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Abstract. Discriminative dictionary learning (DDL) has recently
attracted intensive attention due to its representative and discrimina-
tive power in various classification tasks. However, most of the existing
DDL methods fall into two extreme cases, i.e., they either learn a global
dictionary for all classes or train a class-specific dictionary, leading to less
discriminative dictionary as the former do not consider correspondence
between dictionary atoms and class labels while the latter ignore dic-
tionary relatedness between different classes. To tackle this issue, in this
paper we propose a well-principled DDL method which adaptively builds
the relationship between dictionary and class labels. To be specific, we
separatively impose a joint sparsity constraint on the coding vectors of
each class to learn the class correspondence and relatedness for the dic-
tionary. Experimental results on object classification and face recognition
demonstrate that our proposed method can outperform many state-of-
the-art DDL methods with more powerful and discriminative dictionary.

Keywords: Dictionary learning · Joint sparsity · �1,∞-norm · Support
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1 Introduction

Discriminative dictionary learning (DDL), with the goal of learning a dictionary
to linearly represent the training data while enforcing the coding vectors or/and
reconstruction error to be discriminative, has been successfully applied in pattern
recognition applications such as image classification [1,2] and face recognition
[3]. The success of DDL lies in that there usually exists a compact dictionary
which can be learned from the available training data for more effective and
efficient classification.

Different from unsupervised dictionary learning methods which only require
the dictionary to faithfully represent training data, the DDL methods concen-
trate on discriminative classification capability of the dictionary as its goal is to
assign correct class labels to test data. To enrich such capability, how to design
relationship between dictionary atoms and class labels plays a vital role in dic-
tionary training stage. Based on relationship between dictionary atoms and class
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labels, existing DDL methods can be divided into two main categories: one is
global dictionary learning methods which associate each dictionary atom to all
classes, the other is class-specific dictionary learning methods which assign each
dictionary atom to only a single class. For global dictionary learning methods,
the coding vectors are generally explored for classification and are usually jointly
optimized with a classifier. Mairal et al. [4] proposed a DDL method by training
a classifier of coding vectors for digging recognition and texture classification.
Zhang and Li [5] proposed a joint learning algorithm base on KSVD for face
recognition. Pham et al. [6] proposed to jointly train the dictionary and clas-
sifier for face recognition and object categorization. Cai et al. [7] introduced
linear support vector machines (SVM) to jointly optimize the dictionary and
classifier and thus making the coding vectors and dictionary more adaptive and
flexible. Even though a global dictionary with small size can be powerful enough
to represent training data and thereby the testing phase is very efficient, all the
above methods fail to consider correspondence between dictionary atoms and
class labels.

In the class-specific DDL methods, each dictionary atom is assigned to a sin-
gle class and the dictionary atoms associated with different classes are encour-
aged to be as independent as possible. Ramirez et al. [1] proposed a structured
dictionary learning scheme by promoting the discriminative ability between dif-
ferent class-specific sub-dictionaries. Castrodad and Sapiro [8] learned a set
of class-specific sub-dictionaries with non-negative penalty on both dictionary
atoms and coding vectors. Yang et al. [3] proposed a DDL framework which
employs Fisher discrimination criterion to learn a class-specific dictionary. Since
each dictionary atom has a single label, the reconstruction error with respect
to each class could be used for classification. However, those methods ignored
the dictionary relatedness across different classes, e.g., one dictionary atom can
be helpful for the reconstruction of samples from different classes. Consequently,
when there are numerous classes, the size of dictionary would be very large which
will increase the memory and computational complexity for real applications.

As a matter of fact, the two DDL categories build relationship between dictio-
nary atoms and class labels in two extreme manners. In order to make a trade-off
to adaptively build the relationship, we propose a well-principled DDL scheme in
which a joint sparsity constraint is separatively imposed on the coding vectors of
each class by applying �1,∞-norm regularizer to the coding vectors of each class.
Since the �1,∞-norm is a matrix norm that encourages entire rows of the matrix
to be zeros, the resultant row sparsity of coding vectors of a specific class would
build relationship between the specific class and the whole dictionary. Therefore,
some samples can be sparsely represented by the dictionary atoms from the same
and different classes. To make the coding vectors more discriminative, as in [7]
we also add a discrimination term to the objective function which is formulated
as sum of the weighted Euclidean distances between all pairs of coding vectors.
What is more, a multi-class linear SVM classifier is incorporated into the DDL
scheme to learn a dictionary in training phase and classify input samples in the
testing phase.
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The remainder of this paper is organized as follows. In Section 2, we briefly
introduce the DDL scheme. In Section 3, we present the proposed DDL model
and corresponding optimization procedure. To verify the efficiency of the pro-
posed DDL method on classification problems, some experiments are conducted
and the results are analyzed in Section 4. Finally, we conclude the paper in
Section 5.

2 A Brief Review of the DDL Models

Suppose that X = [X1,X2, ...,XC ] is a set of training samples with C classes,
where Xc is the subset containing nc samples from the c-th class. Correspond-
ingly, let A = [A1,A2, ...,AC ] be the coding matrix of X over the dictionary. A
general DDL model can be described as follows

〈D,A〉 = arg min
D,A

R(X,D,A) + λ1‖A‖ + λ2L(A), (1)

where D = [d1,d2, ...,dK ] is the dictionary, λ1 and λ2 are the trade-off param-
eters, R(X,D,A) is the reconstruction error term, ‖A‖ denotes a certain norm
for A, and L(A) denotes the discrimination term for A.

In general, ‖A‖ is set to be ‖A‖1 to ensure sparsity of the coding vectors
since it tends to produce better classification results [9]. However, �1-norm sparse
coding suffers from high computation burden. To tackle this problem, some
researchers attempt to use �2-norm regularizer and their results can be very
competitive with well-designed classification rule or classifier.

3 Main Results

Instead of learning a global dictionary without class specific property or a class-
specific dictionary without class relatedness property, we propose to adaptively
learn the relationship between dictionary atoms and class labels. In our proposed
method, we simply assume a training sample can be sparsely represented by the
dictionary atoms from the same and different classes. Under this assumption,
we take advantage of �1,∞-norm which penalizes the sum of maximum absolute
values of each row for a matrix. To be specific, the �1,∞-norm encourages entire
rows of a matrix to be zeros and can be utilized for a joint sparse regularization.
Thus, we replace ‖A‖ by

∑C
c=1 ‖Ac‖1,∞, where ‖Ac‖1,∞ forces that Xc should

be jointly and sparsely represented by the dictionary and thus regularize the
dictionary to have class relatedness property.

For the discrimination term, to enlarge similarity of coding vectors from same
class and dissimilarity of coding vectors from different classes, we adopt sum of
weighted Euclidean distances between all pairs of coding vectors to indicate the
discrimination capability,

L(A) =
∑

i,j

wij‖ai − aj‖22, (2)
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where ai and aj denote the coding vectors of i-th and j-th sample, respectively,
and wij is the associated weight which plays a key role in the discrimination
term. It has been pointed out that with the symmetry, consistency and bal-
ance constraints on the weights, a multi-class linear SVM can be fused into the
discrimination term. According to [7], Eq. (2) can be further rewritten as

L(A) = 2
C∑

c=1

L(A,yc,uc, bc), (3)

where yc = [yc
1, y

c
2, . . . , y

c
n], n is the number of training samples, yc

i = 1 if
yi = c and otherwise yc

i = −1, uc is the normal to the c-th classs hyper-
plane of SVM, bc is the corresponding bias. To be specific, L(A,yc,uc, bc) =
‖uc‖22 + θ�(A,yc,uc, bc), where �(A,yc,uc, bc) is the hinge loss function and θ
is a predefined constant. For the reconstruction error term, we formulate it as
R(X,D,A) = ‖X − DA‖2F . Note that ‖X − DA‖2F =

∑C
c=1 ‖Xc − DAc‖2F . As

a result, our model can be formulated as follows

min
D,A,U,b

C∑

c=1

‖Xc − DAc‖2F + λ1

C∑

c=1

‖Ac‖1,∞ + 2λ2

C∑

c=1

L(A,yc,uc, bc), (4)

where U and b are a collection of uc and bc, c = 1, 2, . . . , C, respectively.

3.1 Model Training

Eq. (4) is a joint optimization problem and can be solved in an alternative
minimization scheme [7]. Thus, we alternatively optimize the objective function
with respect to D, A and 〈U,b〉 as follows.

By fixing D and 〈U,b〉, we can separately calculate Ac by solving the fol-
lowing problem:

〈Ac〉 = arg min
Ac

‖Xc − DAc‖2F + λ1‖Ac‖1,∞ + 2λ2

C∑

c=1

L(Ac,yc). (5)

To efficiently solve Eq. (5), we introduce an auxiliary variable A′
c, resulting in

an equivalent problem as follows

〈Ac,A
′
c〉 = arg min

Ac,A′
c

‖Xc −DAc‖2
F +λ1‖A′

c‖1,∞ +2λ2

C∑

c=1

L(Ac,y
c)+

μ

2
‖Ac −A′

c‖2
F ,

(6)

where μ is a positive penalty parameter. We then use the augmented Lagrangian
method to alternatively optimize Ac and A′

c until convergence as follow. (i)
When A′

c is fixed, let aci denotes the coding vector of i-th sample from c-th class
and a′c

i is the corresponding auxiliary variable, we can optimize Ac in columns,

〈aci 〉 = arg min
ac
i

‖xc
i − Daci‖22 + 2λ2θ

C∑

c=1

�(aci , y
c
i ) +

μ

2
‖aci − a′c

i ‖22, (7)
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Algorithm 1 Algorithm of the proposed DDL model.
Input: Dinit,Ainit,A

′
init,Uinit,binit, λ1, λ2, θ, μ.

Output: D,U,b
1: while not converged do
2: for c = 1 to C do
3: while not converged do
4: for i = 1 to nc do
5: ac

i ← arg minac
i
‖xc

i − Dac
i‖2 + 2λ2θ

∑C
c=1 �(ac

i , y
c
i ) + µ

2
‖ac

i − a′c
i ‖2

2

6: end for
7: A′

c ← arg minA′
c
λ1‖A′

c‖1,∞ + µ
2
‖A′

c − Ac‖2
F

8: end while
9: end for

10: D ← arg minD ‖X − DA‖2
F s.t. ‖dk‖2 ≤ 1, k = 1, 2, . . . , K.

11: for c = 1 to C do
12: uc, bc ← by multi-class linear SVM
13: end for
14: end while

According to [7], aci has a closed-form solution. (ii) When Ac is fixed, we get the
following problem which can be solved by the projected gradient method [10],

〈A′
c〉 = arg min

A′
c

λ1‖A′
c‖1,∞ +

μ

2
‖A′

c − Ac‖2F . (8)

By fixing A and 〈U,b〉, the optimization problem with respect to D is as
follows

〈D〉 = arg min
D

‖X − DA‖2F s.t. ‖dk‖22 ≤ 1, k = 1, 2, . . . ,K, (9)

where the constraint is to avoid the scaling issue of the atoms. This problem can
be solved effectively by the Lagrange dual method [11].

By fixing D and A, we can update 〈U,b〉 by solving the following problem

〈U,b〉 = arg min
U,b

C∑

c=1

L(Ac,yc,uc, bc). (10)

Eq. (10) is actually a multi-class linear SVM problem and can be solved by the
SVM solver in [12]. Algorithm 1 summarizes the optimization procedure.

3.2 Model Testing

Once the dictionary D and the classifier parameters 〈U,b〉 are learned, we per-
form classification as follows: for a test sample x, we first calculate the sparse
coding vector. As �1,∞-norm is a matrix norm and thus cannot tackle with a
single vector, we instead use �1-norm regularization to get the coding vector,
resulting in the following tractable problem [13,14]

〈a〉 = arg min
a

‖x − Da‖22 + λ1‖a‖1. (11)
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We then apply learned SVM classifier to identify the test sample as follows

Label(x) = arg max
c

uT
c a + bc. (12)

4 Experiments

To verify effectiveness of the proposed DDL model, extensive experiments on
Caltech-101 object database [15], AR [16] and Extended Yale B [17] face database
are carried out and performance of the proposed model are compared with the
base-line sparse representation based classification (SRC) [18] method and state-
of-the-art DDL methods including DKSVD [5], LC-KSVD [19], dictionary learn-
ing with structure incoherence (DLSI) [1], Fisher discrimination dictionary learn-
ing (FDDL) [3] and SVGDL [7]. All the experiments are carried out in Matlab
(R2014a) environment running on a modern computer with Intel(R) Xeon(R)
CPU 3.30 GHz and 32 GB memory. Note that we fix θ = 0.2 and set μ = λ1 in
all the experiments.

4.1 Object Classification

Caltech-101 object database contains 9,144 images from 102 object classes (101
common object classes and a background class). For each class, its number varies
from 31 to 800. Following [7], we randomly select 5, 10, 15, 20, 25 and 30 images
per object for training and the rest are used for testing. The number of dictionary
atoms is set to be 510 in all the cases. We set λ1 = 5 and λ2 = 0.1. As shown in
Table 1, SRC achieves the worst accuracy which is possibly attributed to lack
of discriminative dictionary learning. With a class-specific dictionary, FDDL
outperforms K-SVD and LCKSVD, however, when the training number is high
(say 25, 30) per class, there is no significant gain over K-SVD and LCSVD.
By learning a discriminative dictionary under the guidance of SVM, SVGDL
has a better classification accuracy than LCKSVD and FDDL. However, our
proposed DDL method outperforms SVGDL which indicates that the adaptive
class relatedness learning can lead to more discriminative dictionary.

Table 1. The classification accuracy results on Caltech-101 database.

Training number 5 10 15 20 25 30

SRC 0.488 0.601 0.649 0.677 0.692 0.707
K-SVD 0.498 0.598 0.652 0.687 0.710 0.732
DKSVD 0.496 0.595 0.651 0.686 0.711 0.730
LCKSVD 0.540 0.631 0.677 0.705 0.723 0.736

FDDL 0.536 0.636 0.668 0.698 0.717 0.731
SVGDL 0.553 0.643 0.696 0.723 0.751 0.767

Proposed 0.576 0.668 0.709 0.750 0.770 0.788
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Fig. 1. Resized face images in the AR database.

4.2 Face Recognition

We also apply our algorithm to face recognition (FR) on two widely used
databases: AR and Extended Yale B. The features are reduced to 300 dimensions
by PCA for all FR experiments. Note that here we also make comparisons with
the SVM method.

(1) The AR database consists of over 4,000 face images from 126 individuals.
As in [18], we use a set containing 1,400 face images from 50 female and 50
male subjects. For each subject, there are 7 images for training and 7 images
for testing. The face images are resized to 60×43 as shown in Fig. 1. Here the
number of dictionary atoms is set to be 500. In this experiment, we set λ1 = 0.02
and λ2 = 0.00005. The experimental results of different methods are listed in
Table 2. To the best of our knowledge, the recognition accuracy of 0.951 achieved
by the proposed DDL method is the best result ever reported on this database
with the same training and testing samples.

Table 2. The recognition accuracy results on AR database.

Methods SRC SVM DKSVD LC-KSVD DLSI FDDL SVGDL Proposed

Accuracy 0.888 0.871 0.854 0.897 0.898 0.920 0.946 0.951

(2) The Extended Yale B database consists of 2,414 face images from 38
persons. All the images are cropped into the size of 54×48. We randomly select
20 images of each person for training and the rest are used for testing. In this
experiment, the number of the dictionary atoms is 380, λ1 = 0.1 and λ2 = 0.0005.
As one can see from Table 3, our proposed DDL method achieves the best
recognition accuracy.

Table 3. The recognition accuracy results on Extended Yale B database.

Methods SRC SVM DKSVD LC-KSVD DLSI FDDL SVGDL Proposed

Accuracy 0.900 0.888 0.753 0.906 0.890 0.919 0.961 0.971
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5 Conclusions

In this paper, a novel DDL method which adaptively builds relationship between
dictionary and class labels is presented. Instead of learning a global dictionary
which lacks of correspondence between the dictionary atoms and class labels or
a class-specific dictionary which misses the dictionary relatedness between dif-
ferent classes, we learn a dictionary which not only preserves correspondence
between the dictionary atoms and class labels but also remains class related-
ness between different classes, leading to a more powerful and discriminative
dictionary. Experimental results on object classification and face recognition
demonstrate superiority of our proposed method over many state-of-the-art DDL
methods. Thus, we argue that our proposed method can provide a new insight
to current dictionary learning based pattern recognition methods.
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