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Abstract. Linear inverse problem is an important solution frame to solve image 
restoration. This paper develops an accelerated two-step iteration hybrid-norm 
reconstruction algorithm, exhibiting much faster convergence rate and better 
image than iteration shrinkage/thresholding based L1 norm algorithm. In the 
proposed method, hybrid norm model is built for image restoration objective 
function. Two-step iteration accelerates objective minimization optimization. 
Two-step iteration hybrid-norm algorithm converges to a minimizer of hybrid-
norm objective function, for a given range of values of its parameters. Numeri-
cal examples are presented to validate that the effectiveness of the proposed al-
gorithm is experimentally confirmed on problems of restoration with missing 
samples. 
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1 Introduction 

Image restoration is still an important image processing research field and has played 
an important role in medical and astronomical imaging, image and video coding, re-
mote sensing, radar imaging and many other applications [1-3].  

Image restoration is to recover an image from distortions to its original image. 
These distortions usually are twisting, noising, blurring and so on. Image restoration 

can be described as an inverse problem [2,4]. Let 
2nx  be an original n n  im-

age, m nA  be an operator, and my  be an observation which satisfies this 
relationship: 

                                                          my Ax                                               (1)  

Where ( )  is an operation process that represents a noise contamination or cor-
ruption procedure. In this inverse problem, the goal is to estimate an unknown image 
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for observation. In detail, given A , image restoration is a procedure that extract x
from y , which is either under-determined or ill-conditioned problem. When A  is a 
linear operator, it is called a linear inverse problem (LIP). Approaches to LIP define a 
solution x̂  (a restored image) as a minimizer of an objective function f . Given by 

 min ( ) ( )reg fidx
f x Ax y                                  (2) 

Where ( )reg   promotes solution regularity such as sparseness, ( )fid   fits the 

observed data by penalizing the difference between Ax  and y .   balances the two 
terms to minimization.  

For regularization term ( )reg  , sparseness is an important measurement which 

used in image restoration. According to sparseness definition, ( )reg   should be L0 

norm minimization problem which is NP-hard problem. L0 norm minimization is 
only the ideally accurate solutions. But it is hard to obtain by solve the L0 concave 
solutions. Conventional L1-norm minimization is to solve convex optimization that is 
able to guarantee stable solutions to acquire reconstructions. From this view point of 
accurate and stable reconstruction, the motivation of the proposed hybrid-norm is to 
balance both aspects.  

The purpose of this paper is to develop a new fast two-step iteration hybrid-norm 
algorithm (TIH) for restoring x  from observation y , where A  is a general linear 
operator. In the section II, hybrid-norm model and two-step iteration solver is intro-
duced which also contains the central theorem of the paper. Finally, experimental 
results are reported in section III. Conclusions are drawn in the final section.  

2 Method 

According to our design, restoration procedure consists of several parts shown as  
Fig. 1. When an original image transmits in transmission channel, it is usually cor-
rupted by some noises or disturbances. Then we use hybrid-norm to build restoration 
model. In leading to the restoration objective function, two-step iteration solver is 
employed to solve the hybrid-norm restoration model. When iteration conditions have 
meet, the final results will be obtained. Hybrid-norm model and two-step iteration 
method are focused on following sections.  
 

 
Fig. 1. Flowchart of restoring image based on two-step iteration hybrid-norm (TIH) 

According to restoration objective function, a framework for image restoration is 
hybrid-norm based minimization which is a special case of image restoration where 
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the linear operator is an identity matrix. Denote f as the image restoration objective 
function: 

21arg min ( )
2 F

x
f Ax y H x                            (3) 

where the ( )H   regularizer can be homotopic L0 norm which balances between L0 
norm and L1 norm describing in hybrid-norm model. 

2.1 Hybrid-norm Model 

Given x  is a sparse and measurement matrix is A , and then the restoration problem 
can be given by 

min ( ) . .
x

H x s t Ax y                                     (4) 

where ( )H   is hybrid-norm that is transformed to unstrained equation as formula (3). 
Hybrid-norm model is defined by 

( ) ( )H x g x


                                               (5) 

,

( )
,

a u
u

g u u b
u

u b








     

                                          (6) 

where ( )H  means hybrid-norm operator of the proposed method. Constants 
2

2

4
4

a   
  

 


 
 and 

2 4
2

b     
   are chosen to make the function 

continuous and differentiable at u  . Parameter  is a threshold and 0 1   is 

introduced to provide stability. Functional g is related to parameter . 0   is to 
avoid problems due to non-differentiability of hybrid-norm function around intersec-
tion point. Profile of hybrid-norm function is shown in Fig. 2. Meanwhile, to be con-
venient for comparison and understanding of profile functions, profiles of L1, L0, 
Lp(0<p<1)  are added to Fig. 2.  

It can be shown from Fig. 2, for any fixed value of   and  , hybrid-norm function 
curve consists of two sections. The first section in the small absolute u is straight with 
bigger slope than L1. The second section is a conic that is close to L0 under the con-
trol of . Intersection between two sections keeps smooth and differential when 
building variables a  and b . In the section of L1, this function is strictly convex over

 . A unique and exact solution to the sparse reconstruction can be acquired. In the 
section of approaching to L0, solution is the sparsest reconstruction. Hybrid-norm 
metric combines the merits of L0 and L1 and keeps stable and accurate in reconstruc-
tion. In addition, the curve of hybrid-norm is smooth and continuous and its differ-
ence is existent and convergent. 
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Fig. 2. Hybrid-norm function curve profile comparison with L0, L1 and Lp (0<p<1) 

Furthermore, it is seen that the proposed hybrid-norm function includes L1 norm 
function as a special case when τ = 1. As τ approaches zero, hybrid-norm becomes the 
L0 of signal. For any 0 < τ < 1, hybrid-norm mixes characteristic of both L1 and L0. 
The value of τ controls the contributions from L1 or L0 respectively. For large τ, hy-
brid-norm function is closer to a convex function and thus has better convergence to 
the global minimum. For small τ, it can acquire more accurately solutions because of 
the profile approaching to L0 norm. Therefore, an optimal τ would best compromise 
between these two cases. 

2.2  Two-Step Iteration Solver 

Two-step iteration solver is a fast and effective solver to solve linear inverse problem 
which developed in fundamental of iterative shrinkage/thresholding (IST)[5,6]. It has 
been recently used to handle high-dimensional convex optimization problems arising 
in image inverse problem. In the (k+1)-th iteration, the Two-step iterative solver is as 
follows. 

 

1 0

1 1

( )
(1 ) ( ) ( )

( ) *( ( ) )
k k k k

x x
x x x x

x x A A x y





 

    

  


     
    

                       (7) 

where   is a denoising operator such as wavelet transformation. A* is an adjoint 

operator of A.   and   are two parameters. The convergence of the two-step itera-
tion algorithm has been well established in [7,8]. Some details also can be found in ref 
[7,8]. From formula (7), hybrid-norm based restoration problem for equation (3) 
should be solved for each iteration of two iteration method. In real applications, this 
subproblem can be solved only approximately, resulting in non-monotonic decrease 
of the objective function value.  
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3 Experimental Results 

This section reports some experiments to validate image restoration quality and the 
convergence speeds of the proposed two-step iteration hybrid-norm algorithm (TIH). 

We conduct extensive experiments in some examples. Due to the limitation of writing 
space, we only show two groups of tests in this paper. The goals of these experiments 
are to present restoration effectiveness from missing samples. The observed images are 
obtained by convolving the well-known “phantom”and“cameraman” images with a 9*9 
uniform blur and then adding noise with variance 40dB below that of the blurred image. 
The evolution of the objective function and convergence performance are shown using 
iterative shrinkage/thresholding (IST) and the proposed TIH method in the results. 

Example 1. In this group, test object is phantom that comes from typical medical test 
image. Table 1 lists its results in mean square error ( MSE )and CPU time. Figure 1 
shows the observed image and the restored image produced by IST and TIH. Figure 2 
shows convergence processing of IST and TIH. 

Table 1. Experimental results for phantom 

 IST Proposed TIH 
MSE 0.17306 0.026431 
CPU time 35.537028 33.633816 

 
Quantitative index MSE and CPU time are shown in Tab1. In this table, IST and 

TIH take 0.17306 and 0.026431 of MSE. TIH improves image quality approximate 
one power of magnitude from 0.17306 to 0.026431. The proposed method is super to 
IST. In consuming time, TIH consumes 33.633816s and IST has 35.537028s. The 
proposed method improves little faster than IST. The reason is that the phantom is an 
ideal sparse image which we can not dig more sparse information. These factors de-
cide iteration times. 

In Fig. 3, subimage (a) is original image. (b) is corrupted image by noisy and 
blurred factor. (c) stands for the restored image using the proposed algorithm. (d) is 
the restored image using IST method. Restored image using TIH reduces noisy and 
blurred factor, which gets sharp boundaries and clear contents in several important 
part such as gray circle, two black ellipses. The white circle boundary is sharp and 
clear. In subfigure (d), IST method restores image which has many pseudo artifacts 
like dummy circle. White circle boundary of subfigure (d) is little blurred. In visual 
effectiveness of restored images, TIH is clearer and neater than IST algorithm. 

Fig. 4 has two subfigures. The above is a curve representing the relationship be-
tween objective function and CPU time. The blow curve represents relationship be-
tween restored error MSE and CPU time. TIH method converges very faster than IST 
and obtains lower restored error MSE. IST spends 35.537028 seconds to gets 0.17306 
error and TIH needs 33.633816 seconds to have 0.026431 restored errors. Fig. 4 
shows that TIH converges considerably faster and more excellent than IST. 
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(a)                 (b) 

  
(c)                   (d) 

Fig. 3. Image restoration results for phantom. (a)Original image ;(b)Noisy and blurred image; 
(c)TIH restored image; (d)IST restored image 

 
Fig. 4. Convergence behavior for phantom restoration. Above: objective; below: relative error 
MSE. In both plots, the horizontal axes denote CPU time in seconds. 
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Example 2. In the second experiment, we apply “cameraman” image to test 
effectiveness of the algorithm. In this group experiment, noisy and blurred image is 
obtained using the same method in example 1. “cameraman” image is a real natural 
image which is not completely different from phantom image in 1st experiment. 

Table 2. Data results for cameraman 

 IST TIH 
MSE 0.067087 0.027247 
CPU time 39.078251 16.224104 

 
According to Table 2, TIH obtains 0.027247 in MSE and 16.224104 seconds in CPU 

time. IST has 0.067087 MSE and 39.078251 seconds in CPU time. In restoration quali-
ty, TIH has 0.027247 errors of original image and restored image. IST only has 
0.067087 differences between the original image and restored image. Restored image of 
TIH considerably is better than that of IST. Also, TIH is largely faster than IST. 

 

  
(a)                                 (b) 

  
(c)                                   (d) 

Fig. 5. Image restoration results for phantom. (a) Original image; (b) Noisy and blurred image; 
(c) TIH restored image; (d) IST restored image 

Some results of “cameraman” restored image are shown in the Fig. 5. In the same 
statements as in first group experiment. Subfigures (a) to (d) are original image, noisy 
and blurred image, TIH restored image and IST restored image separately. Differenc-
es of restored images in subfigure (c) and subfigure (d) are distinguished apparently. 
From the view of vision, subfigure (c) is clearer and neater than subfigure (d).  
Image in subfigure (d) has large amount of artifacts and alias. Restored image in  
subfigure (c) has little drawbacks. But it can be seen clearly. Why we can not restore 
an image as same as original image. Restoration is an anti-process that can not com-
pletely restore image as original image in the condition of loss of some information. 
From data of experiments, MSE in subfigure (c) is 0.027247 and subfigure (d) only 
takes 0.067087. The proposed algorithm improves apparently both in vision and expe-
rimental data. 
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Fig. 6. Convergence curves for “cameraman” image restoration 

In the figure 6, convergence curves of “cameraman” image restoration are shown. 
Relationship between objective function and CPU time is shown in the above subplot 
in Fig. 6 and restored image error is shown in the below subplot in Fig. 6. IST needs 
39.078251 seconds to up to MSE value 0.067087 and TIH only requires 16.224104 
seconds to obtain 0.027247 restored images. The two curves using TIH decrease 
sharper than that of IST. In other words, TIH converges rapidly and consumes little 
times.  

Though different object images are employed in the two groups of experiments, 
nearly same conclusions are drawn that the proposed TIH method is superior to IST in 
both image quality and restoring speed. 

4 Conclusion 

This paper proposed a fast two step iteration hybrid-norm image restoration method to 
solve fast and high image restoration. The proposed method combined fastness of 
two-step iteration and effectiveness of hybrid-norm model which is a homotopical L0 
norm method. Two groups of experiments in phantom and natural images give evi-
dences of high image quality and fast speed in restoring image. 

Acknowledgments. The main work in this paper is supported by “the Fundamental Research 
Funds for the Central Universities”(JB150218). 
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