes. Query times for the maximum geo-rank are about the
same as the average query time when selecting source and target uniformly at random, since
randomly selected stops are unlikely to be near each other. Local queries, which are often
more relevant in practice, are generally much faster (by an order of magnitude), although
there is a significant number of outliers, since physically close locations do not necessarily
have direct or fast connections.

5. Conclusion

We presented a novel algorithm for route planning in public transit networks. By focusing on
trips and transfers between them, we computed multi-criteria profiles optimizing arrival time
and number of transfers on a metropolitan network in 70 ms with a preprocessing time of just
30 s, occupying a Pareto-optimal spot among current state of the art algorithms. The explicit
representation of transfers allows fine-grained modeling, while the short preprocessing time
allows the use in dynamic scenarios. In addition, localized changes (such as trip delays or
cancellations) do not necessitate a full rerun of the preprocessing phase. Instead, only a
subset of the data needs to be updated. Development of suitable algorithms is a subject of
future studies. Future work also includes efficiently extending the covered period of time by
exploiting periodicity in timetables, making the algorithm more scalable by using network
decomposition, and extending it to support more generic criteria such as fare zones or walking
distance.

13

References

[1] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson,
Veselin Raychev, and Fabien Viger. Fast Routing in Very Large Public Transportation
Networks Using Transfer Patterns. In European Symposium on Algorithms (ESA), volume
6346, pages 290–301, 2010.

[2] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks. ArXiv e-prints, April 2015, 1504.05140.

[3] Hannah Bast and Sabine Storandt. Frequency-based search for public transit. In ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
pages 13–22. ACM Press, November 2014.

[4] Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller-Hannemann.
Accelerating Time-Dependent Multi-Criteria Timetable Information is Harder Than
Expected. In Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS), 2009.

[5] Gerth Stølting Brodal and Riko Jacob. Time-dependent networks as models to achieve
fast exact time-table queries. In Electronic Notes in Theoretical Computer Science, vol-
ume 92, pages 3–15, 2004.

[6] Alessio Cionini, Gianlorenzo D’Angelo, Mattia D’Emidio, Daniele Frigioni, Kalliopi
Giannakopoulou, Andreas Paraskevopoulos, and Christos Zaroliagis. Engineering
Graph-Based Models for Dynamic Timetable Information Systems. In Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS), pages
46–61. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

[7] Brian C. Dean. Continuous-Time Dynamic Shortest Path Algorithms. Master’s thesis,
Massachusetts Institute of Technology, 1999.

[8] Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato F. Werneck. Public Transit
Labeling. In Experimental Algorithms, volume 9125 of Lecture Notes in Computer Science
(LNCS), pages 273–285. Springer, 2015.

[9] Daniel Delling, Bastian Katz, and Thomas Pajor. Parallel computation of best connections
in public transportation networks. Journal of Experimental Algorithmics (JEA), 17, 2012.

[10] Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit
Routing. Transportation Science, 2012. Advance online publication.

[11] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly Simple
and Fast Transit Routing. In Experimental Algorithms, volume 7933 of Lecture Notes in
Computer Science (LNCS), pages 43–54. Springer, Heidelberg, 2013.

14

[12] Robert Geisberger. Contraction of Timetable Networks with Realistic Transfers. In
Experimental Algorithms, volume 6049 of Lecture Notes in Computer Science (LNCS),
pages 71–82. Springer, Heidelberg, 2010.

[13] Pierre Hansen. Bicriterion Path Problems. In Multiple Criteria Decision Making Theory
and Application, volume 177 of Lecture Notes in Economics and Mathematical Systems,
pages 109–127. Springer, Heidelberg, 1980.

[14] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.
Timetable Information: Models and Algorithms. In Algorithmic Methods for Railway
Optimization, volume 4359 of Lecture Notes in Computer Science (LNCS), pages 67–90.
Springer, Heidelberg, 2007.

[15] Matthias Müller-Hannemann and Karsten Weihe. On the cardinality of the Pareto set
in bicriteria shortest path problems. Annals of Operations Research, 147(1):269–286,
2006.

[16] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient mod-
els for timetable information in public transportation systems. Journal of Experimental
Algorithmics, 12:1, 2008.

[17] Ben Strasser and Dorothea Wagner. Connection Scan Accelerated. In Algorithm
Engineering and Experiments (ALENEX), pages 125–137, 2014.

A. Data Structures

We assign consecutive integer IDs, starting from 0, to stops, lines, and trips. For trips, we
assign IDs such that trips of the same line are consecutive, with earlier trips having lower
IDs. An array maps lines to their first trip. We store the remaining data using a forward
star representation. For example, to store footpaths, we use two arrays, Footpaths and
FootpathIndex. Footpaths contains information about footpaths, namely the destination
stop and the length, for all footpaths. It is ordered such that footpaths starting at stop 0
come first, then footpaths starting at stop 1, etc. FootpathIndex contains, for each stop,
the index of the first footpath starting at that stop (plus a sentinel value equal to the size of
Footpaths). To examine footpaths at stop i, we iterate from Footpaths[FootpathIndex[i]]
to Footpaths[FootpathIndex[i + 1]]. The lines at each stop and the stops on each line are
similarly stored. For arrival times, we store all times of the first trip in order, then all times
of the second trip etc. and store the index of the first entry for each trip. Thus, τarr(t, i) is
implemented by looking up ArrivalTimes[TripTimeIndex[t]+ i]. Departure times use the
same index array, as do transfers, albeit with an additional indirection: Transfers from trip
t at index i can be found starting at Transfers[TransferIndex[TripTimeIndex[t]+ i]].
For the transfers themselves, we only store the target trip and board index. Finally, we
redundantly store an array mapping trips to lines and a second list of footpaths, this time
indexed by their destination stops. Although not strictly necessary, these allow fast lookups
during queries.

15

