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Abstract. The complexity of input/output logic has been sparsely developed.
In this paper we study the complexity of four existing input/output logics. We
show that the lower bound of the complexity of the fulfillment problem of these
input/output logics is coNP, while the upper bound is either coNP, or PNP .

1 Introduction

In the first volume of the handbook of deontic logic and normative systems [4], in-
put/output logic [6–9] appears as one of the new achievements in deontic logic in re-
cent years. Input/output logic takes its origin in the study of conditional norms. Unlike
the modal logic framework, which usually uses possible world semantics, input/output
logic adopts mainly operational semantics: a normative system is conceived in in-
put/output logic as a deductive machine, like a black box which produces normative
statements as output, when we feed it descriptive statements as input. For a compre-
hensive introduction to input/output logic, see Parent and van der Torre [9]. A technical
toolbox to build input/output logic can be found in Sun [12].

While the semantics and application of input/output logic has been well developed
in recent years, the complexity of input/output logic has not been studied yet. In this
paper we fill this gap. We show that the lower bound of the complexity for the fulfillment
problem of four input/output logics is coNP, while the upper bound is either coNP or
PNP .

The structure of this paper is as follows: we present a summary of basic concepts
and results in input/output logic and some notes in complexity theory, in Section 2. In
Section 3 we study the complexity of input/output logic. We point out some directions
for future work and conclude this paper in Section 4.

2 Background

2.1 Input/output logic

Makinson and van der Torre introduce input/output logic as a general framework for
reasoning about the detachment of obligations, permissions and institutional facts from



conditional norms. Strictly speaking input/output logic is not a single logic but a family
of logics, just like modal logic is a family of logics containing systems K, KD, S4, S5,
... We refer to the family as the input/output framework. The proposed framework has
been applied to domains other than normative reasoning, for example causal reasoning,
argumentation, logic programming and non-monotonic logic, see Bochman [2].

Let P = {p0, p1, . . .} be a countable set of propositional letters and PL be the
propositional language built upon P. Let N ⊆ PL × PL be a set of ordered pairs of
formulas of PL. We call N a normative system. A pair (a, x) ∈ N , call it a norm, is
read as “given a, it ought to be x”. N can be viewed as a function from 2PL to 2PL

such that for a set A of formulas, N(A) = {x ∈ PL : (a, x) ∈ N for some a ∈ A}.
Intuitively, N can be interpreted as a normative code composed of conditional norms
and the set A serves as explicit input representing factual statements.

Makison and van der Torre [6] define the semantics of input/output logics from O1

to O4 as follows:

– O1(N,A) = Cn(N(Cn(A))).
– O2(N,A) =

⋂
{Cn(N(V )) : A ⊆ V, V is complete}.

– O3(N,A) =
⋂
{Cn(N(B)) : A ⊆ B = Cn(B) ⊇ N(B)}.

– O4(N,A) =
⋂
{Cn(N(V ) : A ⊆ V ⊇ N(V )), V is complete}.

Here Cn is the classical consequence operator of propositional logic, and a set
of formulas is complete if it is either maximal consistent or equal to PL. These four
operators are called simple-minded output, basic output, simple-minded reusable output
and basic reusable output respectively. For each of these four operators, a throughput
version that allows inputs to reappear as outputs, defined as O+

i (N,A) = Oi(Nid, A),
where Nid = N ∪ {(a, a) | a ∈ PL}. When A is a singleton, we write Oi(N, a) for
Oi(N, {a}).

Input/output logics are given a proof theoretic characterization. We say that an or-
dered pair of formulas is derivable from a set N iff (a, x) is in the least set that extends
N ∪ {(>,>)} and is closed under a number of derivation rules. The following are the
rules we need to define O1 to O+

4 :

– SI (strengthening the input): from (a, x) to (b, x) whenever b ` a. Here ` is the
classical entailment relation of propositional logic.

– OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x).
– WO (weakening the output): from (a, x) to (a, y) whenever x ` y.
– AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y).
– CT (cumulative transitivity): from (a, x) and (a ∧ x, y) to (a, y).
– ID (identity): from nothing to (a, a).

The derivation system based on the rules SI, WO and AND is called D1. Adding OR
to D1 gives D2. Adding CT to D1 gives D3. The five rules together give D4. Adding
ID to Di gives D+

i for i ∈ {1, 2, 3, 4}. (a, x) ∈ Di(N) is used to denote the norms
(a, x) derivable from N using rules of derivation system Di. In Makinson and van der
Torre [6], the following soundness and completeness theorems are given:

Theorem 1 ([6]). Given an arbitrary normative system N and formula a,

– x ∈ Oi(N, a) iff (a, x) ∈ Di(N), for i ∈ {1, 2, 3, 4}.
– x ∈ O+

i (N, a) iff (a, x) ∈ D+
i (N), for i ∈ {1, 2, 3, 4}.



2.2 Complexity theory

Complexity theory is the theory to investigate the time, memory, or other resources
required for solving computational problems. In this subsection we briefly review those
concepts and results from complexity theory which will be used in this paper. More
comprehensive introduction of complexity theory can be found in [11, 1]

We assume the readers are familiar with notions like Turing machine and the com-
plexity class P, NP and coNP. Oracle Turing machine and one complexity class related
to oracle Turing machine will be used in this paper.

Definition 1 (oracle Turing machine). An oracle for a language L is device that is ca-
pable of reporting whether any string w is a member of L. An (resp. non-deterministic)
oracle Truing machine ML is a modified (resp. non-deterministic) Turing machine that
has the additional capability of querying an oracle. Whenever ML writes a string on
a special oracle tape it is informed whether that string is a member of L, in a single
computation step.

Definition 2 (PNP ). PNP is the class of languages decidable with a polynomial time
oracle Truing machine that uses oracle L ∈ NP.

3 Complexity of input/output logic

The complexity of input/output logic has been sparsely studied in the past. Although
the reversibility of derivations rules as a proof re-writing mechanism has been studied
for input/output logic framework [6], the length or complexity of such proofs have not
been developed. We approach the complexity of input/output logic from a semantic
point of view.

We now start to study the complexity of the following input/output logics: O1, O
+
1 , O3,

and O+
3 . We focus on three different problems:

Given a finite set of norms N , a finite set of formulas A and a formula x:

(1) Fulfillment problem: is x ∈ O(N,A)?
(2) Violation problem: is ¬x ∈ O(N,A)?
(3) Compatibility problem: is ¬x 6∈ O(N,A)?

The aim of the fulfillment problem is to check whether the formula x appears among
the obligations detached from the normative system N and facts A. The intuitive read-
ing of the violation problem is: if the obligation to fulfill ¬x exists, then x is a violation.
Finally, the compatibility problem says if ¬x is not obligatory, then x is compatible with
the normative system N , given facts A. The compatibility problem is often referred as
a negative permission [8, 3], and corresponds to what is called weak permission.3 It
can be proven that the other two problems can be reduced to the comliance problem.
Therefore we focus on the compliance problem.

3 “An act will be said to be permitted in the weak sense if it is not forbidden . . . ” [13].



3.1 Simple-minded O1

Theorem 2. The fulfillment problem of simple-minded input/output logic is coNP-complete.

Corollary 1. The violation problem of simple-minded input/output logic is coNP-complete.
The compatibility problem of simple-minded input/output logic is NP-complete.

3.2 Simple-minded throughput O+
1

Theorem 3. The fulfillment problem of simple-minded throughput input/output logic is
coNP-complete.

Corollary 2. The violation problem of simple-minded throughput input/output logic is
coNP-complete. The compatibility problem of simple-minded throughput input/output
logic is NP-complete.

3.3 Simple-minded reusable O3

Theorem 4. The fulfillment problem of simple-minded reusable input/output logic is
between coNP and PNP .

Corollary 3. The violation problem of simple-minded reusable input/output logic is
between coNP and PNP . The compatibility problem of simple-minded reusable in-
put/output logic is between NP and PNP .

3.4 Simple-minded reusable throughput O+
3

Theorem 5. The fulfillment problem of simple-minded reusable throughput input/output
logic is between coNP and PNP .

Corollary 4. The violation problem of simple-minded reusable throughput input/output
logic is between coNP and PNP . The compatibility problem of simple-minded reusable
throughput input/output logic is between NP and PNP .

4 Conclusion and future work

In this paper we develop complexity results of input/output logic. We show that four
input/output logics (O1, O

+
1 , O3, O

+
3 ) have lower bound coNP and upper bound either

coNP or PNP . There are several natural directions for future work:

1. What is the complexity of other input/output logic?
2. What is the complexity of constraint input/output logic? Constraint input/output

logic [7] is developed to deal with the inconsistency of output. The semantics of
constraint input/output logic is more complex than those input/output loic discussed
in this paper. This might increase the complexity of the compliance problem. Con-
straint input/output logic based on O+

3 has close relation with Reiter’s default logic
[10]. Gottlob [5] presents some complexity results of Reiter’s default logic, which
will give us insights on the complexity of constraint input/output logic.



3. What is the complexity of different types of permission? three different of permis-
sions are introduced in Makinson and van der Torre [8]. In this paper we study the
complexity of only one of them (namely, negative permissions) as the compatibility
problem. The semantics of these three logics are different, which suggests different
complexity for the new problems related to permissions.
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