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Abstract. This paper addresses the problem of feature-based 3D reconstruction 
model for close-range objects. Since it is almost impossible to find pixel-to-pixel 
correspondences from 2D images by algorithms when the object is imaged on a 
close range, the selection of feature correspondences, as well as the number and 
distribution of them, play important roles in the reconstruction accuracy. Then, 
features on representative objects are analyzed and discussed. The impact of the 
number and distribution of feature correspondences is analyzed by reconstructing 
an object with standard cylinder shape by following the reconstruction model 
introduced in the paper. After that, three criteria are set to guide the selection of 
feature correspondences for more accurate 3D reconstruction. These criteria are 
finally applied to the human finger since it is a typical close-range object and 
different number and distribution of feature correspondences can be established 
automatically from its 2D fingerprints. The effectiveness of the setting criteria is 
demonstrated by comparing the accuracy of reconstructed finger shape based on 
different fingerprint feature correspondences with the corresponding 3D point 
cloud data obtained by structured light illumination (SLI) technique which is 
taken as a ground truth in the paper. 

1 Introduction 

The 3D geometric shape and appearance of objects offer attributes that are invariant to 
the changes introduced by the imaging process. These attributes can facilitate recog-
nition and assist in various applications, including graphical animation, medical ap-
plications, and so forth. Thus, how to obtain the 3D geometric models of real objects 
has attracted more and more attentions from researchers and companies [1-18]. In 
computer vision and computer graphics, the process of capturing the shape and ap-
pearance of real objects refers to 3D reconstruction. Currently, the existing 3D recon-
struction techniques are divided into two categories: active and passive modeling. 
Active modeling creates the 3D point cloud data of geometric surface by interfering 
with the reconstructed objects, either mechanically or radiometrically [1-6], while the 
passive modeling uses only the information contained in the images of the scene to 
generate the 3D information, namely image-based reconstruction [7-17]. Each of these 
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two kinds of modeling has its own advantages and disadvantages. The active modeling 
reconstructs the 3D model of objects by devices directly with high accuracy but the 
used devices are costly and cumbersome [18]. The image-based reconstruction gene-
rates the 3D model of objects based on their 2D plain images captured by cameras 
which are challenged to achieve high reconstruction accuracy but the adopted capturing 
devices (cameras) are usually cheap and light weight [19]. Considering the cost and 
portability, as well as aiming to make breakthroughs to the reconstruction accuracy, 
image-based reconstruction is deeply investigated, as summarized in [20, 21]. 

As summarized in [20], there are mainly five kinds of image-based reconstruction 
methods: shape from shading [7-9], photometric stereo [14-16], stereopsis [10,11], 
photogrammetry [22-24], and shape from video [12,13]. The shape-from-shading 
approaches recover the shape of an object from a gradual variation of shading in the 
image and only one 2D image is needed for depth calculation. Thus, they are the least 
on equipment requirements but at the price of accuracy and computational complexity 
[25]. Photometric stereo methods measure 3D coordinates based on different images of 
the object’s surface taken under multiple non-collinear light sources. This kind of 
methods is an improved version of the shape from shading ones. Higher reconstruction 
accuracy is achieved due to the usage of more light sources and images [20]. The 
stereopsis approaches calculate the 3D depth by binocular disparity and two different 
images captured at the same time are necessary for 3D depth computation. This kind of 
methods provides better accuracy with less mathematical complexity but difficulty lies 
in establishing of feature correspondences in two different images automatically and 
making essential equipment calibrations [26]. Photogrammetry approaches use the 
same methods to compute the 3D coordinates as the stereopsis ones. Thus, they have 
similar merits and drawbacks. But, photogrammetry approaches usually use more than 
two images and produces good results in some types of applications. Typically, they 
have been successfully applied for modeling archaeological and architectural objects 
[20]. The shape-from-video approaches render the assumptions in all previous methods 
since a series of images can be parted from a video. But the problem still lies in the 
establishment of correspondences from 2D plain images. This kind of methods is 
usually used in reconstructing terrain, natural targets and buildings [21]. Among all of 
those methods, photogrammetry approaches are classical and well established ones. 
They have been around since nearly the same time as the discovery of photography 
itself [27]. Whereas, photogrammetrists are usually interested in building detailed and 
accurate 3D models from images. However, in the field of computer vision, work is 
being done on automating the reconstruction problem and implementing an intelligent 
human-like system that is capable of extracting relevant information from image data 
[28]. Thus, algorithms are usually specifically designed for different applications. 
Currently, the applications of 3D reconstruction approaches are mainly focus on the 
modeling of terrain, natural targets, as well as archaeological and architectural objects. 
The characteristics of those kinds of objects are imaged at a long distance and have 
contour points, as the examples shown in Fig. 1. The reconstruction of these kinds of 
objects made researchers ignored two important problems met by the reconstruction of 
close-range objects: one is that it is hard to find contour points or corner points for 
correspondences establishment on their 2D plain images of the close-range objects, the 
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4 Case Study: Application to Human Finger 

As we can see that human fingers are typical close-range objects. To verify the effec-
tiveness of the proposed reconstruction model and the criteria to the reconstruction 
accuracy for close-range objects, this paper took the reconstruction of finger shape as 
a case study. The device used to capture 2D fingerprint images was the same as the 
one introduced in Ref. [35]. 

4.1 Effectiveness Validation of the Proposed Reconstruction Model  

As mentioned in Section 2, there are two frameworks to realize 3D results by using 
feature-based reconstruction technique. The paper selected Framework II in the pro-
posed reconstruction model. This subsection tries to demonstrate the effectiveness of 
the proposed model by reconstructing a human finger with two frameworks mentioned 
in Section 2. First, we manually labeled 50 representative feature correspondences on 
example fingerprint images by following the criteria set in Section 3, as shown in Fig. 
11(a). Then, pixel-to-pixel correspondences were established by estimating the trans-
formation model between images based on previously labeled feature correspondences. 
The result is shown in Fig. 11(b). Here, the rigid transform was selected as the model 
between images. After that, 3D reconstruction results can be achieved by following the 
procedures given in Section 2, as shown in Fig. 12. For better comparison, the depth of 
the reconstruction result is normalized to [0, 1] by MIN-MAX rule. From Fig. 12, we 
can see that the result obtained by the proposed model is closer to the appearance of 
human finger than the one generated by following the procedure of framework I. 

Furthermore, we compared the reconstruction results with the 3D point cloud data of 
the same finger to verify the effectiveness of the model. The 3D point cloud data are 
defined as the depth information of each point on the finger. They are collected by a 
camera together with a projector using the Structured Light Illumination (SLI) method 
[36, 37]. Since this technique is well studied and proved to acquire 3D depth informa-
tion of each point on the finger with high accuracy [36, 37], 3D point cloud data ob-
tained using this technique are taken as the ground truth of the human finger in this 
paper. Compared our results in Fig. 12 with the ground truth shown in Fig. 13, it can be 
seen that the profile of the human finger shape reconstructed based on the proposed 
model is similar to the 3D point cloud data even though it is not that accurate. Mean-
while, the reconstruction result based on framework I shown in Fig. 12(a) is quite 
different from the 3D point cloud data. The real distances between the upper left core 
point and the lower left delta point of the reconstruction results in Fig. 12(a) and Fig 
12(b), as well as of the ground truth in Fig. 13(a) were also calculated. The corres-
ponding values are 0.431, 0.353 and 0.386, respectively. As a result, it is concluded that 
the proposed model is effective even though there is an error between the reconstruc-
tion result and the 3D point cloud data. 
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