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Abstract. In this paper we study boolean game with prioritized norms.
Norms distinguish illegal strategies from legal strategies. Notions like le-
gal strategy and legal Nash equilibrium are introduced. Our formal model
is a combination of (weighted) boolean game and so called (prioritized)
input/output logic. After formally presenting the model, we use examples
to show that non-optimal Nash equilibrium can be avoided by making
use of norms. We study various complexity issues related to legal strategy
and legal Nash equilibrium.
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1 Introduction

The study of the interplay of games and norms can be divided into two main
branches: the first, mostly originating from economics and game theory [11,
19, 20], treats norms as mechanisms that enforce desirable properties of social
interactions; the second, that has its roots in social sciences and evolutionary
game theory [29, 12] views norms as (Nash or correlated) equilibrium that results
from the interaction of rational agents. A survey of the interaction between
games and norms can be found in Grossi et al [15]. This paper belongs to the
first branch.

In this paper we study the combination of boolean games and norms. Boolean
game is a class of games based on propositional logic. It was firstly introduced
by Harrenstein et al. [17] and further developed by several researchers [16, 23, 13,
9, 7, 26]. In a boolean game, each agent i is assumed to have a goal, represented
by a propositional formula φi over some set of propositional variables P. Each
agent i is associated with some subset Pi of the variables, which are under the
unique control of agent i. The choices, or strategies, available to i correspond to
all the possible assignment of truth or falsity to the variables in Pi. An agent
will try to choose an assignment so as to satisfy his goal φi. Strategic concerns
arise because whether i’s goal is in fact satisfied will depend on the choices made
by other agents.

Norms are social rules regulating agents’ behavior by prescribing which ac-
tions are obligatory, forbidden or permitted. In the game theoretical setting,
norms distinguish illegal strategies form legal strategies. By designing norms ap-
propriately, non-optimal equilibrium might be avoided. To represent norms in



boolean games, we need a logic of norms, which has been extensively studied in
the deontic logic community.

Various deontic logic has been developed since von Wright’s first paper [30] in
this area. In the first volume of the handbook of deontic logic [14], input/output
logic [21, 22] appears as one of the new achievement in deontic logic in recent
years. Input/output logic takes its origin in the study of conditional norms. The
basic idea is: norms are conceived as a deductive machine, like a black box which
produces normative statements as output, when we feed it factual statements as
input.

In this paper we use a simplification of Parent’s prioritized input/output
logic [25] as the logic of norms. Given a normative multi-agent system, which
contains a boolean game, a set of prioritized norms and certain environment.
Every strategy of every agent is classified as legal or illegal. Notions like legal
Nash equilibrium are then naturally defined.

The structure of this paper is the following: We present some background
knowledge, including boolean game, input/output logic and complexity theory
in Section 2. Normative multi-agent system are introduced and its complexity
issues are studied in Section 3. We conclude this paper in Section 4.

2 Background

2.1 Propositional logic

Let P = {p0, p1, . . .} be a finite set of propositional variables and let LP be the
propositional language built from P and boolean constants > (true) and ⊥ (false)
with the usual connectives ¬,∨,∧,→ and↔. Formulas of LP are denoted by φ, ψ
etc. A literal is a variable p ∈ P or its negation. 2P is the set of the valuations
for P, with the usual convention that for V ∈ 2P and p ∈ V , V gives the value
true to p if p ∈ V and false otherwise. � denotes the classical logical consequence
relation.

Let X ⊆ P, 2X is the set of X-valuations. A partial valuation (for P) is
an X-valuation for some X ⊆ P. Partial valuations are denoted by listing all
variables of X, with a “ + ” symbol when the variable is set to be true and a
“− ” symbol when the variable is set to be false: for instance, let X = {p, q, r},
then the X-valuation V = {p, r} is denoted {+p,−q,+r}. If {P1, . . . ,Pn} is a
partition of P and V1, . . . , Vn are partial valuations, where Vi ∈ 2Pi , (V1, . . . , Vn)
denotes the valuation V1 ∪ . . . ∪ Vn.

2.2 Boolean game

Boolean games introduced by Harrenstein et al [17] are zero-sum games with
two players, where the strategies available to each player consist in assigning
a truth value to each variable in a given subset of P. Bonzon et al [8] give a
more general definition of a boolean game with any number of players and not
necessarily zero-sum. In this paper we further generalizes boolean games such



that the utility of each agent is not necessarily in {0, 1}. Such generalization is
reached by representing the goals of each agent as a set of weighted formulas.
We call such boolean game weighted boolean game. The idea of using weighted
formulas to define utility can be found in many work among which we mention
satisfiability game [5] and weighted boolean formula game [23].

Definition 1 (boolean game). A weighted boolean game is a 4-tuple (Agent,P, π,Goal),
where

1. Agent = {1, . . . , n} is a set of agents.
2. P is a finite set of propositional variables.
3. π : Agent 7→ 2P is a control assignment function such that {π(1), . . . , π(n)}

forms a partition of P. For each agent i, 2π(i) is the strategy space of i.
4. Goal = {Goal1, . . . , Goaln} is a set of weighted formulas of LP. That is, each

Goali is a finite set {〈φ1,m1〉, . . . , 〈φk,mk〉} where φj ∈ LP and mj is a real
number.

A strategy for agent i is a partial valuation for all the variables i controls.
Note that since {π(1), . . . , π(n)} forms a partition of P, a strategy profile S is a
valuation for P. In the rest of the paper we make use of the following notation,
which is standard in game theory. Let G = (Agent,P, π,Goal) be a weighted
boolean game with Agent = {1, . . . , n}, S = (s1, . . . , sn) be a strategy profile.
s−i denotes the projection of S on Agent−{i}: s−i = (s1, . . . , si−1, si+1, . . . , sn).

Agents’ utilities in weighted boolean games are induced by their goals. For
every agent i and every strategy profiles S, ui(S) = Σ{mj : 〈φj ,mj〉 ∈ Goali, S �
φj}. Dominating strategies and pure-strategy Nash equilibria are defined as usual
in game theory [24].

Example 1 Let G = (Agent,P, π,Goal) where Agent = {1, 2}, P = {p, q, s},
π(1) = {p}, π(2) = {q, s}, Goal1 = {〈p↔ q, 1〉, 〈s, 2〉}, Goal2 = {〈p∧q, 2〉, 〈¬s, 1〉, }.
This boolean game is depicted as follows:

+q,+s +q,−s −q,+s −q,−s

+p (3, 2) (1, 3) (2, 0) (0, 1)

−p (2, 0) (0, 1) (3, 0) (1, 1)

2.3 Input/output logic

In input/output logic, a norm is an ordered pair of formulas (φ, ψ) ∈ LP × LP,
which is read as “given φ, it is obligatory to be ψ”. A set of norm N can
be viewed as a function from 2LP to 2LP such that for a set Φ of formulas,
N(Φ) = {ψ ∈ LP : (φ, ψ) ∈ N for some φ ∈ Φ}. A finite set of norms is called a
(plain) normative system.



Definition 2 (Semantics of input/output logic [21]). Given a normative
system N and a finite set of formulas Φ, out(N,Φ) = Cn(N(Cn(Φ))), where Cn
is the consequence relation of propositional logic.1

Intuitively, the procedure of the semantics is as follows: We first have in hand a
set of formulas Φ (call it the input) as a description of the current state. We then
close it by logical consequence Cn(Φ). The set of norms, like a deductive machine,
accepts this logically closed set and produces a set of formulas N(Cn(Φ)). We
finally get the output Cn(N(Cn(Φ))) by applying the logical closure again. ψ ∈
out(N,Φ) is understood as “ψ is obligatory given facts Φ and norms N”.

Example 2 Let p, q, r are propositional variables. Let N = {(p, q), (p∨q, r), (r, p)}.
Then out(N, {p}) = Cn(N(Cn({p}))) = Cn({q, r}).

Input/output logic is given a proof theoretic characterization. We say that
an ordered pair of formulas is derivable from a set N iff (a, x) is in the least set
that extends N and is closed under a number of derivation rules. The following
are the rules we need:

– SI (strengthening the input): from (φ, ψ) to (χ, ψ) whenever χ � φ.

– WO (weakening the output): from (φ, ψ) to (φ, χ) whenever ψ � χ.

– AND (conjunction of output): from (φ, ψ) and (φ, χ) to (φ, ψ ∧ χ).

The derivation system based on the rules SI, WO and AND is denoted as
deriv(N).

Example 3 Let N = {(p ∨ q, r), (q, r → s)}, then (q, s) ∈ deriv(N) because we
have the following derivation

1. (p ∨ q, r) Assumption

2. (q, r) 1, SI

3. (q, r → s) Assumption

4. (q, r ∧ (r → s)) 2,3, AND

5. (q, s) 4, WO

In Makinson and van der Torre [21], the following soundness and complete-
ness theorem is proved:

Theorem 1 ([21]). Given a set of norms N ,

ψ ∈ out(N, {φ}) iff (φ, ψ) ∈ deriv(N).

1 In Makinson and van der Torre [21], this logic is called simple-minded input/output
logic. Different input/output logics are developed in Makinson and van der Torre
[21] as well. A technical introduction of input/output logic can be found in Sun [28].



Prioritized input/output logic A prioritized normative system N≥ = (N,≥)
is a finite set of norms together with a priority relation over norms. We assume ≥
to be reflexive and transitive and understand (φ, ψ) ≥ (φ′, ψ′) as (φ, ψ) has higher
priority than (φ′, ψ′). The priority relation is further lifted to priority over sets
of norms. Following Parent [25], we define the lifting as follows: N1 � N2 iff for
all (φ2, ψ2) ∈ N2−N1 there is (φ1, ψ1) ∈ N1−N2 such that (φ1, ψ1) ≥ (φ2, ψ2).

Definition 3 (output with priorities2). Let N≥ be a prioritized normative
system and Φ be a set of formulas.

ψ ∈ outp(N≥, Φ) iff ψ ∈
⋂
{out(N ′, Φ) : N ′ ∈ preffamily(N≥, Φ)}.

Here preffamily(N≥, Φ) is defined via the following steps:

1. maxfamily(N≥, Φ) is the set of ⊆-maximal subsets N ′ of N such that
out(N ′, Φ) is consistent. That is, out(N ′, Φ) is consistent and for all N ′′

such that N ′ ⊂ N ′′, out(N ′′, Φ) is not consistent
2. filterfamily(N≥, Φ) is the set of norms N ′ ∈ maxfamily(N≥, Φ) that max-

imize the output, i.e., that are such that out(N ′, Φ) ⊂ out(N ′′, Φ) for no
N ′′ ∈ maxfamily(N≥, Φ).

3. preffamily(N≥, Φ) is the set of �-maximal elements of filterfamily(N≥, Φ).

Permission in input/output logic Philosophically, it is common to distin-
guish between two kinds of permission: negative permission and positive permis-
sion. Negative permission is straightforward to describe: something is negatively
permitted according to certain norms iff it is not prohibited by those norms. That
is, iff there is no obligation to the contrary. Positive permission is more elusive.
For the sake of simplicity, in this paper when only discuss negative permission
and leave other types of permission as future work.

Definition 4 (permission). Given a prioritized normative system N≥ and a
finite set of formulas Φ, Perm(N≥, Φ) = {ψ ∈ LP : ¬ψ 6∈ outp(N≥, Φ)}.

Intuitively, φ is permitted iff φ is not forbidden. Since a formula is forbidden iff
its negation is obligatory, φ is not forbidden is equivalent to ¬φ is not obligatory.

2.4 Complexity theory

Complexity theory is the theory to investigate the time, memory, or other re-
sources required for solving computational problems. In this subsection we briefly
review those concepts and results from complexity theory which will be used in
this paper. More comprehensive introduction of complexity theory can be found
in [4]

We assume the readers are familiar with notions like Turing machine and the
complexity class P, NP and coNP. Oracle Turing machine and two complexity
classes related to oracle Turing machine will be used in this paper.

2 Here our prioritized input/output logic is a simplification of the original version of
Parent [25].



Definition 5 (oracle Turing machine [4]). An oracle for a language L is a
device that is capable of reporting whether any string w is a member of L. An
oracle Truing machine ML is a modified Turing machine that has the additional
capability of querying an oracle. Whenever ML writes a string on a special oracle
tape it is informed whether that string is a member of L, in a single computation
step.

PNP is the class of problems solvable by a deterministic polynomial time
Turing machine with an NP oracle. PNP [O(log n)] only allows O(log n) oracle
queries instead of polynomially-many. PNP‖ is the class of problems which can

be solved by using the NP oracle only in parallel. Buss and Hay [10] show that
PNP‖ coincide with PNP‖O(1), where a fixed number of parallel rounds is allowed.

NPNP is the class of problems solvable by a non-deterministic polynomial
time Turing machine with an NP oracle. Another name for the class NPNP is
Σp

2 . Σp
i+1 is the class of problems solvable by a non-deterministic polynomial

time Turing machine with a Σp
i oracle. Πp

i is the class of problems of which the
complement is in Σp

i .

3 From boolean game to normative multi-agent system

In recent years, normative multi-agent system [6, 3] arises as a new interdisci-
plinary academic area bringing together researchers from multi-agent system [27,
32, 31], deontic logic [14] and normative system [1, 18, 2]. By combining boolean
games and norms, we here develop a new approach to normative multi-agent
system.

Definition 6 (normative multi-agent system). A normative multi-agent
system is a triple (G,N≥, E) where

– G = (Agent,P, π,Goal) is a weighted boolean game.
– N≥ is a prioritized normative system.
– E ⊆ LP is a finite set of formulas representing the environment.

3.1 Legal strategy

In a normative multi-agent system, agent’s strategies are classified as either
legal or illegal. The basic idea is viewing strategies as formulas and using the
mechanism of input/output logic to decide whether a formula is permitted.

Definition 7 (legal strategy). Given a normative multi-agent system (G,N≥, E),
for each agent i, a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn) is legal if

p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn ∈ Perm(N≥, E).

Example 4 Consider the prisoner’s dilemma augmented with norms. Let (G,N≥, E)
be a normative multi-agent system as following:



– G = (Agent,P, π,Goal) is a weighted boolean game with

• Agent = {1, 2},
• P = {p, q},
• π(1) = {p}, π(2) = {q},
• Goal1 = {〈p, 2〉, 〈¬q, 3〉}, Goal2 = {〈q, 2〉, 〈¬p, 3〉}.

– N≥ = (N,≥) where N = {(>,¬p), (>,¬q), (>, q)}, (>,¬q) ≥ (>, q).
– E = ∅.

+q −p

+p (2, 2) (5, 0)

−p (0, 5) (3, 3)

Then out(N,E) = Cn({¬p,¬q, q}), maxfamily(N≥, E) = {{(>,¬p), (>,¬q)},
{(>,¬p), (>, q)}}, filterfamily(N≥, E) = maxfamily(N≥, E), preffamily(N≥,
E) = {{(>,¬p), (>,¬q)}}. Therefore outp(N

≥, E) = out({(>,¬p), (>,¬q)}, E) =
Cn({¬p,¬q}).

Therefore {−p} and {−q} are legal while {+p} and {+q} are not. a

Having defined the notion legal strategy, a natural question to ask is how
complex is it to decide whether a strategy is legal. Theorem 2 gives a first
answer to this question. To prove Theorem 2, we need the following lemmas.

Lemma 1. Given a normative system N , a finite set of formulas Φ and a for-
mula φ, deciding whether φ ∈ out(N,Φ) is coNP hard and in PNP‖ .

Proof. Concerning the coNP hardness, we prove by reducing the validity problem
of propositional logic to our problem. Let φ be an arbitrary formula. Let N = ∅
and Φ = ∅, then φ is a tautology iff φ ∈ Cn(>) iff φ ∈ Cn(N(Cn(Φ))) iff
φ ∈ out(N,Φ)

Concerning the PNP‖ membership, we prove by giving an oracle Turing ma-
chine with oracle SAT , the set of all satisfiable propositional formulas, to solve
this problem.

Let N = {(φ1, ψ1), . . . , (φn, ψn)}.

1. for each φi ∈ {φ1, . . . , φn}, use the oracle to test if Φ � φi.
(a) If yes, then mark ψi,
(b) Otherwise do nothing.

2. Let ψi1 , . . . ψik be all those ψi which are marked in step 1.
3. Use the oracle to test if {ψi1 , . . . , ψik} � φ.

(a) If yes, then return “accept”
(b) Otherwise return “reject”.



It can be verified that φ ∈ Cn(N(Cn(Φ))) iff the Turing machine returns
“accept” and the time complexity of the oracle Turing machine runs in polyno-
mial time and calls the oracle in parallel for 2 rounds. Therefore the problem is
in PNP‖O(1), which coincides with PNP‖ . a

Lemma 2. Given a prioritized normative system N≥, a finite set of norms
N ′ ⊆ N , a finite set of formulas Φ, deciding whether N ′ ∈ maxfamily(N≥, Φ)
is coNP hard and in PNP .

Proof. The coNP hardness is easy to prove. Here we focuses on the PNP mem-
bership. We prove by giving an oracle Turing machine with oracle SAT to solve
this problem.

Let N −N ′ = {(φ1, ψ1), . . . , (φn, ψn)}.

1. Test if ⊥ ∈ out(N ′, Φ).
2. If yes, return “reject”. Otherwise continue.
3. For all i ∈ {1, . . . , n}, test if ⊥ ∈ out(N ′ ∪ {(φi, ψi)}, Φ).
4. Return “accept” if ⊥ ∈ out(N ′ ∪ {(φi, ψi)}, Φ) for all i ∈ {1, . . . , n}. Other-

wise return “reject”.

It can be verified that N ′ ∈ maxfamily(N≥, Φ) iff the Turing machine returns
“accept” and the time complexity of the oracle Turing machine is polynomial. a

Lemma 3. Given a prioritized normative system N≥, a finite set of norms
N ′ ⊆ N , a finite set of formulas Φ, deciding whether N ′ ∈ filterfamily(N≥, Φ)
is coNP hard and in coNPNP = Πp

2 .

Proof. The coNP hardness is easy to prove. Here we focuses on the coNPNP

membership.
We prove by giving a non-deterministic oracle Turing machine with oracle

SAT to solve the complement of this problem.

1. Test if N ′ ∈ maxfamily(N≥, Φ). If no, return “accept”. Otherwise continue.
2. Guess a set of norms N ′′ ⊆ N .
3. Test if N ′′ ∈ maxfamily(N≥, Φ). If no, return “reject” on this branch.

Otherwise continue.
4. Test if �

∧
N ′′(Cn(Φ)) →

∧
N ′(Cn(Φ)) meanwhile 6�

∧
N ′(Cn(Φ)) →∧

N ′′(Cn(Φ)). If yes, return “accept” on this branch. Otherwise return “re-
ject” on this branch.

It can be verified that N ′ 6∈ filterfamily(N≥, Φ) iff the non-deterministic
Turing machine returns “accept” on some branches. The time complexity of the
non-deterministic Turing machine is polynomial because with the help of an NP
oracle SAT , the test in step 1,3 and 4 can be done in polynomial time. a

Lemma 4. Given a prioritized normative system N≥, a finite set of norms
N ′ ⊆ N , a finite set of formulas Φ, deciding whether N ′ ∈ preffamily(N≥, Φ)
is coNP hard and in Πp

3 .



Proof. The hardness is easy to prove. Here we focus on the membership. We
prove by giving a non-deterministic oracle Turing machine with a Σp

2 oracle to
solve the complement of this problem.

1. Test if N ′ ∈ filterfamily(N≥, Φ). If no, return “accept” on this branch.
Otherwise continue.

2. Guess a set of norms N ′′ ⊆ N .
3. Test if N ′′ ∈ filterfamily(N≥, Φ). If no, return “reject” on this branch.

Otherwise continue.
4. Test if N ′′ � N ′. If yes, return “accept” on this branch. Otherwise return

“reject” on this branch.

It can be verified that N ′ 6∈ preffamily(N≥, Φ) iff the non-deterministic
Turing machine returns “accept” on some branch. The time complexity of the
non-deterministic Turing machine is polynomial because with the help of an Σp

2

oracle, the test in step 1 and 3 can be done in polynomial time.
a

Theorem 2. Given a normative multi-agent system (G,N≥, E) and a strategy
(+p1, . . . , +pm,−q1, . . . ,−qn), deciding whether this strategy is legal is NP hard
and in Πp

4 .

Proof. To show that this problem is NP hard, we provide a reduction from the
satisfiability problem of propositional logic to the problem of deciding whether
a strategy is legal.

Let φ be a formula. Let s = {+p} be a strategy, N = {(¬φ,¬p)}, E = ∅. We
will show φ is satisfiable iff s is legal.

Recall that p ∈ Perm(N,E) iff ¬p 6∈ outp(N,E). In this case we have
outp(N,E) = out(N,E) = Cn(N(Cn(E))).

From E = ∅ we know that Cn(N(Cn(E))) = Cn(N(Cn(>))). Therefore if
φ is satisfiable, then ¬φ is not a tautology. Therefore N(Cn(E)) = ∅. Hence
¬p 6∈ Cn(N(Cn(E))) = out(O,E), p ∈ Perm(N,E). If φ is not satisfiable, then
¬φ is a tautology. Hence ¬p ∈ N(Cn(E)) ⊆ Cn(N(Cn(E))) = out(N,E), which
means p 6∈ Perm(N,E).

For the Πp
4 membership, we prove by giving a non-deterministic oracle Turing

machine with an Σp
3 oracle to solve the complement of this problem.

1. Guess a set of norms N ′ ⊆ N .
2. Test if N ′ ∈ preffamily(N≥, Φ). If no, return “reject” on this branch. Oth-

erwise continue.
3. Test if ¬(p1∧ . . .∧pm∧¬q1∧ . . .∧¬qn) ∈ out(N ′, E). If yes, return “accept”

on this branch.

It can be verified that p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn 6∈ outp(N,E) iff the
non-deterministic Turing machine returns “accept” on some branch and the time
complexity of the Turing machine is polynomial. a



3.2 Legal Nash equilibrium

A (pure-strategy) legal Nash equilibrium is a strategy profile which contains only
legal strategies and no agent can improve his utility by choosing another legal
strategy, given others do not change their strategies.

Definition 8 (Legal Nash equilibrium). Given a normative multi-agent sys-
tem (G,N,E), A strategy profile S = (s1, . . . , sn) is a legal Nash equilibrium if

– for every agent i, si is a legal strategy
– for every agent i, for every legal strategy s′i ∈ Si, ui(S) ≥ ui(s′i, s−i).

Example 5 In the normative multi-agent system presented in Example 4, (−p,−q)
is the unique legal Nash equilibria.

Example 6 Let (G,N≥, E) be a normative system as following:

– G = (Agent,P, π,Goal) is a weighted boolean game with
• Agent = {1, 2},
• P = {p, q},
• π(1) = {p}, π(2) = {q},
• Goal1 = Goal2 = {〈p ∧ q, 2〉, 〈¬p ∧ ¬q, 3〉}.

– N≥ = (N,≥), N = {(>,¬p), (>,¬q)}, (>,¬p) ≥ (>,¬q), (>,¬q) ≥ (>,¬p).
– E = ∅.

+q −p

+p (2, 2) (0, 0)

−p (0, 0) (3, 3)

Without normative system there are two Nash equilibrium: (+p,+q) and
(−p,−q). There is only one legal Nash equilibria: (−p,−q). From the perspective
of social welfare, (+p,+q) is not an optimal equilibria because its social welfare
is 2 + 2 = 4, while the social welfare of (−p,−q) is 3 + 3 = 6. Therefore this
example shows that by designing norms appropriately, non-optimal equilibrium
might be avoided

Theorem 3. Given a normative multi-agent system (G,N≥, E) and a strategy
profile S = (s1, . . . , sn). Deciding whether S is a legal Nash equilibrium is NP
hard and in Πp

5 .

Proof. The NP hardness is trivial. For the Πp
5 membership, we prove by giv-

ing a non-deterministic oracle Turing machine with a Σp
4 oracle to solve the

complement of this problem.

1. Test if S is legal. If no, return “accept”. Otherwise continue.



2. Guess a strategy profile S′

3. Test if S′ is legal. If no, return “reject” on this branch. Otherwise continue.
4. For each agent i, test if ui(S) < ui(S

′). Return “accept” on this branch if
for some i, ui(S) < ui(S

′). Otherwise return “reject” on this branch.

It can be verified that S is not a legal Nash equilibrium iff the non-deterministic
Turing machine returns “accept” on some branch and the time complexity of the
Turing machine is polynomial. a

Theorem 4. Given a normative multi-agent system (G,N,E). Deciding whether
there is a legal Nash equilibrium of G is ΣP

2 hard and in ΣP
6 .

Proof. The lower bound follows from the fact that deciding whether there is a
Nash equilibria for boolean games without norms is ΣP

2 complete [8]. Concerning

the upper bound, recall that ΣP
6 = NPΣ

P
5 . The problem can be solved by a

polynomial time non-deterministic Turing machine with an ΣP
5 oracle. a

4 Conclusion

In the present paper we introduce weighted boolean game with prioritized norms.
Norms distinguish illegal strategies from legal strategies. Using ideas from (pri-
oritized) input/output logic, legal strategies and legal Nash equilibrium are dis-
cussed. After formally presenting the model, we use examples to show that non-
optimal Nash equilibrium can be avoided by making use of norms. We study
the complexity issues related to legal strategy and legal Nash equilibrium. Our
complexity results are not complete, which leaves rooms for future work. Other
natural future work includes using a different input/output logic to reason about
norms and using positive permission to define legal strategy.
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