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Abstract. Internet of Services applications need to cope with a con-
tinuously changing environment, both in terms of the context in which
they operate, and of the services, users and providers involved. In this
setting, adaptivity is to be considered an intrinsic characteristic of appli-
cations rather than an exception to be handled. In this paper we propose
a design for adaptation approach that fully exploits the advantages of
the service-oriented paradigm to support the development and operation
of service-based applications operating in highly dynamic environments.
The approach is based on dynamic and incremental service composition
and re-configuration techniques and is evaluated on a real-world scenario
in the Smart Cities domain.

1 Introduction

The Internet of Services (IoS) foresees a future Internet in which the provisioning
of, access to and use of services will be as widespread as content is today. The
urgent need for a more efficient and sustainable society, together with the spread
of ubiquitous communication networks, highly distributed wireless sensor tech-
nology, and intelligent management systems, makes the Smart City ecosystem
an ideal ground for IoS. In this setting, the role of service-oriented computing
is to enable the integration and interplay between new and legacy city services
to support the creation and delivery of innovative and efficient services for the
citizens [10].

A key challenge that needs to be overcome for this to become a reality, is
the capability of dealing with the continuously changing complex environment
in which Smart City applications operate. Consider for instance the case of a
“smart children’s mobility system”, supporting service users (parents, children)
and providers (drivers, teachers, traffic aids, volunteers) in their daily opera-
tion of children mobility services (e.g., school buses, walking buses, bike trains,
ride-sharing among parents). The implementation of such a system requires to
deal with a variety of heterogeneous services provided by autonomous entities
(e.g., registration services provided by the school, volunteer managem ent, safety
and traffic information from local police system, access to smart and wearable
devices). In this setting, changes are not only frequent, they are an inner char-
acteristic of the system. In particular, the system should be resilient to changes
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in existing services and in user requirements, as well as be open and extensi-
ble for new functionalities and facilities to become part of the system. This is
made particularly challenging by the high degree of connection and interdepen-
dencies among system components which are provided by autonomous entities
[1]. There is therefore the need to develop applications that are adaptable “by
design” and to provide a dynamic and scalable runtime environment that makes
them resilient to the aforementioned changes.

In this paper we propose a design for adaptation approach that supports
the development, deployment and execution of service-based systems operat-
ing in dynamic environments and we discuss its effectiveness when applied to
Smart cities applications like the “smart children’s mobility system”. The app-
roach exploits advanced techniques for dynamic and incremental service com-
position [2], to effectively deal with changes occurring at different levels in the
system. Each system component is modeled in terms of the functionalities it
provides and of the conditions under which each functionality can be used (e.g.
context/situation-related properties). At the same time, it is possible to partially
specify the implementation logic of each component that is then automatically
refined with (one or a composition of) functionalities provided by other compo-
nents. This results in a dynamic network of components, where most changes
can be handled at a local level, that is, affecting only those components directly
related to the change and making the change transparent to the rest of the
system.

The rest of the paper is structured as follows. Section 2 introduces the children
mobility scenario used as a reference throughout the paper; Sect. 3 presents in
details the proposed approach for the definition and operation of service-based
systems that are adaptable by design; finally, Sect. 4 discusses the effectiveness
and performances of the approach while Sect. 5 presents some related works and
conclusions.

2 Motivating Scenario

Independent and active mobility has been proven to be fundamental for the
development of children and adolescents. Plenty of initiatives have been set up
in our cities supporting children’s freedom of movement. Just to cite a few exam-
ples, we have school buses, walking buses (children walking together to school
supervised by volunteer parents), children bike-trains (similar to walking buses,
by bike), volunteers at crosswalks, ride-sharing among parents. However, if the
aim is to deliver “smart children mobility services”, these services cannot be
managed each by itself, but they should become part of an integrated mobil-
ity solution, the Smart Children Mobility System (SCMS), that supports service
users (parents, children) and providers (teachers, traffic aids and volunteers) in
their daily operation and management of the different mobility services.

Figure 1 presents an overview of the different components in the SCMS. If
we consider the part of the system related to the walking school bus (WSB), we
notice that the system should support the registration of children, parents and
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Fig. 1. Smart children mobility system: a partial overview of the system

volunteers and their access to the system (User Profile Management component),
the training of volunteers (Volunteer Management component), the organization
of routes (WSB Manager component) taking into account the needs of families but
also route safety (e.g., presence of sidewalks, traffic situation, guarded cross-
walks). The daily operation of the service requires to handle children attendance
and volunteers availability for each route (Route Manager), the compilation of
attendance books, tracking of children and volunteer position (WSN Manager),
as well as managing possible exceptions (e.g. find a substitute for a volunteer,
change the route due to roadworks, suspend the route due to weather condi-
tions). Some components are in common with the bike train and ride shar-
ing (e.g. Route Manager, Volunteer Management, User Profile Management). This
allows not only replication avoidance, but also enabling synergies among the
different services (e.g., exploit the ride-sharing service to cover a WSB route in
case of bad weather).

A key characteristic of the system is the variety and heterogeneity of services
involved: from domain-specific functionalities (e.g., management of walking bus
routes, compilation of attendance books) to general-purpose ones (e.g., access
management, user tracking); from back-end functionalities (in gray in the Figure)
requiring the interaction with third party systems and devices (e.g. retrieving
cycle lines, traffic/safety street information, interacting with smart objects) to
front-end ones (e.g., Apps to be accessed by parents, volunteers, teachers). More-
over, the SCMS needs to deal with the dynamicity of the scenario, both in terms
of the variability of services involved and of context changes affecting its oper-
ation. In particular, the system should be open and extensible, which means
that new services (e.g., a new tracking device), as well as changes in existing



386 A. Bucchiarone et al.

services (e.g., changes in parents authorization procedure, changes in any third
party system) should require minimum maintenance. This is made particularly
challenging by the collective nature of the services to be provisioned, since their
operation requires the collaboration of different autonomous actors (school, par-
ents associations, transport departments, local police), and it results in a high
degree of connection and interdependencies among system components (as shown
in Fig. 1).

3 General Framework and Approach

In this section we present the proposed approach for modeling and executing dis-
tributed adaptive service-based systems, such as the SCMS described in Sect. 2.

The system is modeled through a set of domain objects representing system
components. Each domain object is characterized by a core process, implement-
ing its own behavior, and a set of process fragments, representing the function-
alities it provides (see Fig. 2). Fragments [5,11] are executable processes that
communicate with the core process and that can be received and executed by
other domain objects.

Fig. 2. Domain object model Fig. 3. Domain properties modeled as STS

Unlike traditional system specification, where components’ behavior are com-
pletely specified, our approach allows the partial specification of the expected
operation of domain objects through abstract activities that can be refined at
run-time according to the fragments offered by the other domain objects in the
system. For instance, the Device manager (see Fig. 4) can partially define the
functionality for the localization of a device. Different smart devices can join
the system and publish different tracking procedures. At run-time, when the
device to be tracked is known (e.g. smart bracelet), the Device manager will use
the fragments offered by the specific device to refine its abstract activity and
to eventually locate the device. Abstract activities can be used both in the core
process of a domain object as well as in the fragments it provides. The latter
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case is more complex, and enables a higher level of dynamicity, since it allows
a domain object to expose a partially specified fragment whose execution does
not rely only on communications with its core process but also on fragments
provided by other domain objects, thus enabling a “chain of refinements”.

These dynamic features offered by the framework rely on a set of concepts,
describing the operational environment, on which each domain object has a
partial view. In particular (see Fig. 2), the internal domain knowledge captures
the behavior of the domain concept implemented by the domain object, while
the external domain knowledge represents domain concepts that are required to
accomplish its behavior but for whose implementation it relies on other domain
objects. Domain knowledge (both internal and external) is defined through
domain properties, each giving a high-level representation of a domain concept
(e.g. WSB route, child trip, device handler).

Consider for instance the domain property Child trip in Fig. 3 that models
the typical daily trip of a child using a mobility service offered by the SCMS
(e.g. walking bus). The participation of the child needs to be CONFIRMED, than
the child reaches the pick up point (AT PICK-UP POINT) and she is PICKED-UP by
a volunteer when she joins the ride. During the journey she might be ON-PATH

(this is used to model the fact that at some times the system is certain of her
position) and she eventually reaches the school (ARRIVED).

Each abstract activity is defined in terms of the goal it needs to achieve,
expressed as domain properties’ states to be reached. It is automatically refined
at run-time, considering the set of fragments currently provided by other domain
objects, the current domain knowledge configuration, and the goal to be reached.
Activities in processes and fragments are annotated with preconditions and effects.
Preconditions constrain the activity execution to specific domain knowledge con-
figurations. For instance, in Fig. 4, the precondition P2: Device tracker = active

says that, to execute the fragment Geo-locate device in the Bracelet domain
object, the domain property Device tracker (see Fig. 3) must be in the state
active. Effects model the expected impact of the activity execution on the
domain and represent its evolution in terms of domain properties events. For
instance, in Fig. 4, the effect E2: On route verifier.verified models the evolu-
tion of the On route verifier domain property (see Fig. 3).

Preconditions and effects are used to model how the execution of fragments
is constrained by and evolves the domain knowledge. This information is used to
identify the fragment (or composition of fragments) that can be used to refine
an abstract activity in a specific domain knowledge configuration.

The resulting adaptive system is a dynamic network of domain objects.
Potential dependencies (soft dependencies, from here on) are established between
a domain object and all those domain objects in the system whose provided func-
tionality (internal domain knowledge) matches with one of its required behaviors
(domain property in its external domain knowledge). A soft dependency between
two domain objects becomes a strong dependency if, during the system execu-
tion, they inter-operate by injecting and executing a fragment. The external
domain knowledge of a domain object is not static since, if during a refinement
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Fig. 4. A detailed example of dynamic refinements on the SCMS scenario

a domain object injects a fragment containing abstract activities in its own core
process, it receives also the domain properties on which the fragment execution
relies on, thus spanning its external knowledge. This dinamicity is reflected in
the soft dependencies between domain objects because new dependencies might
be established due to refinements.

In the following we present in details the different forms of refinement sup-
ported by the approach and how the adaptive system evolves at run-time. Con-
sider, for instance, the scenario in Fig. 4 where a parent, or the school, wants to
verify if a child is on the route of the WSB to which she has been subscribed.

Step 1. During the execution of the core WSB application process the abstract
activity monitor child position needs to be refined. Its goal G1: Child Trip =
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on path is defined over the Child Trip domain property (see Fig. 3). The refine-
ment mechanism is triggered. The WSB child trip domain object implements the
child trip domain property and exposes, among others, the fragment check on

path. Supposing that this fragment is selected for the refinement, the first step
of the refinement process consists in the injection of the check on path fragment
in the behavior of the WSB application. Moreover, since the injected fragment
contains an abstract activity, namely on route, the WSB application, together
with the fragment, inherits the domain property on which the goal G2: On Route

Verifier = on route is defined (Step 1 in Fig. 4). Thus, the WSB application

domain object dynamically extends its knowledge boundaries and will use the
received domain property to discover new domain objects (i.e., on WSB route

verifier) and their related fragments. This step shows how fragments, together
with domain knowledge, are exchanged by domain objects and injected at run-
time in the core process. In particular, the WSB child trip domain object does
not refine the on route abstract activity in its fragment, thus leaving the respon-
sibility to refine it to the receiver domain objects.

Step 2. The check on path fragment, executed in the WSB application core
process, communicates with the internal process of WSB child trip, which imple-
ments the functionality. During the execution of the WSB child trip process,
the abstract activity track child needs to be executed. This activity has been
defined as abstract since its execution depends on the tracking procedure sup-
ported by the device. The goal G3: Device Handler = localized on track child

activity is expressed over Device handler domain property (see Fig. 3). The
device handler behavior is offered by the Device manager through its fragment
Locate device. A strong dependency is established between WSB child trip and
Device manager, and the locate device fragment is injected in place of the track

child activity (Step 2 in Fig. 4). This is an example in which, as opposite to
Step 1, a domain object has an abstract activity in its core behavior, thus hiding
to potential users of his fragments the fact that his behavior depends on third
parties fragments.

Step 3. The execution of Locate device starts the execution of the Device

manager’s core process, which allows a device to be localized. The Device manager

process contains an abstract activity, Localize device, which can be refined in
different ways depending on the device to be tracked. This allows the Device

manager to track any kind of smart object connected to the network, provided
that it offers the possibility to be tracked. In our example, supposing that the
child to be tracked has a bracelet, the Localize device activity is refined exploit-
ing the functionalities offered by the Bracelet domain object. In this case, it offers
the Check device fragment to verify the GPS connection’s availability and, the
Geo-locate device fragment to ask for the current position. Since the Geo-locate

device fragment, needed to accomplish the goal G4, is constrained by the precon-
dition P2: Device tracker = active, the Check device fragment is selected and
composed with it as its execution, thanks to effect E4, satisfies the precondition
P2. The obtained fragments’ composition is then injected in place of the localize

device activity (Step 3 in Fig. 4).



390 A. Bucchiarone et al.

Step 4. The execution goes back to Check on path fragment in the core process
of WSB application. Once child position has been obtained, last step consists in
verifying if the child is on the route of the WSB. The On route abstract activity
can be refined. The WSB application exploits the domain knowledge received by
the WSB Child Trip in Step1, to find the fragments to refine the abstract activity.
The Check on route fragment is selected and injected in the WSB application

(Step 4 in Fig. 4) and the whole refinement process ends.

4 Evaluation

In this Section we evaluate the proposed solution both in terms of its effectiveness
in defining adaptive systems that are resilient to a wide range of changes and
in terms of the scalability of the automated composition techniques used for the
refinement of abstract activities.

TYPE CHANGE PROBABILITY IMPACT SUPPORTED SOLUTION IMPACT POSSIBLE SOLUTIONS

Add component 
(internal/external)

High Local
Add  domain object,                          

new soft dependencies
None -

Add provided functionality High Local
Add fragment in domain object,        

new soft dependencies
None -

Behavioral / structural change in 
provided functionality

Medium Local
Change fragment specification 

(activities, preconditions, effects)
None / Local

 Multiple process variants (None).                   
Re-refinement (Local).

Remove functionality Low Local
Remove fragment,                       

reduction in soft dependencies
None -> Broad

 Multiple process variants (None).                   
Re-refinement chain (Broad).

Remove component Low Local
Remove domain object,              

reduction in soft dependencies
None -> Broad

 Multiple process variants (None).                   
Re-refinement chain (Broad).

New domain concept Medium Local
Add domain property and new domain 

objects/framents implementing it
None -

Change in a domain concept Low Broad
Update domain property and all related 
fragment annotations in domain objects

None -> Broad
 Multiple process variants (None).                   

Multiple re-refinement chains (Broad).
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Fig. 5. Impact of system- and domain-level changes on an adaptive system instance

In Fig. 5 we list a set of changes typical of systems operating in the Internet
of Services. For each change, together with its probability to occur, we present
its impact on the adaptive system. We distinguish system-level and domain-level
changes. Among system-level changes we have: the need to include new compo-
nents (e.g. a new kind of wearable device in the SCMS), remove components,
add/remove functionalities to existing components (e.g., the new version of the
WSB Child Trip component allows changing pick-up point for a specific ride),
as well as changing the operation (both in terms of behavior or data structures)
of existing functionalities. With domain-level changes we mean changes in the
domain concepts on which the dynamic operation of the adaptive system relies
on (domain knowledge model).

When analyzing the resilience of the system to changes, we consider both the
impact on the adaptive system model, that is, domain objects models on which
future instances will be based, and on the running instances. In both cases we
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present the impact of the change in terms of its scope (local to the affected
component vs broad) and of the activities to be performed to apply the change
to the system (Solution).

As emerges from Fig. 5, the resulting adaptive system model is resilient to
all system-level changes (local impact). Moreover, the only change at domain-
level having a broad impact is the case in which a domain concept needs to be
revised. However, this latter change is the least likely to occur, since it implies a
revision in the standard operation of a domain concept. This is usually related
to changes in a business procedure or regulation, or when the way of doing
something changes in a disruptive way (e.g., a completely new way of tracking
a device).

If we consider the impact on running instances the situation is more complex.
This is due to the fact that process instances, within domain objects instances,
might be connected through strong dependencies, since some abstract activities
have been refined with process fragments. For this reason, if the change concerns
adding a new component or functionality, or a new domain concept to the sys-
tem, then there is no impact at all on the running instances; whereas in some
other cases the impact might span the instances subject of change and affect
other instances in the system (broad impact). In Fig. 5 we suggest some possible
solutions to limit the impact of the change or, in case this is not possible, to
deal with it without affecting the system operation. A very effective solution,
that makes every change transparent to running instances, is based on the com-
bination of the proposed approach with techniques supporting multiple process
variants (e.g. approaches based on software product lines such as the one in [9]).
This would allow the definition of a new variant of the system according to the
required change, on which all new instances will be based, and keep the old ver-
sion of the system as a sibling variant on which running instances can continue
their operation.

To conclude, we will briefly discuss the scalability of the automatic refinement
techniques on which the approach is based. The key question is whether it is
feasible to solve large number of refinement problems at run-time, each involving
a potentially large set of domain objects and available fragments. The refinement
mechanisms proposed in Sect. 3 have been implemented in the ASTRO-CAptEvo
Framework [2] and tested on a real-world car logistic scenario (for a detailed
description of the experiments please refer to [2]). The experiments consider over
2500 refinement problems on an adaptive system with 29 domain object types,
69 process fragment models and 40 domain properties models. On average, an
adaptation problem contained 7 process fragments that could potentially be used
in the final solution, and, as such, were presented in the planning domain. The
experiments show that 90 % of problems were resolved within 0.1 seconds and
99 % within 10 seconds. These results, based on advanced optimization (problem
reduction) and solution reuse techniques, clearly prove the feasibility of on-the-
fly refinement for adaptive systems.
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5 Related Works and Conclusions

In this paper we propose a design for adaptation approach that, exploiting
advanced service refinement and re-configuration techniques, supports the design,
development, and operation of service-based systems that are resilient to a wide
range of changes. Various other approaches have been proposed in this direction.
In the following we consider those approaches that might be applied in scenarios
similar to the SCMS presented in this paper.

We will start by analyzing rule-based approaches. We mention MoDAR [12],
a model-driven approach for the development of adaptive service-based systems.
Rules are used to capture the variable part of a business process and linked
in specific cutting points of the base process. In [8], the authors tackled the
problem of the unpredictable execution of service-based applications by mod-
eling composite services as artifacts that can change at runtime. Here, rules
are used to model adaptation needs (events) and adaptation actions, from the
design-time phase. However, rules are not suitable for managing continuous and
unpredictable changes in open environments, since they require human interven-
tion to be revised.

Another category of approaches, quite close to our proposal, that emerged
in recent years are artifact-centric approaches. In [7] the authors present a for-
mal framework defining Business Artifacts which represent conceptual entities
made of their attributes and states, their tasks modeling services performed
on such artifacts and business rules defined in ECA style specifying the life-
cycle of an individual artifact, as well as the control logic of a process executing
between interacting artifacts. Although the work in [7] supports flexibility and re-
usability, it suffers from the same limitations of rule-based approaches described
in previous paragraph.

Other works [3,9] exploit the concepts of dynamic software product lines
(DSPL) [6]. In DSPL a software family is analysed as a whole and both common
and reusable assets are established, together with the possible customizations
of the application. Feature models are used to specify alternative variations
that can be used for adaptation. In [3] the authors bring forward the idea of
their previous approach, called DAMASCo [4], which mainly consists in allowing
services reuse in pervasive systems, and provide an extension based on both SOA
and DSPL. Feature models are used to represent the variability of the services by
modeling families of adaptable software products and to allow, as a consequence,
the realization of dynamic service composition in a context-aware manner. In [9]
the authors present LateVa, where similar processes containing common and
variable parts are called process variants. Base process models are annotated
with variation points where fragments can be dynamically entered. In this way,
both software reuse and run-time variability are addressed. The main limitation
of DSPL-based approaches is that they assume a close world where process
variants (and thus fragments) are pre-defined. For this reason, these approaches
do not fit well in open environments in which system components, and their
provided functionalities, can enter or leave the system in any moment.

Although the approach proposed in this paper might overcome some limita-
tions of existing works in the field, there are several open issues we would like
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to deal with in the near future. Among them, the most important is an on-the-
field evaluation of the approach experimenting the SCMS with end-users. A key
extension is the possibility of verifying the current state of the external domain
knowledge of each domain object through monitoring facilities offered by other
domain objects (at the moment the state evolves considering only the effect
annotations on the received fragments and might not be aligned with the real
world situation). Another important extension concerns the support for other
forms of run-time adaptation (e.g., reaction to a context change observed by
monitoring the environment).
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