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Abstract. Convolutional neural networks (CNNs) have exhibited great
potential in the field of image classification in the past few years. In this
paper, we present a novel strategy named cross-level to improve the exist-
ing CNNs’ architecture in which different levels of feature representation
in a network are merely connected in series. The basic idea of cross-
level is to establish a convolutional layer between two nonadjacent lev-
els, aiming to learn more sufficient feature representations. The proposed
cross-level strategy can be naturally combined into a CNN without any
change on its original architecture, which makes this strategy very prac-
tical and convenient. Three popular CNNs for image classification are
employed to illustrate its implementation in detail. Experimental results
on the dataset adopted by the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) verify the effectiveness of the proposed cross-level
strategy on image classification. Furthermore, a new CNN with cross-
level architecture is introduced in this paper to demonstrate the value of
the proposed strategy in the future CNN design.

Keywords: Convolutional Neural Networks (CNNs) · Image classifica-
tion · Network architecture · Feature representation · Deep learning

1 Introduction

As an important issue in the field of computer vision, image classification has
achieved great progress in the past decade, which is primarily driven by the ever-
increasing demand of image retrieval technique on the internet. Many worldwide
competitions on image classification have been carried out, such as the Pat-
tern Analysis, Statistical Modelling and Computational Learning, Visual Object
Classes (PASCAL VOC) Challenge from 2005 to 2012 and ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) since 2010. It is notable that the perfor-
mance of visual object recognition has obtained a dramatic improvement since
convolutional neural networks (CNNs) [1,2] were first introduced into image clas-
sification by Krizhevsky et al. [3] in 2012. In the last three years, a variety of
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Fig. 1. Comparison of (a) Conventional structure of CNN and (b) the improved struc-
ture with cross-level strategy. Note that a block denotes a level of representation and
an arrow denotes some operational layers between two levels.

CNN-based classification approaches have been presented [4–7], and the latest
reported method [8] can even surpass the human-level performance.

Historically, convolutional network was first applied to visual object recogni-
tion by LeCun et al. [1], in which the problem of handwritten digit recognition
was well tackled by a network containing two convolutional layers and two fully-
connected layers. However, this method did not obtain enough attentions in
generalized visual recognition for a long time, until the rise of deep learning
theory [9,10] as well as the huge improvement on the computation capacity of
hardware. Staring with the AlexNet [3], many representative CNN architectures
such as Network in Network (NIN) [5] and GoogLeNet [7] have been proposed in
the literature. As a typical category of deep neural networks, CNNs are designed
for hierarchical data/feature representation mechanism from lower level to higher
level, in which each level consists of a certain number of feature maps. The fea-
ture maps in a certain level are obtained from the maps in its previous level
through several operations such as linear convolution, non-linear activation and
spatial pooling. In this article, to make the following descriptions clearer, we use
the term layer to specially denote a certain operation between two adjacent lev-
els of feature maps, and the term level to indicate the data representation stage
which is characterized by a set of feature maps. The existing CNNs share similar
architectures, namely, alternate convolutional layers for feature extraction and
spatial pooling layers like max-pooling for dimension reduction. Different levels
of representation in a network are merely connected in series. In other words,
each layer only locates between two adjacent levels, and there is no layer or direct
connection between two nonadjacent levels. Fig. 1(a) shows the core structure
of existing CNNs. However, the connection mechanism of visual neurons is gen-
erally believed to be very complex from the perspective of visual neuroscience
[11,12].

In this paper, we mainly argue that the existing serial connection approach
can be improved by adding direct connections between two nonadjacent levels.
Specifically, a convolutional layer is established between two nonadjacent levels
to realize this idea. This strategy is logically named cross-level, and it can be nat-
urally combined into a CNN without any change on its original architecture. The
illustration of cross-level strategy is shown in Fig. 1(b). The primary motivation
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of this strategy is to learn more sufficient feature representations to pursue a bet-
ter performance on image classification. The rest of this paper is organized as
follows. In Section 2, three popular CNNs for image classification are reviewed.
The implementation details of the cross-level strategy are presented in Section 3.
The experimental results for validation are given in Section 4. Finally, Section 5
concludes the paper and puts forward some future work.

2 Related Work

In this section, we briefly review three representative deep convolutional neural
networks presented for image classification in the last three years, which are the
AlexNet [3], Network-in-Network (NIN) [5] and GoogLeNet [7].

The AlexNet [3] proposed in 2012 can be viewed as a milestone in the field of
image classification. It is the first time that CNN was employed for generalized
image classification. The classification method based on AlexNet is the winner
of ILSVRC 2012 with a significant breakthrough with respect to the previous
approaches. The AlexNet reported in [3] contains five convolutional layers and
three fully-connected layers, and each of these layers is followed by a point-wise
non-linear activation layer called Rectified linear units (ReLUs). In this work,
the non-linear activation is also viewed as a layer for the consistency of layer
definition in Section 1. There is a local response normalization (LRN) layer that
follows the first as well as the second convolutional layer (Actually, it is after
the ReLU layer. Since a convolution layer in a CNN is usually followed by a
non-linear layer like ReLU, the non-linear layer will not be explicitly mentioned
later). There are three max-pooling layers in AlexNet. The first two follow the
two LRN layers, respectively. The last max-pooling layer follows the fifth con-
volutional layer. The core structure of AlexNet locates between the second and
third max-pooling layers, which contains three convolutional layers each with
3 × 3 convolution kernel. Four levels of feature maps of spatial size 13 × 13 are
connected by these three convolutional layers. The authors reported in [3] that
the removal of any of these layers leads to a loss of about 2% in terms of top-1
performance. The core structure of AlexNet is shown in Fig. 2(a).

Lin et al. [5] proposed NIN to obtain a better representation of local patches
by adding a multi-layer perceptron after a convolution layer. In their method,
they use a three-layer perceptron, and it is essentially equivalent to add two
1 × 1 convolutional layers after a 3 × 3 or 5 × 5 convolutional layer. Thus, the
core structure or unit of NIN has three convolutional layers in series, as shown
in Fig. 2(b). The network applied in [5] has four such units and there is a max-
pooling layer between every two units. Furthermore, after the last three-layer
convolution unit, instead of employing traditional fully-connected layers, the
authors generate one feature map for each class and use the global average
pooling scheme to obtain the resulting vector, which can reduce the number of
parameters to a great extent and prevent overfitting for neural networks.

GoogLeNet, a 22-layer deep convolutional network proposed by Szegedy
et al. [7], is the winner of ILSVRC 2014 classification competition. Since



Cross-Level: A Practical Strategy for CNN-Based Image Classification 401

3×3 3×3 3×3 3×3 1×1 1×1

3×3
1×1

1×1
5×51×1

max-
pooling 1×1

3×3
1×1

1×1
5×51×1

max-
pooling 1×1

(a) (b)

(c)

Fig. 2. Core structures of three CNNs. (a)AlexNet, (b)NIN, and (c)GoogLeNet.

increasing the depth of a network directly needs a sharp increase use of computa-
tional resources and tends to cause severe overfitting, the GoogLeNet is designed
to make a balance between the network size and computational budget. The core
structure adopted in GoogLeNet is called Inception. Fig. 2(c) shows two serial
Inceptions. In each Inception, the feature maps in the output level are obtained
from four branches, namely, a 1× 1 convolution layer, a 3× 3 convolution layer
with a 1×1 layer for parameter reduction, a 5×5 convolution layer with a 1×1
layer for parameter reduction, and a max-pooling layer followed by a 1× 1 layer
to limit the number of output feature maps for parameter reduction in the next
level. It is worthwhile to note that the intermediate feature maps generated in
the last three branches do not construct a level of representation since those
three 1 × 1 layers are essentially designed for parameter reduction. Therefore,
there are only three levels of representation in Fig. 2(c). In GoogLeNet, there are
totally nine Inceptions which are separated into three parts. The first part and
last part both have two Inceptions just like the illustration given in Fig. 2(c).
The middle part has five Inceptions in series. Moreover, there is no max-pooling
layer within each of the three parts, so all the feature maps within each part have
the same spatial size. In GoogLeNet, there exists a max-pooling layer between
every two parts for dimension reduction of feature maps.

3 Cross-Level

In this section, we mainly describe the implementation details of the cross-level
strategy via the above three convolutional networks, namely, the AlexNet [3],
Network-in-Network (NIN) [5] and GoogLeNet [7]. Fig. 3 shows the improved
structure of each network after applying the cross-level strategy. The basic idea
of cross-level is to establish a convolutional layer between two nonadjacent lev-
els. Naturally, the added convolution layer can be called cross layer. Thus, the
feature maps in the output level come from two aspects: the layers in the original
structure and the cross layer. In our approach, considering the cost of computa-
tional resource, the size of convolution kernel in each cross layer is fixed to 1×1,
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Fig. 3. The improved structure of three networks after applying the cross-level strat-
egy.(a)AlexNet, (b)NIN, and (c)GoogLeNet.

and the number of feature maps generated by a cross layer is universally set as
half number of the original maps in that level.

As shown in Fig. 3(a), for the AlexNet, two 1 × 1 convolutional layers are
established from the first and second levels to the third and fourth levels, respec-
tively. Notice that the core structure shown in Fig. 2(a) appears only once in the
AlexNet, all the other parts of the network are not changed. The situation of NIN
is similar to that of AlexNet, as shown in Fig. 3(b). The only difference is there
are several core structures/units (see Fig. 2(b)) in the NIN architecture. For each
unit except the first and last one, two 1 × 1 convolutional layers are added on
the original structure. Thus, when there are four units [5], only four 1× 1 layers
are created on the second and third units, while the other parts in NIN remain
unchanged. Finally, Fig. 3(c) shows the modified structure of GoogLeNet with
cross-level strategy, which connects the input level of the former Inception and
the output level of the latter one with a 1× 1 convolutional layer. As mentioned
before, the GoogLeNet also contains a structure of five consecutive Inceptions.
The cross-level strategy deals with this situation just using the same approach
in AlexNet (see Fig. 3(a)) and NIN (see Fig. 3(b)). Accordingly, there are totally
six 1 × 1 convolutional layers added on the original GoogLeNet after applying
the cross-level strategy.

From the above three examples, we can see that the cross-level strategy can
be easily applied to an existing CNN without changing it original architecture,
and the depth of the network also remains the same. The only requirement is
that all the feature maps within the two cross-connected levels must have the
same spatial size. That is to say, there must be no inside spatial pooling layers
with stride larger than one.
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It is worthwhile to notice that some existing CNN architectures have partly
applied the cross-level strategy in some specific applications. Fan et al. [13]
introduced a CNN with multiple paths for human tracking. In their method, the
network between the first convolutional and the output layer is split into two
branches, namely, global branch and local branch. The global branch is the same
as traditional CNN architecture, which consists of several convolutional layers
and pooling layers. The purpose of global branch is to enlarge the receptive field
to address global structures. The local branch only has a convolutional layer,
which aims to extract more details about local structures. Sermanet and LeCun
[14] employed a similar multi-scale CNN architecture for traffic sign recognition.
In [15], Sun et al. proposed a face verification method based on CNN, in which
the last hidden layer is connected with both the third and fourth convolutional
layers. The main purpose of this design is to avoid the loss of useful information,
since the fourth layer contains too few neurons. The networks used in the publi-
cations referred above are generally known as multi-scale CNNs. Although these
CNNs have bypassing connections, there exist clear difference between them and
the CNNs applying the proposed cross-level strategy. In the above multi-scale
CNNs, bypassing connections only connected with the output layer. Moreover,
the main motivation using multi-scale CNNs is for specific object recognition
such as human and face, in which features with different scales are all required
in the output layer. However, the target of the proposed cross-level strategy is
generalized object classification [3,5,7], and the basic motivation of this strategy
is to extract more features with different scales at each feature representation
level, not just the output one. Thus, the design of CNNs using the cross-level
strategy is more flexible.

4 Experiments

The AlexNet [3], Network-in-Network (NIN) [5] and GoogLeNet [7] are first
employed to verify the effectiveness of the proposed cross-level strategy for image
classification. In this work, we use the dataset adopted by ILSVRC, which is a
subset of ImageNet. It contains 1000 categories and each category has about
1300 images. Totally, there are about 1.28 million training images and 50000
validation images. The experimental setup is exactly similar to the approach
reported in [3]. All the images are first down-sampled to a fixed spatial res-
olution of 256 × 256 and the mean intensity over the training set from each
pixel is subtracted. All the models are learned using stochastic gradient decent
algorithm. All the experiments are conducted on Caffe [16], which is a popular
deep learning framework created by Jia et al. The implementation files of all the
above three networks are available on Caffes website [17], and the parameters
in our experiments are set as default values. The cross-level strategy is applied
to these three networks by modifying the corresponding network definition files.
For simplicity, the modified versions of these three networks are named AlexNet-
Cross, NIN-Cross and GoogLeNet-Cross, respectively. For a fair comparison, all
the parameters with respect to model training remain the same with the original
networks.
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The top-1 and top-5 accuracy rates are tested for each learned CNN model
using the validation image sets. For each test image, only the central patch of
appropriate size is extracted for prediction, i.e., single-view prediction is applied.
It is worthwhile to note that we do not apply some widely used strategies such
as multi-view prediction and model fusion [3] to pursue a high accuracy rate,
which are always required in ILSVRC competition. The main purpose here is
to make a pure comparison between a network and its improved version with
cross-level strategy. Thus, we just test the accuracy rate based on single model
as well as single view in this paper. Table 1 lists the top-1 and top-5 accuracy
rates of six learned CNN models. For all of these three networks, it can be
seen from Table 1 that the cross-level strategy results in a rise of about 1% in
terms of both top-1 and top-5 accuracy rates. In particular, the performance
improvement of GoogLeNet is the most significant. From our perspective, this is
mainly because the proportion of levels which are influenced by the cross-level
strategy in GoogLeNet is the highest among these three networks.

Table 1. The top-1 and top-5 accuracy rates of six learned CNN models.

Model Top-1 Top-5

AlexNet 56.48% 79.56%
AlexNet-Cross 57.37% 80.52%

NIN 59.42% 81.60%
NIN-Cross 60.56% 82.61%

GoogLeNet 68.93% 88.90%
GoogLeNet-Cross 70.28% 90.08%

In addition to the existing networks, the cross-level strategy can be also used
for the design of new networks. To verify this point, as well as to further demon-
strate the effectiveness of the cross-level strategy from the other point of view, we
design a new CNN architecture by referring to GoogLeNet. Specifically, we just
remove two branches in the Inception of GoogLeNet, while all the other struc-
tures remain the same, mainly including the depth of network and the number
of feature maps each branch generates. We apply the cross-level strategy to this
new network just as the way to GoogLeNet. The core structure of the designed
network is shown in Fig. 4, in which only the 1 × 1 and 3 × 3 branches are
preserved. The same training and testing approaches are used to this network.
The top-1 and top-5 accuracy rates obtained are 68.74% and 88.78%, respec-
tively. We can see from Table 1 that the performance of this new network is very
close to that of GoogleNet, but the number of feature maps as well as training
parameters is significantly decreased.
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Fig. 4. The core structure of the new designed network.

5 Conclusion

Contribution- This paper presents a novel strategy called cross-level for CNN-
based image classification. The basic idea is to establish a convolutional layer
between two nonadjacent levels in the network, which aims to learn more suffi-
cient feature representations for a better classification performance. Experimen-
tal results on three popular convolutional networks demonstrate the effectiveness
of the proposed cross-level strategy. We also exhibit the potential of the cross-
level strategy used for the design of new networks.

Limitation- There still exist some limitations in this work. First, the number
of feature maps generated by a cross layer is normally set as half number of the
original maps in that level in our method. The impact of this proportional factor
on the classification performance is not fully studied, which is mainly due to the
reason that CNN model training is very time-consuming. Second, only one single
model for each network is learned and only the central patch in each test image
is extracted for prediction. Thus, this work has not been completed and we have
not obtained an ultimate result on classification accuracy.

Future Work- Considering the above limitations, we will conduct more experi-
ments to further study the impact of the above proportional factor. Furthermore,
we will design some new networks using the cross-level strategy and attempt to
obtain a competitive result via the approaches like model fusion as well as multi-
view prediction.
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