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Abstract. This paper concerns the problem of lunar surface image
mosaic, including both image registration and image stitching proce-
dures. A wide viewing composite obtained by mosaic technique plays an
important role in many lunar rover’s operations. Considering particular
characters in lunar surface images, such as large geometrical deforma-
tions, significant illumination differences and repeated patterns, previous
image mosaic techniques often fail to create a qualified composite. In this
paper, a novel algorithm is introduced to tackle the lunar surface image
mosaic problem. Specifically, in the image registration procedure, to deal
with the misregistration problem caused by large geometrical deforma-
tion and repeated patterns, structural information is introduced to solve
the feature correspondence by formulating it as a graph matching prob-
lem. In the image stitching procedure, an energy minimization method is
proposed based on the graduated nonconvexity and concavity procedure
(GNCCP), to handle the visible seams caused by illumination differences
and ghosting problem caused by large parallax in the overlapped area.
Comparative experiments on real lunar surface images acquired by Yutu
rover and Apollo image gallery validate the effectiveness of the proposed
method.
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1 Introduction

Image mosaic is the technique to combine two or more images into a high reso-
lution and wide viewing composite. It lays the foundation for many lunar rover
operations. For instance, a wide viewing composite can benefit the lunar rover’s
self location, which further helps its navigation operations. The special environ-
ment of lunar surface leads to certain particular image characters. For instance,
the lunar surface images taken by the moving lunar rover often have large geo-
metrical deformations, and suffer from large illumination changes caused by dif-
ferent sunlight angles. Besides, the barren lunar surface, mainly composed of
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rocks and dust, makes the acquired images contain lots of repeated patterns,
and often lack salient features. Thus performing image mosaic on lunar surface
images remains a challenging task, and there are few techniques dedicated to
the lunar surface image mosaic problem.

Image mosaic mainly includes two procedures, i.e., image registration and
image stitching. Image registration is the process that transforms images from
different views into one coordinate system. A comprehensive survey on image
registration methods is in [1], in which the image registration techniques are
classified into area-based methods and feature-based methods. In the last two
decades, together with the emergence of a bunch of splendid local feature descrip-
tors, e.g. SIFT [2] and SURF [3], the feature-based methods become more popu-
lar in image registration. The success of feature-based methods can be attributed
to the rotation and scale invariance of the features, thus they can be used to
register images with significant deformations, while the area-based methods are
only applicable on images with translational and rotational transformations.
However, the feature-based methods still fail in dealing with lunar surface image
registration, mainly due to less distinctive local features and repeated patterns
in the lunar surface images. That is because they only utilized the appearance
similarity, without considering other useful information, such as the structure
information.

Image stitching takes the registered images as input to create a wide view-
ing composite. It can be very difficult for lunar surface images because perfect
image registration can hardly be obtained and real lunar surface images are
rarely under constant light exposure. Therefore, blurring caused by misregistra-
tion, visible seams caused by light exposure difference and ghosting caused by
possible moving objects often occur in lunar surface images. Traditional mosaic
algorithms also aimed at the above problems or part of them. For instance,
early in the image mosaic research, researchers [4,5] tried to eliminate the blur-
ring and visible seams by a weighted average method, which is called feathering.
However, when the misregistration is significant and moving objects exist, the
feathering usually results in visual artefacts and ghosting in the composite. Some
other researchers used the optimal seam method [6,7] to deal with the moving
objects. By introducing the Dijkstra’s algorithm [9], the method can find a path
avoiding cutting through the moving objects, which, therefore, makes the mov-
ing objects all in or all out of the composite. Unfortunately, this method may fail
when the light exposure difference is significant, because it may treat the areas
with different light exposures as areas with moving objects. In [8] they used the
region of difference (ROD) to find the regions where the moving objects lie and
then choose the right region to keep, which to some extent improved the the opti-
mal seam method. But it is not robust against significant light exposure in lunar
surface images. Generally, rare approaches can well tackle the image stitching
problem under all the above specific difficulties in lunar surface images.

In this paper, we propose an novel algorithm for lunar surface image mosaic.
Specifically, in the image registration procedure, to deal with the repeated pat-
terns in the lunar surface images, the structural information of the feature points
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is introduced to solve the feature correspondence problem by formulating it as
a graph matching problem, which is approximately solved by a probabilistic
spectral graph matching algorithm. In the image stitching procedure, exposure
compensation is firstly conducted to correct the illumination difference between
lunar surface images. Then an energy minimization method based on the recently
proposed graduated nonconvexity and concavity procedure (GNCCP) [11] is used
to handle the ghosting problem caused by large parallax in the overlapped area.

2 The Proposed Lunar Surface Image Mosaic Algorithm

There are mainly two procedures in the proposed algorithm: image registration
and image stitching. The detailed discission is given below.

2.1 Graph Matching Based Image Registration

To automatically utilize the information from the input images to create a high
resolution and wide viewing composite, the very beginning step is geometrically
aligning the images, i.e. to overlapping the input images of the same scene.

Given two images, the reference image I1 and the sensed image I2, taken from
different viewpoints with overlapping area, the image registration procedure is
to find a geometric transformation matrix T . Matrix T can project the sensed
image I2 to the reference image I1, so that two images can share the same
coordinate system and the overlapping scene of two images should have the
same coordinates. The projective matrix T is estimated by a modified feature
based algorithm. This is done in the following steps.

Feature Extraction. Salient and distinctive objects of the input images I1,I2
are automatically detected by the Speeded Up Robust Features(SURF). For each
feature point, it has a 64-dimensional descriptor gathering the information of the
surrounding area. In this paper, we denote the descriptors of image I1andI2 as
D1,D2, where D1 ∈ �M×64,D2 ∈ �N×64. M ,N is the number of feature points
of I1,I2 respectively.

Feature Correspondence. In this step, the correspondence between the fea-
tures detected in the sensed image and reference image is established. Different
from some conventional methods [19] which only use the descriptor similarity,
in the proposed algorithm we take the structural information into account and
apply a graph matching method to tackle the feature correspondence problem.
We use the our newly published probabilistic spectral graph matching algorithm
[23] to tackle this combinational optimization problem. This algorithm approxi-
mately solve the optimization problem(4) by spectral decomposition. After the
spectral matching procedure, a probabilistic assignment is obtained. We can also
set an probabilistic threshold to control the numbers of the final correspondence
feature points.
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Fig. 1. Feature correspondence results. The correct correspondence points are con-
nected by blue lines and The wrong correspondence points are connected by red lines.
a Without combining the structural information. b Combining the structural informa-
tion

(a) (b) (c)

Fig. 2. Image Registration results. a The reference image after registration; b The
sensed image after registration; c The two input images in the same coordinate system

The example feature correspondence experiment is conducted on real lunar
surface images acquired by Yutu lunar rover. The results are illustrated in Fig.1.
As we can see, the proposed algorithm which combines the structural information
gets a more accurate correspondence sets.

Image Transformation and Interpolation. After the feature correspon-
dence has been established, we use RANSAC [13]to robustly get an estimation
of the projective matrix T by utilizing the correspondence points. Next we apply
the matrix T . The registration result of two lunar surface images is illustrated
in Fig.2. As we can see, after the registration procedure, two input images have
the same size and the overlapping area has the same coordinates in two images.

2.2 Energy Minimization Based Image Stitching

In the image stitching stage, we still have to decide how to blend the images to
create a clean composite. In this paper, we use an energy minimization method
to choose the right image for the composite at every pixel. The pre-processing
and post-processing are also given to enhance composite quality.

Exposure Compensation. To adjust the exposure, we assume the reflective
properties of the scene remain unchanged. This allows us to use a linear approxi-
mation to make the adjustment in intensity. Given two images I1,I2, the intensity
of the images is denoted as e1,e2. Then the exposure compensation is done by a
linear approximation as in

e2 = αe1 + β. (1)
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The gain α and bias β are found by utilizing the intensity of the correspondence
feature points. We apply the linear regression to acquire the optimal α and β,
which has the least mean square error. Next α and β are used to adjust the
intensity of registered image I2 at every pixel.

Pixel Labelling. In this paper, we use the pixel labelling method to choose
the right image for the composite to achieve a smooth transition between the
images.

Given a registered source image sets I = {I1, I2, ..., Ik}, indexed by a label
sets L = {l1, l2, ..., lk}, where k is the number of source images. The image
stitching problem is assigning every pixel p in composite a label in the label
setP = {p1, p2, ..., pn}, where n is the number of pixels in the composite. Then
the image stitching problem is converted to a pixel labelling task, i.e. finding a
mapping function F between sets P and L.

F : P → L; F = {f1, f2, ..., fn}, (2)

where fi denotes the label of pixel pi.
In the proposed algorithm, we use an energy minimization method to solve

the pixel labelling problem. We build the energy function based on the assump-
tion that the natural images can be formulated as Markov Random Field(MRF)
[10], i.e. the images are local smoothing. The smooth prior makes the label of
each pixel affect by both the information of current pixel and the neighbour-
ing pixels. Therefore when moving objects and misregistration area exist in the
overlapping scene, the label tend to totally keep or remove the moving objects
and put a seam at the misregistration area.

In this paper, the energy function E(F ) is defined by

E(F ) =
∑

p

S(p, fp) +
∑

p

∑

{p,q}∈N
Vpq(fp, fq), (3)

where S(p, fp) is called data energy, it penalizes assigning the label fp to pixel
p. Vpq(fp, fq) denotes the smooth energy built based on the smooth prior. It
penalizes the inconsistency between neighbouring pixels. N is the neighbouring
system of the image. Then to find an optimal label set is equivalent to find a
mapping function f , which makes the energy function has the global minimum
as F ∗ = arg min

F
E(F ). Particularly in this paper, the data energy S(p, fp) for

selecting image fp as the label at pixel p is given as

S(p, fp) =

{
0, if Ifp(p) isvalid

+∞, otherwise
, (4)

where a valid pixel is a pixel in the original image but not a padding from the
image transformation. If all the registered images is valid at pixel p, the data
energy is all set to zero, which is reasonable when no prior is given about which
image is better.
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The smooth energy penalizes the inconsistency between neighbouring pix-
els,i.e. assigning different labels to adjacent pixels. The smooth energy in this
paper is a modified function derived from [12]. The energy is defined by the
inconsistency in color and gradient space between neighbours as follow.

Vpq(fp, fq) =

{
Y + λZ, if {p, q} ∈ N

0, otherwise
, (5)

where Y evaluates the inconsistency in color space. It is the euclidean distance
in RGB space defined by Y =

∥∥Ifp(p) − Ifq (p)
∥∥+

∥∥Ifp(q) − Ifq (q)
∥∥. Z evaluates

the inconsistency in gradient space, it can protect the edges in images. It is given
by Z =

∥∥∇pqIfp
∥∥ +

∥∥∇pqIfq
∥∥, where ∇pqI is the gradient of image I in RGB

space. λ is used to balance the color and gradient inconsistency.
Minimizing the energy function(9) is a typical combinational optimization

problem, which is an NP-hard problem with factorial complexity. In this paper
we use our recently published GNCCP algorithm to tackle (9). GNCCP was
originally proposed to approximately solve the assignment problem under one-
to-one constraint [11]. Recently GNCCP was generalized to solve the Maximum
A Posteriori(MAP) estimation in MRF, called GNCCP MAP algorithm [22].
Here in this paper we modify GNCCP to solve the energy minimization problem
in MRF. The GNCCP energy minimization algorithm is given in Algorithm 1.

Algorithm 1 Energy minimization algorithm
Input: Energy matrix Q corresponding to the pairwise smooth energy and A corre-
sponding to the data energy
Initialization: x = 1

nk
, ς = 1

repeat
repeat

y = arg miny∇Eς(x)T y, s.t.y ∈ Ω
α = arg minαEς(x + α(y − x))T , s.t.0 ≤ α ≤ 1
x ← x + α(y − x)

until converged
ς = ς − dς

until ς < −1 ∨ x ∈ Π
Output: An assignment vector x

In the algorithm, by relaxing the integer constrain Π to its convex hull Ω,
GNCCP is proved to realize the Convex-Concave Relaxation Procedure(CCRP)
[14], which has an ideal convergence to the global minimum, detailed proof of
GNCCP is given in [11]. The final label setF is finally obtained by utilizing
assignment vector x. The labelling result conducted on two registered lunar
surface images is given in Fig.3(c).

Gradient Reconstruction. Once the label of each pixel has been computed,
we can directly copy the information of the input images according to the label
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(a) (b) (c)

(d) (e)

Fig. 3. An illustration of the image stitching procedure.a b are the registered input
images. c is the labelling result of the proposed method. d is composite directly copying
the values of the input images according to the labelling result. e is the composite
reconstructed from the gradient domain

to form the final composite. But the pixels will still exist some degree of incon-
sistency. We use the gradient domain reconstruction technique [15] as the post-
process to minimize the inconsistency. Rather than copying pixel values, the
gradient domain reconstruction copies the gradients of the registered images
according to the labelling result. The actual pixel values of the composite image
C are then computed by solving a Poisson equation that best matches the gra-
dients and satisfies the boundary conditionΩ given by the labelling result above.

min
C(p)

||∇C (p) − ∇Ifp (p) ||s.t.C (p) = Ifp (p) , for p ∈ Ω (6)

In Eq(19), ∇X denotes the gradient of X and Ω is the boundary of the composite.
After the stitching procedure above, we can get the final composite. The

image stitching result of the two example lunar surface images are shown in Fig.3.
As we can see after an energy minimization procedure, the proposed algorithm
make the composite smoothly transit from one image to another as shown in
Fig.3(d), which is the result of directly copying the color information according
to the labelling result. The gradient domain reconstruction result is given in
Fig.3(e), which further eliminating the inconsistency in Fig.3(d).

3 Experiment

In this paper, the proposed algorithm is implemented in Matlab 2013(a) and
tested on real lunar images acquired by Yutu rover and Apollo image gallery.
The size of the lunar surface images used in the experiments is 460 × 460. To
sufficiently verify the effectiveness of our proposed algorithm, we compare it
with four popular mosaic softwares, including Autostitch1, panorama maker2,
1 www.cs.bath.ac.uk/brown/autostitch/autostitch.html
2 www.arcsoft.com/panorama-maker/

www.cs.bath.ac.uk/brown/autostitch/autostitch.html
www.arcsoft.com/panorama-maker/
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(a) (b) (c)

(d) (e)

Fig. 4. Mosaic results on lunar images acquired by Yutu rover 1.a Autostitch. b
Panorama maker. c Panorama factory. d Microsoft ICE. e Proposed algorithm

panorama factory3 and Microsoft ICE4. All these mosaic softwares apply the
traditional feature based method which utilizes the feature descriptor similar-
ity only to automatically register the images. After registration, Autostitch uses
a multi-band blending technique [21] to stitch the registered images together
directly, while panorama maker, panorama factory and Microsoft ICE have an
optimal seam searching procedure to deal with the moving objects and misreg-
istration area and then use a blending technique to improve the quality of the
composite. The mosaic results of these softwares and our algorithm tested on
real lunar images acquired by Yutu rover and Apollo image gallery are given in
Fig.4 and Fig.5 respectively.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 5. Mosaic results on Apollo image gallery 1.a, b Images for mosaic.c Autostitch.
d Panorama maker. e Panorama factory. f Microsoft ICE. g Proposed algorithm

3 www.panoramafactory.com/
4 research.microsoft.com/en-us/projects/ice/

www.panoramafactory.com/
research.microsoft.com/en-us/projects/ice/
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From the mosaic experiments above, we can see that the special environ-
ment of lunar surface adds particular character to the images. The acquired
lunar images always lack significant features due to the barren lunar surface
and usually suffer from different illumination conditions. In some special cases,
there also exists possible moving objects. These factors makes the lunar surface
images mosaic a challenging task. Firstly, the features extracted from lunar sur-
face images are not distinctive, which increases the difficulty of feature matching
and further increases the probability of misregistration. As in the Fig.4 and Fig.5,
some mosaic softwares, like panorama maker and panorama factory, can hardly
get a satisfactory registration of the input images. Secondly, since the perfect
registration of the lunar images are hard to obtain and some possible moving
objects exist in the overlapping area, simple blending of the registered images,
as Autostitch does, may lead to ghost and visual artefacts. Thirdly, the exposure
difference between the input images, if not properly handled, will cause visible
seam in the final composite.

As shown in the experiments, traditional mosaic softwares are not capable
of lunar surface images mosaic. Overall our algorithm are robust against various
situations in the lunar images and all get pleasing composite.

4 Conclusion

In this paper, a general framework of lunar surface image mosaic is proposed.
Considering the speciality of lunar surface images, like large exposure difference,
structural deformation and repeating patterns, we improve the traditional fea-
ture based image registration method by incorporating the structural informa-
tion of features. The experiments shows the robustness of the proposed method
against environmental changes. In image stitching procedure, an energy mini-
mization method is applied to choose the right image at every pixel of the com-
posite. Our method get pleasing results when dealing with different situations
as illustrated in experiments.
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