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Abstract. In this paper, we propose a framework on building segmen-
tation and classification from Aerial Lidar data via planar features. In
this framework, the planar points corresponding to planar objects are
obtained first by an unsupervised Markov random field clustering model.
The ground normal is detected from planar points via the proposed
constrained K-means algorithm. Within constrained K-means algorithm,
the building points are generated by removing ground points from pla-
nar points. Furthermore, the candidate buildings are obtained by using
region growing algorithm. Finally, these candidate buildings are classi-
fied into two types, that is, abnormal building and normal building based
on the proposed vertical feature. Experimental results on a real world
dataset demonstrate the effectiveness of our framework.

Keywords: Building segmentation · Planar objects · Aerial lidar data ·
Ground detection

1 Introduction

Earthquake and flood have taken place frequently over the world and brought
disasters to natives. Many buildings are collapsed and damaged in the affected
areas. In practice, it is difficult to measure and evaluate the damaged condition
of buildings by manpower. Many algorithms based on computer vision have
been proposed, among which image-based approaches are widely used. However,
image-based approaches may not be applied to real-world problems effectively
because the image acquisition is susceptible to lighting conditions. By contrast,
3D point cloud is robust to light. Hence, we propose a method to detect and
classify buildings from 3D point cloud.
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Fig. 1. A framework of building detection and classification.

1.1 Related Work

Building detection and classification approaches can be mainly divided into two
categories, i.e., supervised learning based methods [1–4], and unsupervised learn-
ing based methods [5–9].

For the supervised learning based approaches, the features for points clas-
sification are learned by fitting a mixture of Gaussian model by Charaniya et
al. [1] and Lalonde et al. [2] [3]. Secord et al. [4] proposed a method based on
support vector machines for object detection using aerial lidar and image data.
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Fig. 2. One segmentation and classification result on data1. In sub-figures (b) and (c),
each color represents a normal building except the red color. The red color represents
abnormal buildings. Specifically, for red color buildings, each white box is a single
abnormal building.

This method can provide satisfactory result. Unfortunately, the training sets are
hard to be labeled due to the unstructured distribution of 3D point cloud.

The unsupervised learning approaches directly use the scatter or elevation for
object including building detection and classification from 3D point cloud. Gener-
ally, for feature extraction, they focused on the neighborhood size of each point. For
example, Weinmann et al. [7] minimized a energy function to obtain the optimal
neighborhood size with the unknown density of 3D point cloud. The main limi-
tation of this method is its computational complexity and fixing-density assump-
tion. For the application of building detection, Carlberg et al. [5] and Lafarge et al.
[6] used 3D point cloud to detect buildings in urban scenes. Specifically, Carlberg
et al. [5] used a multi-category classifier to classify water, ground, roof, and trees.
The height information has been used to remove ground and water under the
assumption that the ground and water are in low height. Buildings and trees are
detected through 3D shape analysis and region growing. Lafarge et al. [6] com-
bined the features of local non-planarity, elevation, scatter and regular grouping
to classify 3D point cloud data into buildings, vegetation, ground and clutters.
The constructive solid geometry is then used to reconstruct buildings. The region
growing segmentation and gradient orientation segmentation algorithms are used
for classification of building, ground and vegetation in [8]. Matei et al. [9] proposed
a building segmentation method by using error back propagation algorithm. These
methods perform well on urban scenes, however, they may not be robust for rural
scenes, where houses are built with different elevations.

1.2 Our Method

The framework of our method is illustrated in Fig. 1. The planar objects are first
detected from 3D point cloud by a Markov random field (MRF) based model,
which is motivated by [6] . Then, the ground normal is extracted by constrained
K-means to further remove the ground points. After that, region growing method
is used to obtain a single building and remove some of the clusters. Finally, the
vertical feature is utilized for building classification.

The main contributions are highlighted as follows:
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1. We propose an unsupervised building detection and classification frame-
work based on planar features. Experimental results show that our method can
provide satisfactory results.

2. A new dataset, which includes major difficulties in building detection and
classification, is created to evaluated performance of our method. For quanti-
tative evaluation, we have labeled the ground truth including all normal and
abnormal buildings.

2 Local Planer Feature

In this section, we introduce the features used in our method. Let X =
{x1,x2, · · · ,xN} be the set of input noise-free 3D points1 in the scene, where
N is the number of points. For each point xi, we first consider a subset
Xi = {xi,1,xi,2, · · · ,xi,K} ⊂ X as its K-nearest neighbors (K-NN). Then, the
covariance matrix Ci ∈ R

3×3 of these K-NN points Xi is calculated by

Ci =
K∑

k=1

(xi,k − μi)(xi,k − μi)T , (1)

where μi = 1
K

∑K
k=1 xi,k is the mean of the K-NN points. After that, we can

obtain the eigenvalues {λi,j}3j=1 of the covariance matrix Ci and the correspond-
ing eigenvectors {ui,j}3j=1 by performing singular value decomposition, namely,

Ci =
3∑

j=1

λi,jui,juT
i,j . (2)

Without loss of generality, we assume that λi,1 ≥ λi,2 ≥ λi,3. The local planar
features of the point xi are composed of two parts, that is,

{fi,ni} =
{

λi,2

λi,3 + ε
,ui,3

}
,

where ε = 10−5 is a small positive value to prevent dividing by zero. On the
one hand, fi represents the degree of planarization of the K-NN points Xi and
the larger fi is, the closer the plane distribution is. On the other hand, ni is the
normal of this potential plane.

3 The Proposed Framework

3.1 MRF-Based Planar Object Classification

Let L = {0, 1} be two class labels to represent whether a 3D point locates on
the planar object. Denote

Z = {z1, z2, · · · , zN}
1 The noise is removed by applying the method proposed in [10].
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as a potential classification result of all points X , where zi ∈ L is the class label
of the i-th point. Note that, zi = 1 represents the i-th point that locates on a
planar object. The MRF model [11] used in this work is defined as

E(Z) =
N∑

i=1

D(zi) + γ
∑

i∼j

S(zi, zj) , (3)

where D(·) is the data term, S(·, ·) is the pairwise smooth term, i ∼ j represents
the pairs of neighboring points, and γ is a weighting constant. In this paper, the
data term is defined as

D(zi) =

{
1, fi ≥ θ

0, otherwise
, (4)

where θ is a positive threshold. The smooth term S(zi, zj) is considered as the
Potts model, given by

S(zi, zj) =

{
1, zi = zj

0, otherwise
. (5)

During implementation, the Graph-cut (GC) algorithm [12] is utilized to solve
Eqn. (3).

After performing GC algorithm, all points X can be divided into two subsets,
i.e., X 0 and X 1, satisfying that

X 0 ∪ X 1 = X , X 0 ∩ X 1 = ∅ ,

where X 0 = {xi|zi = 0}N
i=1 and X 1 = {xi|zi = 1}N

i=1. The points in subset X 1

represent planar objects, including buildings and ground (see Fig. 2). To segment
and classify buildings, the ground should be removed beforehand. The details of
removal of the ground is presented in the following subsection.

3.2 Ground Detection via Constrained K-Means

In real application, the normals of buildings and ground are mutually perpendic-
ular. Based on this observation, the ground is detected by classifying all normals
into two types, i.e., ground normal and building normal. To obtain these two
types of normals, we propose the constrained K-means clustering model, which
is defined as

min
{mj}M

j=1

N∑

i=1

M∑

j=1

‖ni − mj‖22δi,j ,

s.t. ‖mj‖22 = 1, ∀j ∈ {1, 2, · · · ,M} , (6)

where M is the number of clusters, {mj}M
j=1 are M cluster centers, and δi,j is

a Dirichlet function, satisfying that δi,j = 1 if the i-th point belongs to the j-th
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Fig. 3. Building segmentation and classification results on the other three data (each
column). The first row represents the planar object by MRF. The second row shows
our segmentation and classification results. The last row illustrates the ground truths
labeled manually. The color indexes are the same with those of Fig. 2.

cluster, otherwise δi,j = 0. In Eqn. (6), the constraint is to restrict the cluster
centers to be normals. During implementation, the number of clusters M is set
to be 3.

Optimization: The proposed constrained K-means in Eqn. (6) is optimized by
iterating the following two steps (the max number of iterations is set to be 10):

Step 1: Computing normal clusters {mj}M
j=1 by K-means.

Step 2: Restricting each normal cluster mj with the normalizing operation, that
is, mj = mj

‖mj‖2
.

Ground Detection: Let I = {1, 2, · · · ,M} be the indexes of all the nor-
mal clusters obtained by the proposed constrained K-means. In order to detect
ground normal, we first define a perpendicular value for each normal cluster. For
example, the perpendicular value pi for the i-th normal cluster is calculated by

pi =
∑

j∈{I/i}
mT

i mj , (7)

where I/i means all indexes except the index i. The index of the ground normal
i� is computed as the index with the minimal perpendicular value, given by

i� = min
i

{p1, p2, · · · , pM} . (8)

Hence, the i�-th normal cluster mi� is the ground normal.
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For the i-th point, we first calculate the inner product qi between its normal
ni and the ground normal mi� , that is, qi = nT

i mi� . The i-th point is detected as
ground point if |qi| > τ , where τ is a positive threshold. During implementation,
the threshold τ is set to 0.3 experimentally. After removing the ground points,
the rest are building points, which are denoted as XB (see Fig. 2).

3.3 Region Growing for Building Segmentation

The region growing method is used to segment candidate buildings. Specifically,
after performing region growing algorithm, the building points XB are clustered
into C non-overlapped clusters, that is,

XB =
C⋃

c=1

X c
B, X i

B ∩ X j
B = ∅, 1 ≤ i �= j ≤ C , (9)

where X c
B is the c-th candidate building. We remove the small clusters with the

number of points less than a threshold ξ. During implementation, the threshold
ξ is set to 1000.

3.4 Building Classification

In practice, the tilt angles between abnormal and normal buildings are different.
Based on this fact, we first compute a vertical feature for each candidate build-
ing. For example, the vertical feature vc for the c-th candidate building X c

B is
calculated by

vc =
1

Nc

∑Nc

j=1
mT

i�nj , (10)

where Nc = |X c
B | is the number of points on c-th building and mi� is the ground

normal obtained by the constrained K-means (see Subsection 3.2). Then, a
thresholding operation is used to classify all candidate buildings into two classes,
that is, normal building and abnormal building, given by

lc =

{
normal building, vc ≥ β

abnormal building, otherwise
, (11)

where lc is the label of the c-th candidate building and β is a positive threshold
(refer to Fig. 2 as example).

4 Experiments

In this section, we evaluate our building segmentation and classification method
on the real dataset, which is obtained from Aerial LiDAR. Our algorithm is
implemented in C++ on platform Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz
with 4GB RAM.
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Table 1. The description on the dataset.

data1 data2 data3 data4

Num. of  3D Points

Num. of  Buildings

Num. of  Abnormal 
Buildings

335172 209353 441796 534735

7 14 10 15

2 6 3 6

4.1 Parameter Setting

Three major parameters, i.e., γ, θ and β are used for building segmentation and
classification. During implementation, they are experimentally set as follows: 1)
parameters γ and θ are set to γ = 7500 and θ = 25 for MRF-based planar object
classification; 2) in building classification, the threshold of β is set to β = 0.08.

4.2 Dataset Description

The dataset obtained from Aerial LiDAR is created to evaluate the effectiveness
of our method (refer to Fig. 2 and Fig. 3 for visual perception). The 3D point
numbers of them are 335172, 209353, 441796 and 534735, respectively. They
contain 5, 8, 7 and 9 normal buildings, as well as 2, 6, 3 and 6 abnormal build-
ings (refer to Table 1). We manually labeled the ground truth for quantitative
evaluation. There are several difficulties, which make building segmentation and
classification problems challenging.

– Buildings are built on mountains. On the one hand, the buildings to be
segmented are often shaded by the other objects, which results in severe
data missing. On the other hand, the elevations of them are different with
each other. Hence, they do not locate on the same ground plane.

– Some abnormal buildings are seriously destroyed. In this case, it is very hard
to distinguish them from clutter objects, such as trees. For some abnormal
buildings, the inclination angle is small, which causes that it is very hard to
distinguish them from the normal buildings.

4.3 Visual Results

The visual comparisons of our method with the ground truth are shown in Fig. 2
and Fig. 3. With the local planer feature and ground normal estimation, the
buildings are segmented and classified accurately. It is very close to the ground
truth. Although our method can provide satisfactory segmentation and classifi-
cation results, it still has some small errors. As shown in Fig. 3, in data3, one
building is segmented into two buildings (see the white rectangle in the third
row). In data4, two buildings are not segmented out. The main reason is that
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Table 2. The building classification results on the dataset.

data1 data2 data3 data4

Num. of  Buildings

Num. of  Abnormal 
Buildings

7/7 14/14 9/10 13/15

1/2 5/6 2/3 6/6

Total

93.48%

82.35%

the numbers of building points are very small. However, in practice, our method
works well in building segmentation and classification, and it can be used in real
world application.

4.4 Quantitative Results

To further evaluation the effectiveness of our method, the TPR criterion is
adopted to evaluate the segmentation and classification results quantitatively.
The criterion TPR is defined as follows:

TPR =
TP

TP + FN
, (12)

where TP is the number of correct segmented (or classified) buildings, while FN
is the number of missed segmented (or classified) buildings. Table 2 demonstrates
the results of our method on the dataset. As illustrated in this table, our method
achieves high TPR in building segmentation and classification.

5 Conclusion

In this paper, we propose a novel method for building segmentation and classi-
fication via local planar feature. The core idea is to detect planar objects from
clutter 3D points. To evaluate the effectiveness of our method, the dataset is
created, which contains major difficulties in building detection and classifica-
tion. Experimental results on this dataset demonstrate the effectiveness of our
method.

However, our method still has some limitations. For example, the very small
building may be miss-detected, and two near buildings would be detected as one
building. In addition, as some abnormal buildings are destroyed very seriously,
we can only detect a part of them. In the future, we will solve the above problems
to make our method more general.
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