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Abstract. When suddenly falling to the ground, elderly people can get
seriously injured. This paper presents a vision-based fall detection app-
roach by using a low-cost depth camera. The approach is based on a novel
combination of three feature types: curvature scale space (CSS), morpho-
logical, and temporal features. CSS and morphological features capture
different properties of human silhouette during the falling procedure. All
the two collected feature vectors are clustered to generate occurrence his-
togram as fall representations. Meanwhile, the trajectory of a skeleton
point that depicts the temporal property of fall action is used as a com-
plimentary representation. For each individual feature, ELM classifier is
trained separately for fall prediction. Finally, their prediction scores are
fused together to decide whether fall happens or not. For evaluating the
approach, we built a depth dataset by capturing 6 daily actions (falling,
bending, sitting, squatting, walking, and lying) from 20 subjects. Exten-
sive experiments show that the proposed approach achieves an average
85.89% fall detection accuracy, which apparently outperforms using each
feature type individually.
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1 Introduction

When falling to the ground, elderly people need to be rescued as promptly as
possible. Automatic fall detection becomes an emerging technique. Although
wearable sensor has been used for fall detection [1], wearing a sensor will cause
inconvenience to one’s daily life. An unobtrusive technique is more favourable,
but it needs to mount many ambient devices, such as vibration, sound sensor,
infrared motion detector and pressure sensor, on room walls [2], which raises the
cost of the solution, and may bring side effect to the human’s health.
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Camera is the more convenient unobtrusive sensor for human fall detec-
tion [3]. Moreover, camera can not only capture human activities but also record
contextual information, which may be significant for fall detection.

Shape analysis in 3D space is more robust to viewpoint and partial occlusion
as compared to 2D shape features. With a reconstructed human volume, tracking
the trajectory of the centroid and orientation of 3D human volume can detect
falls [4]. Although fall detection becomes easier with 3D model, reconstructing
the model is computationally demanding, and calibrating multiple cameras is
still challenging [5]. Recently, Microsoft releases Kinect as a low-cost tool for 3D
depth acquisition. Kinect is robust to the variation of visible lights, thus being
able to work day and night. Moreover, the identity of the detected subject is
well masked in the depth map of Kinect. Many depth-based applications have
emerged, such as 3D skeleton analysis [6], 3D head detection [7] and 3D gait
recognition [8].

In this paper, we present a new fall detection approach by using the depth
map of Kinect. Unlike previous purely shape-based [9] or motion-based [10]
approaches, the proposed approach bases off a combination of three spatial and
temporal features: Curvature Scale Space (CSS) features [11], morphological
and temporal features. Since the three types of features are different in terms
of the number of features at each video frame, one Extreme Learning Machine
(ELM) [12] classifier is separately trained for each feature. Only in the final deci-
sion, the prediction scores of the three classifiers are fused to predict whether
fall happens or not.

The rest of the paper is organized as follows. Section 2 presents the proposed
fall detection approach. Section 3 describes experimental results. Section 4 closes
the paper with concluding remarks.

2 The Proposed Approach

Fig. 1 shows pipeline of the proposed fall detection approach. Three types of
features (CSS, morphological and temporal) are extracted from each frame of
the input depth videos. A bag-of-words model is then built for the CSS and
morphological features, respectively. By mapping the collected feature vectors
of a video clip to the words book, the histogram of occurrence counts is used
to represent the video clip. Meanwhile, temporal features are directly vectorized
as the third representation of a video clip (normalized to be 50-frames). An
individual classifier is trained separately for each feature type, whose prediction
score is combined to decide whether fall happens or not.

2.1 Preprocessing

Given input videos the first step is to segment human body from background by
using the adaptive Gaussian Mixture Model (GMM) [13]. Following it, silhouette
is extracted by using a simple edge detector [14].
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Fig. 1. Pipeline of the proposed fall detection approach. CSS, morphological and tem-
poral features are extracted from input depth videos depicting various daily actions. A
bag-of-words model is then built for the CSS and morphological features, respectively.
The histogram of occurrence counts of the bagged words is used to encode each action.
Meanwhile, temporal features are directly vectorized as the third action representation
(normalized to be 50-frames). An individual classifier is trained separately for each
feature type, whose prediction score is finally combined to decide whether fall happens
or not.

The number of pixels on different silhouette is different, ranging from 10 to
50. To unify the pixel number for better CSS extraction, we uniformly sample 24
points on each extracted silhouette to form a compact silhouette. Then we pro-
cess the compact silhouettes by normalizing their lengths to [0, 1] and smoothing
them over time by averaging over the previous and the next four frames.

2.2 Spatial-Temporal Features

Curvature Scale Space (CSS). Curvature Scale Space (CSS) feature [11,15]
is robust to translation, rotation, scaling and local deformation. Given a closed
shape curve Γ (x, y) with (x, y) at Cartesian coordinates, we re-parameterize
Γ (x, y) in terms of its arc length u: Γ (u) = (x(u), y(u)). The curvature κ of
each Γσ is κ(u, σ). The CSS image of Γ is defined at κ(u, σ) = 0, called the
zero-crossing (ZP ) point. There are two types of ZP : ZP+ - the start point of
a concavity arc where κ(u, σ) changes from negative to positive, and ZP− - the
start point of a convexity arc where κ(u, σ) changes from positive to negative.
On a closed curve, ZP+ and ZP− always appear as a pair. The arc between a
pair of ZP+ and ZP− is either concave (ZP+, ZP−) or convex (ZP−, ZP+).
Since it is extracted from the curvatures at multiple scales, ZP is invariant to
rotation, translation and uniform scaling. To make it further robust against local
deformation, we resample the CSS features by curve interpolation. During the
curve evolution, we keep increasing σ until Γσ shrinks to a circle-like shape, in
which all ZP s disappear. On a CSS image, the (u, σ) coordinates of all ZP s
form a set of continuous curves. The (u, σ) coordinates of the maxima point of
each curve constitute our CSS feature vector.
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Table 1. 15 morphological features used in the paper.

Name Interpretation

Area the actual number of pixels in the foreground region

Perimeter the distance between each adjoining pair of pixels around
the border of the region

EquivDiameter the diameter of a circle with the same area as the region

MajorAxisLength the length (in pixels) of the major axis of the ellipse that has the same
normalized second central moments as the region

MinorAxisLength the length (in pixels) of the minor axis of the ellipse that has the same
normalized second central moments as the region

Eccentricity the eccentricity of the ellipse that has the same second-moments as the region

Extent the ratio of pixels in the region to pixels in the total bounding box

Solidity the proportion of the pixels in the convex hull and also in the region

ConvexArea the number of pixels in the convex hull of the region

smoothness a measure of contour smoothness

compactness a ratio of perimeter to the region area

Hausdorff Dimension the number that represents the generalized fractal dimension of a 2D matrix

average radial ratio the ratio of the radial distance of the contour over the radial
distance of the minimally inscribing sphere

area overlap ratio the area of the object over the area of the minimally inscribing circle

Stddis the standard deviation of the distance of contour points
normalized by the maximum distance

Morphological Features. By filling the extracted shape silhouette, we obtain
a foreground human region whose properties might uniquely characterize the
depicted action. Thus we measure the region properties by computing its various
morphological values. To this end we first detect the bounding rectangle of the
region, and then normalize the bounded rectangle to the same 60 × 80 size.
On the normalized patch, 15 morphological values are measured as detailed in
Table 1. The values capture various regional properties such as area, perimeter,
eccentricity, extent, smoothness, compactness and etc.

Temporal Features. Along with the depth map, the Kinect SDK can provide
the 3D coordinates of 20 skeleton points. For each action the trajectories of the
skeleton points can be very different. Thus, it is necessary to apply the trajec-
tory of these skeleton points for fall detection. Unfortunately, when a person
falls to the ground, the Kinect SDK fails to detect most of the skeleton points
except the shoulder center. Therefore, we only consider the trajectory informa-
tion of the shoulder center (shown in Fig. 2). Let V denote the 3D coordinates
of the shoulder center at time t

V = (xt, yt, zt). (1)

To reduce the influence of coordinate center, we calculate the relative coordinates
as our temporal feature

Ft = {xt − xt−1, yt − yt−1, zt − zt−1|t = 2, 3, ..., T} (2)
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Fig. 2. Illustrating the temporal features. Kinect SDK could track the 3-D trajectory
of upto 20 skeleton points. Among the points, the shoulder center is the only one that
can be correctly tracked when a person falls to the ground. Thus, only the relative
coordinates of the shoulder center is considered for fall detection. In particular, 50
frames are sampled from each sequence for the feature extraction, forming a vector of
3 × 50 = 150 dimensions.

where T is the sequence length. Throughout the paper, T is fixed at 50, indicating
that we sample 50 frames from each sequence. Therefore, the temporal feature
is a vector of 3 × 50 = 150 dimensions.

2.3 Feature Encoding

Both the CSS and the morphological features do not show obvious temporal
consistency. Therefore, we neglect their temporal order, and use the Bag-of-
Words (BoW) model [16] to generate distribution-based action representations.
Since the numbers of CSS and morphological features can be different on each
frame, an individual BoW model is separately built for each feature type.

In the first stage of BoW modeling, K-means clustering is applied over all
feature vectors to generate a codebook. Each cluster center is a codeword, as a
representative of similar feature vectors. Then by mapping the collected vectors
of a video clip to the codebook, we have a histogram of occurrence counts of
the words, which is the BoW representation of video action. Since both the CSS
and the morphological features are in low-dimensional space (summarized in
Table 2), building the BoW models is relatively fast.

The value of K is critical in the K-means clustering. We experimented with
several values, and empirically found that fixing K = 100 is good enough for
both the CSS and morphological features.

Table 2. Summary of the three feature types.

Features CSS Morphological Temporal

Original Dimension 2 15 3

# of Clustering Centers 100 100 N/A

# of Action representation 100 100 3 × 50 = 150
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2.4 Classification and Fusion

Extreme learning machine (ELM) [12] is a single-hidden-layer feed-forward neu-
ral network. Given samples {xj} and their labels {tj}, ELM is modeled by

L∑

i=1

βi · g(ωi · xj + bi) = yj , j = 1, · · ·N, (3)

where g(x) is an activation function, L indicates the number of hidden neu-
rons, and ωi, bi and βi are input weights, biases and output weights of the ith
hidden neuron, respectively.

Rewriting Eq. 3 in matrix form leads to

Hβ = Y, (4)

where Y = [yT
1 , · · · ,yT

N ]T , and H is the hidden layer output matrix,

H =

⎡

⎢⎣
g(ω1x1 + b1) · · · g(ωLx1 + bL)

... · · · ...
g(ω1xN + b1) · · · g(ωLxN + bL)

⎤

⎥⎦

N×L

. (5)

The ith column of H is the output of the ith hidden neuron with respect to the
inputs x1, · · · ,xN . At training stage, by randomly initializing {ωi} and {bi}, β
can be efficiently optimized via least squares.

An individual ELM classifier is separately trained for each feature represen-
tation. Let Yc, Ym and Yt denote the labels predicted with the CSS, mor-
phological and temporal features, respectively. The final predicted labels Y are
designed as the weighted combination of Yc, Ym and Yt

Y = wcYc + wmYm + wtYt, (6)

where wc, wm and wt stand for feature significance. Through watching exper-
imental results, we find that morphological features yield better fall detection
accuracy than the CSS and temporal features. Therefore, we empirically set
wc = 0.2, wm = 0.5 and wt = 0.3.

3 Experimental Results

3.1 Dataset

SDUFall dataset 1 consists of 6 daily actions captured from 20 subjects: falling,
bending, squatting, sitting, lying, and walking. Each subject repeats the same
action 10 times, with each time one or more of the following conditions changed:
carrying or not carrying something, light turning on or off, random walking-in
direction and random viewpoint to the Kinect camera. The camera was installed
1.5m high for the action capturing. A total of 6× 20× 10 = 1200 video clips are
collected. Video frame is at size of 320× 240, saved at 30fps in the AVI format.
The baseline sequence length is about 8 seconds.
1 http://www.sucro.org/homepage/wanghaibo/SDUFall.html

http://www.sucro.org/homepage/wanghaibo/SDUFall.html
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3.2 Settings

The CSS feature extraction was implemented in C++ while all the other mod-
ules were implemented in MATLAB. All the experiments were conducted with
MATLAB 7.10 (R2010a) on a PC with Intel (R) Core (TM) i3-2120 CPU and
2.00 GB RAM. 5-folder cross validation on a per subject basis was repeated
many times until every 5 subjects have been used as the test set.

The proposed approach is compared with using CSS [9], morphological and
temporal feature individually. 100 cluster centers are applied for both the CSS
and morphological clustering. The number of neurons in ELM is fixed at 80.

3.3 Results

Fig. 3 shows the confusion matrices of using (a) CSS features, (b) morphological
features, (c) temporal features, and (d) the proposed approach that fuses the

(a) CSS (b) Morphological

(c) Temporal (d) Proposed

Fig. 3. Classification confusion matrices of using (a) CSS features, (b) morphological
features, (c) temporal features, and (d) the proposed approach that fuses the three fea-
tures. Among the three features, morphological feature is most discriminative. Fusing
the three features greatly reduces the misclassification rates as compared to using each
feature individually. It is also shown that falling and lying are likely to be mutually
misclassified, indicating that their dissimilarities are only subtle.
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Fig. 4. Action samples that are most likely to be correctly classified (left, green-
rectangle enclosed) and mis-classified (right, red-rectangle enclosed). The arrow under
each sequence indicates the sequence order. Note that in order to increase the varia-
tion of our dataset, each subject repeats the same action by walking in from different
directions.

Table 3. Classification accuracy (+ standard deviation) in distinguishing fall from
non-fall actions.

Method Fall vs Non-Fall Accuracy

CSS 62.07 ± 4.50%

Morphological 76.96 ± 6.11%

Temporal 72.76 ± 4.89%

Proposed 85.89 ± 5.02%

three features. Among the three features, morphological feature has the lowest
misclassification rates since it calculates different statistics of the shape. Fusing
the three features further reduces the misclassification rates ad the merits of the
three feature types are combined. It is thus proven that the three features are
mutually beneficial. It is also shown in the figure that falling and lying are likely
to be mutually misclassified, indicating that their dissimilarities are subtle. Fig. 4
shows action samples that are likely to be correctly classified and misclassified.
The misclassified falling action is largely attributed to the inaccurate track of
the skeleton trajectory.

By treating the other five activities (sitting, walking, squatting, lying, and
bending) as a single nonfall class, we are able to calculate the fall-versus-nonfall
classification accuracy based off the results of Fig. 3. Table 3 shows the calculated
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accuracy. Fusing the three features in the proposed approach significantly out-
performs using each feature individually.

4 Conclusions

In this paper, we presented a new vision-based fall detection approach that
uses only a low-cost Kinect camera. The approach is based off the fusion of
three independent features. The CSS and morphological features capture differ-
ent properties of human silhouette. But since the two features have no explicit
temporal consistency, we cluster all collected feature vectors to generate occur-
rence histogram as the representation of an action. Meanwhile, we integrate the
trajectory of a skeleton point that captures the temporal property of an action
as a complimentary feature.

Extensive evaluation shows that the proposed approach achieves an average
85.89% accuracy in distinguishing fall from five other daily activities (walking,
lying, sitting, squatting, and bending). However, it should be pointed that the
proposed approach increases the computation complexity compared to the meth-
ods with only one kind of feature. In the future, we will optimize the weights
for fusing the three prediction results which is set empirically. Moreover, we will
capture more subtle daily activities such as eating, calling, laughing and carrying
objects. Meanwhile, we will also integrate our dataset to other publicly available
RGBD dataset for more general and precise fall detection.
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