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Abstract. The classification of hyperspectral image with a paucity of
labeled samples is a challenging task. In this paper, we present a discrim-
inant sparse representation (DSR) graph for semi-supervised learning
(SSL) to address this problem. For graph-based methods, how to con-
struct a graph among the pixels is the key to a successful classification.
Our graph construction method contains two steps. Sparse representa-
tion (SR) method is first employed to estimate the probability matrix
of the pairwise pixels belonging to the same class, and then this proba-
bility matrix is integrated into the SR graph, which can be obtained by
solving an �1 optimization problem, to form a DSR graph. Experiments
on Hyperion and AVIRIS hyperspectral data show that our proposed
method outperforms state of the art.
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Semi-Supervised Learning (SSl) · Sparse Representation (SR)

1 Introduction

Hyperspectral image data contains high-resolution spectral information on land
covers, which is attractive for discriminating the subtle differences between
classes with similar spectral signatures. However, hyperspectral image classi-
fication often faces the issue of limited number of labeled samples, as it is labor
intensive and time-consuming to collect large number of training samples [1–3].
Semi-supervised learning (SSL) , which can utilize both small amount of labeled
samples and abundant yet unlabeled samples, has recently been proposed to
tackle the challenge [4,5]. Due to its practical success and its computational effi-
ciency, graph-based SSL is pretty appealing among the semi-supervised methods.

Graph-based SSL is dependent on a graph to represent the data structures,
where each vertex corresponding to one sample and the edge weight denotes the
similarity between the pairwise samples. Label information of labeled instances
can then be efficiently propagated to the unlabeled samples through the graph.
In order to expect desired result, it is critical to construct a good graph for all
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graph-based SSL methods. Nevertheless, it is still an open problem about how
to construct such a good graph [6–8].

Recently, Cheng and Yan [9,10] proposed an �1-graph structure based on
sparse representation(SR).The latent philosophy is that each sample can be
encoded as a sparse linear superposition of the remaining samples via solving
an �1 optimization problem. In this way, the adjacency relationship and the
weights of graph are derived automatically and simultaneously. Comparing with
the traditional methods, e.g., k -nearest neighbors (kNN) graph and local linear
embedding (LLE) graph [8,11], �1-graph (SR graph) explores higher order rela-
tionships among data points, and hence has the natural discriminating powerful.
However, it finds the sparse representation of each sample in an unsupervised
manner, encoding the similarity between samples ineffectively.

Inspired by above insights, we propose to combine both �1-graph and par-
tial labeled information to construct a discriminant sparse representation (DSR)
graph. It could reduce the weight of two samples if they belong to the different
clusters. On top of DSR graph, SSL is then conducted to obtain the final classifi-
cation results. The experimental results on Hyperion and AVIRIS hyperspectral
data clearly show it outperforms the state of the art.

2 Related Works

In the following, we will introduce the graph-based SSL methods. They are all
dependent on a graph to represent the data structures, where each vertex corre-
sponding to one sample and the edge weight denotes the similarity between the
pairwise samples. Popular methods include Gaussian Harmonic Function (GHF)
[6], local and global consistency (LGC) [7], linear neighborhoods propagation
(LNP) [8]. These methods usually relay on the assumption label smoothness
over the graph. They can be viewed as estimating a function f on the graph,
one wants f to satisfy both the label consistency on the labeled samples and
label smoothness over the graph, where smoothness can be measured by a graph
Laplacian regularization term.

Given the labeled samples Xl = [x1,x2, ...,xl] and the unlabeled samples
Xu = [xl+1,xl+2, ...,xl+u], there are c classes denoted as C = [1, 2, ..., c]. Both
the labeled and unlabeled samples X = [Xl,Xu] produce a connected graph
G = (V,E), where the nodes V corresponding to the n = l +u samples, and the
edges E are represented by a weight matrix W ∈ Rn×n. Then we can obtain
the graph Laplacian matrix LW = D − W, where D is the diagonal degree
matrix with Dii =

∑
j Wij . Let Y= [Yl,Yu]T ∈ Rn×c be a label matrix, where

Yij = 1 if the label of sample Xi belongs to class j for j ∈ [1, 2, ..., c] and
Yij = 0 otherwise. The objective of SSL is to obtain the labels of unlabeled
samples based on the label matrix Yl and the whole data set X.

The graph Laplacian regularization term is denoted as

Tr(FTLWF) =
1
2

n∑

i,j=1

Wij‖fi − fj‖2 (1)
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where F= [Fl,Fu]T ∈ Rn×c indicates the prediction matrix of data X, and fi ∈
R1×c and fj ∈ R1×c are the predictions of samples xi and xj .

Since the graph-based SSL methods are similar to each other, we only apply
DSR graph to GHF, although it can also be used in other methods. GHF learns
a prediction function F ∈ Rn×c to realize the label propagation. It constrains
the predictions of labeled data to be equal to true label information, and solves
the following optimization problem:

min
F∈Rn×c

Tr(FTLWF)

s.t Fl = Yl

(2)

We can partition the matrix LW into four blocks based on labeled and unla-
beled nodes,

(
LWll

LWlu

LWul
LWuu

)

(3)

and we obtain the solution:

Fu = −LWuu

−1LWul
Yl (4)

The predicted label of unlabeled samples is given by:

yi = arg max
j=1,2,...,c

Fu(i, j) i = 1, 2, ..., u (5)

3 Discriminant Sparse Representation Graph
Construction

In this section we propose a new approach to construct an SR graph with non-
uniform class-probability called discriminant sparse representation (DSR) graph.
In such a graph structure, each pairwise nodes are treated differently according to
the probability that they belong to the same class. Different from SR graph, DSR
graph explores class relationships among data samples, hence is more discrimi-
native. Firstly, we provide a method on how to estimate the class-probability of
unlabeled samples, and then present our DSR graph definition.

3.1 Estimation of Class-Probability

For labeled samples, they have a certain membership with one class. However,
those unlabeled samples have an uncertain class relationship. Fortunately, we
can estimate the class-probability of unlabeled samples via partial label infor-
mation. According to the sparse representation based classification (SRC) [13], a
test sample in the unlabeled samples can be encoded as a sparse linear superpo-
sition of the training samples, two samples that have non-zero coefficients in the
decomposition will be in the same class and the coefficient denotes the similarity
of the two samples. For its merit, SRC is applied to estimate the class-probability.
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Given the initial label matrix Yl ∈ Rl×c, where Yij = 1 if the label of data
xi belongs to class j for j ∈ [1, 2, ..., c] and Yij = 0 otherwise. Let D be the
training samples, xi ∈ Xu be a test sample, we can acquire a sparse vector
A ∈ Rl×1, which denotes the similarity between test sample xi and l training
samples, via solving following �1 minimization:

min ‖A‖
1

s.t. DA = xi

(6)

where ‖A‖
1

denotes the �1 norm, i.e., the sum of the absolute value of all com-
ponents in A.

The class-probability vector of xi then can be calculated by

Pi = ATYl (7)

where Pi = (Pi1,Pi2, ...,Pic) ∈ R1×c, the entry Pic of the vector represents
the probability of data xi belonging to class c. Then we can obtain a class-
probability matrix PU ∈ Ru×c of unlabeled samples. For labeled samples, we
denote class-probability matrix PL ∈ Rl×c as YL.

Therefore, the probability of xi and xj belonging to the same class can be
given by

Pij =
{

1 i = j

PiPi
T i �= j

(8)

3.2 Discriminant Sparse Representation Graph

Compared with the kNN graph and LLE graph, SR graph can discover the local
relationship and obtain the edge weights simultaneously, and has discriminating
power. For each sample xi, SR can encode it as a sparse linear superposition of
the remaining samples by solving following problem:

min ‖αi‖1

s.t. Bαi = xi, α ≥ 0
(9)

where B = {x|x ∈ X,x �= xi} denotes all the data points except xi. We can
construct an SR graph with a norm that an edge connects xi and xj if the
coefficient αij �= 0, and the edge wight W(sr)

ij
= αij .

However, SR graph did not take prior knowledge into account. Sometimes we
may know a prior the existence of certain edges and we would like to include those
edges in the final graph. Therefore, we construct a DSR graph by considering
partial label information, the weight of two samples xj and xi in which is given
by

W(dsr)
ij

= W(sr)
ij
Pij (10)

Different from SR graph, the DSR graph explores the classified information
among the samples, and therefore is more powerful and discriminative.
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4 Experiments and Analysis

4.1 Experimental Datasets

In our experiments, two hyperspectral images were employed to evaluate the
performance of the DSR graph. The first one was collected by the Hyperion
instrument on the NASA EO-1 satelite, and the other by the NASA Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). Hyperion acquires 242-band
data at 30-m spatial resolution, covering the 357-2576-nm portion of the spec-
trum in 10-nm bands. Removal of uncalibrated and noisy bands resulted in 145.
The Hyperion images utilized in the experiments were acquired over the Oka-
vango Delta, Botswana (BOT) in May 2001. There are 9 classes in BOT images.
The 224-band AVIRIS data was collected over Indiana Pine (IND PINE) in
1992, with a 20-m spatial resolution and 10-nm spectral resolution over the
range of 400-2500 nm. 220 available bands remained after removal of noisy and
water absorption bands. The RGB images and ground reference information are
shown in Fig. 1.

(a) (b) (c) (d)

Fig. 1. (a) The BOT scence (band 29, 23, 16 for red, green, and blue, resp.). (b) Ground
reference of BOT image. (c) The IND PINE scence (band 57, 27, 17 for red, green, and
blue, resp.). (d) Ground reference of IND PINE image.

For IND PINE data set, we selected a sub data set from 16 classes with a
modest number of labeled samples. The class names and number of data ponits
in the BOT and IND PINESUB data are shown in Table 1.

4.2 Results of Classification Experiments

Four graph construction methods, e.g., (kNN) graph, LLE graph, SR graph, DSR
graph, were applied to GHF for comparison. We randomly selected 3, 5, 10, 15,
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Table 1. Class names and numbers of samples

BOT IND PINESUB

ID Class Name ID Class Name

1 Water (158) 1 Alfalfa (54)
2 Floodplain (228) 2 Corn - No till (100)
3 Riparian (237) 3 Corn C Min till (270)
4 Firescar (178) 4 Corn (234)
5 Island Interior (183) 5 Grass/pasture (63)
6 Woodlands (199) 6 Grass/trees (101)
7 Savanna (162) 7 Grass/pasture-mowed (26)
8 Short Mopane (124) 8 Hay- windrowed (489)
9 Exposed Soils (111) 9 Oats (20)

10 Soy C No till (66)
11 Soy C Min till (122)
12 Soy C clean (261)
13 Wheat (212)
14 Woods (117)
15 Bldg-grass-trees-drives (291)
16 Stone-steel towers (95)

20 data points per class as training samples, and the remainder as test samples.
We run the algorithms twenty times with the randomly selected samples, and the
mean of overall accuracy (OA) were applied to evaluate the classification results.
The optimal parameter was obtained by leave-one-out (LOO) [14] methods. For
kNN graph, the number of nearest neighbors are each set to 7 and 5, and the
gaussian kernel parameter σ are both set to 0.1 in BOT and IND PINESUB
data. For LLE graph, the number of nearest neighbors are both set to 7 in BOT
and IND PINESUB data.

Fig. 2 shows the the classification results of our algorithm with optimal
parameters on two data sets, where the x -axis denotes the number of labeled
samples per class, and the y-axis represents the mean of OA, we can observe
that:

1) The performance of DSR graph is the best on the two data sets with
different proportions of labeled samples, which denotes that the DSR graph can
describe the true local linear relationship of the data points, and thus is more
discriminative than other three graphs.

2) The DSR graph construction method obtain higher OA than SR graph on
both two data sets with different numbers of labeled points, since the latter only
considers similarity between data points, whereas the former method calculates
the weights by exploiting partial labeled information, which means the lower
probability that the pairwise points belong to the same class, the smaller weights
are given to them, thus resulting in more discriminative ability for classification.
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Fig. 2. Overall accuracy of four graphs combined with GHF under different proportions
of labeled samples. (a) BOT data with 9 classes, (b)IND PINESUB data with 16 classes.

5 Conclusion

This paper has developed a novel discriminative graph, called discriminative
sparse representation (DSR) graph, for graph-based SSL. DSR graph has not
only the merits of the SR graph, but also exploits partial labeled information. It
obtains a more discriminant graph construction by combining above two aspects.
The experimental results on Hyperion and AVIRIS hyperspectral data show that,
DSR graph is better at reveal the true local linear relationships of the data points,
and thus is more discriminative than other graphs for graph-based SSL.
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