
Runtime Model-Based Privacy Checks of Big
Data Cloud Services

Eric Schmieders(B), Andreas Metzger, and Klaus Pohl

paluno (The Ruhr Institute for Software Technology),
University of Duisburg-Essen, Essen, Germany

{eric.schmieders,andreas.metzger,klaus.pohl}@paluno.uni-due.de

Abstract. Cloud services have to comply with privacy policies when
storing or processing data. As cloud services become increasingly data-
intensive, e.g., in the case of big data analytics, data privacy concerns
become more critical and challenging to address. In particular, data
may only be processed at certain geo-locations. However, the actual
geo-locations of the many storage and compute nodes involved in big
data processing is dynamically selected during runtime. In addition, the
execution of concrete data processing tasks may change data classifi-
cations from, e.g., personal to anonymized data. Thus, privacy policy
checks for big data cloud services have to consider information about the
actual nodes and data processing tasks at runtime. The proposed app-
roach R-PRIS monitors cloud services to derive and maintain typed run-
time models providing the aforementioned information. R-PRIS checks
the typed runtime models against privacy policies by employing a data-
classification-aware search. The evaluation of R-PRIS, performed on
Amazon Web Services (including Hadoop), indicates that the approach
may efficiently and timely detect privacy violations in big data cloud
services.

Keywords: Privacy · Big data · Cloud services · Runtime checking

1 Introduction

Cloud services have to comply with privacy policies when storing, transferring,
and processing data. For instance, the EU Data Protection Directive1 (DPD) as
well as the US Health Insurance Portability and Accountability Act2 (HIPAA)
only permit processing personal data within countries that implement sufficient
data protection mechanisms. Moreover, privacy policies, such as the ones pro-
posed by NIST 800-122 or FIPS 1993, distinguish between different data clas-
sifications. Data classifications indicate the data’s identifiability or sensitivity,
which requires to treat the classified data accordingly.

1 http://eur-lex.europa.eu/.
2 http://www.hhs.gov/ocr/privacy/.
3 http://csrc.nist.gov/.

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 71–86, 2015.
DOI: 10.1007/978-3-662-48616-0 5

http://eur-lex.europa.eu/
http://www.hhs.gov/ocr/privacy/
http://csrc.nist.gov/

72 E. Schmieders et al.

As cloud services become increasingly data-intensive – being used for large-
scale and real-time big data analytics tasks for instance [3] – the implementa-
tion of such privacy policies becomes ever more challenging. Data and processing
tasks are distributed among a vast number of storage and compute nodes to cope
with the high volume of data and to ensure the high velocity of data processing
(e.g., when using the MapReduce programming model). In addition, data classi-
fications may dynamically change based on the data processing tasks executed by
the various compute nodes (e.g., a task may aggregate personal customer data
into anonymized sales statistics). On top of that, storage and compute nodes
may be dynamically deployed, replicated, and migrated to achieve performance,
availability, and cost goals of cloud providers. Given all this complexity and
dynamism, each of the involved nodes still has to comply with privacy policies
during the entire cloud service life-cycle.

Existing approaches for checking privacy policies have not addressed cloud
elasticity or data classification changes (e.g., [6,7,10,13]). In our previous work
[16,17], we introduced R-PRIS, a privacy compliance checking approach for
dynamic cloud services. In this paper we extend R-PRIS to cope with the
aforementioned challenges imposed by data-intensive services. In particular, the
extended R-PRIS approach is able to consider data classification changes. This
is important, as disregarding data classification changes may lead to a high rate
of false positive violations. Such a high positive rate would limit applicability for
big data cloud services. For instance, it would prohibit migrating many of the
storage and compute nodes that do not process privacy-relevant data.

The extended R-PRIS approach utilizes a data-classification-aware search
strategy based on typed runtime models. To this end, we propose typed runtime
models for reflecting data placement and data classification changes. In order
to facilitate the specification of fine-grained privacy polices, R-PRIS allows for
defining data classifications, impact levels, and their relations. Using this infor-
mation, R-PRIS monitors the cloud services, automatically updates the typed
runtime model, and checks the model against privacy policies.

We evaluated the applicability and performance of R-PRIS for a data-intensive
cloud service hosted on Amazon Web Services (AWS), leveraging Hadoop clusters
for data processing. Our results indicate that R-PRIS is able to efficiently and
timely detect privacy violations in big data cloud services.

The remainder of the paper is structured as follows: Sect. 2 identifies relevant
classes of privacy policy violations. Using these classes of violations as basis,
Sect. 3 describes the R-PRIS approach. Section 4 investigates the realizability of
the approach by means of a proof of concept implementation. Section 5 describes
the setup and results of experiments to evaluate the performance of R-PRIS.
Related work is discussed in Sect. 6.

2 Privacy Policy Violations in Big Data Cloud Services

Cloud providers allow for specifying the geo-locations at which virtual machines
shall be executed. However, misconfigured cloud infrastructures, software fail-
ures, and incorrect geo-location specifications might lead to virtual machine
placements that result in privacy policy violations.

Runtime Model-Based Privacy Checks of Big Data Cloud Services 73

As a simple example for such situations, take two interacting service compo-
nents v1 and v2 that process personal data. Both components are deployed on
separate virtual machines that are initially hosted on cloud data centers within
the EU. During runtime, the virtual machine hosting v1 is migrated to a data
center outside of the EU. After migration, v1 and v2 continue to exchange per-
sonal data. However, as this now implies transfer of data beyond EU borders,
this may violate data geo-location policies.

To identify these dynamic changes that need to be reflected in the R-PRIS
runtime models, we systematically determine changes of cloud services proper-
ties. We focus on changes that stem from the cloud service software architec-
ture and the underlying cloud infrastructure. We analyze whether the identified
changes can lead to privacy policy violations. To be specific, we follow three
steps in our analysis: (i) we identify architectural, deployment, and functional
properties of big data cloud services that – if changed – may lead to policy
violations (column 1 in Table 1); (ii), we determine concrete types of changes of
these properties; e.g., due to cloud elasticity mechanisms (column 2); and (iii) we
identify the concrete violations of privacy policies resulting from these changes
(column 3). Table 1 summarizes the results of the analysis.

Table 1. Policy violations in big data cloud services

Property Change Violation

1 Compute
node’s
geo-
location

New node;
replication;
migration

A compute node is instantiated at an excluded
geo-location (e.g., a virtual machine hosting a
marketing application is instantiated in the US)

2 Storage
nodes
geo-
location

Data upload;
replication;
migration

A storage node is assigned to store personal data
excluded at the node’s geo-location (e.g., a
Hadoop node has to process a new chunk of
personal data)

3 Node
interac-
tions

New node;
migration;
replication

A new interaction between nodes is established
that involve transfer of personal data to
excluded geo-location (e.g., an existing Hadoop
cluster is integrated into a cloud service)

4 Data
classifi-
cations

Changed
processing
task

The new task may produce data with different
classification (e.g., a Hadoop task determines
the average number of purchased items for a
specific customer)

3 R-PRIS: Privacy Checks for Big Data Cloud Services

The main idea of R-PRIS (Runtime model-based PRIvacy checkS) is to utilize
runtime models for performing privacy policy checks. In general, runtime models

74 E. Schmieders et al.

are dynamically updated abstractions of the reflected systems [18]. The architec-
tural runtime models of R-PRIS contain information about compute and storage
node deployments, data flows occurring among these nodes, and data classifica-
tion changes. The main steps of R-PRIS are depicted in Fig. 1: cloud monitoring
information is used for updating architectural runtime models, which in turn are
employed for policy violation checks.

Fig. 1. Overview of R-PRIS

This paper focuses on two main new contributions introduced by the extended
R-PRIS approach: the use of a typed runtime model to consider data classifi-
cation changes (Sect. 3.1) and the enhanced privacy policy checks based on this
model (Sect. 3.2).

3.1 Typed Runtime Model

The typed runtime model employed for taking data classification changes into
account is an extension of the architectural runtime model that we introduced in
[16,17]. The architectural runtime model Gti

R reflects the deployment of storage
and compute nodes (properties 1 and 2 in Table 1), as well as node interactions
(property 3 in Table 1) at time point ti.

In R-PRIS, the updates of Gti
R are specified as graph transformation rules.

Event-condition-action patterns are employed to reason on observed monitoring
information as well as to trigger and parametrize the matching graph transfor-
mation rules. This results in an updated runtime model Gti+1

R for time ti+1.
When extending this architectural runtime model with the data classifica-

tion information (property 4 in Table 1), we implemented a clear separation
of concerns. We separated the dynamically evolving information about node

Runtime Model-Based Privacy Checks of Big Data Cloud Services 75

deployments and interactions (architectural runtime model) from the rather sta-
ble information about data classifications (data classification model). For the
mapping of elements between these two models (e.g., for mapping a Method
node to its data classification) we utilize the typed graph concept.

The edges and vertices of a typed graph are assigned to types stored in a
separate type graph (for an introduction to typed graphs see [4]). We consider
the runtime model as the typed graph and the data classifications as the type
graph. Similar to the dynamic type checking in type systems, in our work a set
of rules defines how typed vertices are to be treated during runtime.

The concept of the typed runtime model will be described more precisely in
the following. We use the typed runtime model shown in Fig. 2 as illustrative
example. First, we formally define an R-PRIS architectural runtime model as:

Definition 1. Let Gti
R = (VR,ER,sR,tR) be a directed graph that models a big

data cloud service at a certain point in time ti. VR are the vertices, i.e. service
entities, and ER the edges, i.e. relations between the cloud service entities. Func-
tion sR : E → V specifies the source vertex of edges ER and function tR : E → V
specifies the target vertex of edges ER.

Fig. 2. Example of a typed runtime model in R-PRIS

The lower part of Fig. 2 shows an example of an R-PRIS architectural runtime
model, where vertices are expressed as UML objects and edges are expressed as

76 E. Schmieders et al.

UML associations. The different kinds of objects and associations are defined
by a meta model (introduced in [16,17]). The meta model provides concepts for
modeling virtual machines, components, and methods to reflect changes of the
compute node property. The deployment relationship reflects changes of geo-
locations and the data source relationships models changes in interactions.

To express how different data classifications relate to each other in terms of
identifiability or sensitivity, we define a data classification model as follows:

Definition 2. Let GT = (VT , ET , sT , tT) be the directed graph that represents
the data classifications. VT are the vertices, i.e. data classifications, and ET

the edges, expressing the relations between the data classifications. sT : E → V
defines the source vertex of edges ∈ ET and tT : E → V defines the target
vertex of edges ∈ ET . Relations between data classifications are transitive4, i.e.,
(x � y) ∧ (y � z) → (x � z).

The upper part of Fig. 2 shows an example for a data classification model GT .
It includes the data classes Personal Information, Personally Identifiable Infor-
mation, etc. The relationship lessCriticalThan reflects the criticality relationship
among data classifications.

To interrelate GR and GT we exploit the concept of typed graphs. Typed
graphs employ graph morphisms for interrelating specific elements of two graphs.
We define the graph morphism for R-PRIS as follows:

Definition 3. Let m : Gti
R → GT be a graph morphism that maps Gti

R to GT .
Function m is defined as m = (mV ,mE) with functions mV : VR → VT and
mE : ER → VT × VT .

In our approach, mV and mE are specified as follows. mV maps Content-
Description and Method entities to data classes VT of the data classification
model. The mapping from ContentDescription describes the ‘static’ classifica-
tion of contents (data objects). The mapping from Method describes a change
of data classification imposed by executing the method (data processing tasks).
All other Gti

R entities are initially mapped to ‘no’ data classification (⊥). Start-
ing from this initial mapping, we will dynamically update the graph morphism
during the policy check in order to determine policy violations (see Sect. 3.2).

Based on Definitions 1–3, we can now define the R-PRIS typed runtime
model:

Definition 4. The R-PRIS typed runtime model is defined as Gtyped = (Gti
R,

GT ,m) with Gti
R as the architectural runtime model instance, GT the data clas-

sification model, and m the graph morphism that maps Gti
R to GT .

When processing data, methods can change the classifications of the processed
data. For instance, method getCartItens (v8 in Fig. 2) changes personal infor-
mation to personally identifiable information. To reflect this, we define data
classification changes as:
4 Which implies that GT has to be acyclic.

Runtime Model-Based Privacy Checks of Big Data Cloud Services 77

Definition 5. Given a typed runtime model Gtyped, let vk ∈ Gti
R represent a

method or a data object and let vl ∈ Gti
R represent a method that accesses data

provided by vk. vl either retains the data classification of the accessed data, i.e.
m(vk) = m(vl) or changes the classification to a less critical one, i.e. m(vk) �
m(vl). We define the change (in the latter case) as data classification change.

3.2 Privacy Policy Checks

The main idea of our privacy policy check is to express the check as a reachabil-
ity analysis on the architectural runtime models. In [16] we have formalized and
realized this reachability analysis as an st-connectivity problem on the architec-
tural runtime model, thereby considering node deployment and interaction but
not data classification changes.

3.2.1 Data-Classification-Aware Search
In order to cover data classification changes in big data cloud services, we extend
the reachability analysis by the data classification model, i.e., we search the
typed runtime model (including the type model, see Sect. 3.1). Let’s take a policy
p = (geo, class), which prescribes that data classified as class must neither be
processed nor stored at the specified geo-location geo. The reachability analysis
then aims to find a ‘violation path’ that connects the ‘forbidden’ geo-location
vertex for geo with the data classification vertex for class. In simple terms, a
‘violation path’ is a sequence of vertices connected by edges that do not exhibit a
data classification less critical than class. If such a path exists, the cloud service
either stores or processes data at the forbidden geo-location, thereby violating
the checked policy p.

As an example, let’s define geo = USA and class = PersonalInformation,
which means that our cloud service may not store or process personal informa-
tion in the US. Using the typed runtime model of the cloud service in Fig. 2, the
reachability analysis aims to find a ‘violation path’ that connects the ‘forbidden’
geo-location vertex USA (v2) with the data classification vertex PersonalInfor-
mation (v15). As can be seen, such a path cannot be found, because although
v13 is typed as PersonalInformation, the path from v13 to v2 traverses vertices
which change the data classification to less critical levels; e.g., v7 changes it to
PersonallyIdentifiableInformation. This means that the example cloud service
(in the current deployment reflected in the typed runtime model) complies with
the privacy policy.

To realize the described reachability analysis, the policy check starts with
defining vgeo ∈ Gti

R as start vertex and vclass ∈ Gti
R as target vertex (with the

geo-location and the data classification specified in the policy to be checked).
The check then performs a depth first search of the typed runtime model, during
which three main mechanisms are employed:

– Early Termination: The search terminates the traversal of the current path
as soon as it reaches a vertex vn classified as less critical than class. Regardless

78 E. Schmieders et al.

of the data classifications along any continuation of the current path, data that
passes through vn will always be less critical than what is expressed in the
privacy policy to be checked. This does not exclude the existence of other paths
from vgeo to vclass. Thus, we terminate the search at vn and then backtrack
to vn−1 to explore other paths to reach vclass.

– Backtracking: To facilitate backtracking, and thus not have to start from
vgeo each time we have terminated a path traversal, we employ the graph mor-
phisms introduced in Sect. 3.1 to store the data classification for all vertices
we have traversed thus far. This allows us to continue from vn−1 by retrieving
the classification we have computed at a certain point of traversal.

– Classification Traversal: The traversal of Gti
R is continued as long as the

classification of the successor vertex vn+1 is higher or the same as the clas-
sification of the current vertex vn. The continuation is decided by expanding
the search space to GT (also in the case of backtracking). If there exists a
path from the data classification of vn to the data classification of vn+1, then
the search continues. In this case, the method returns data equally or more
critical5 than specified in p.

Fig. 3. Example traversal through the typed runtime model

3.2.2 Performance Optimization
When traversing Gti

R and dynamically classifying VR ∈ Gti
R there is a situation

that requires the utilization of a search heuristic for avoiding the re-visiting of
nodes. This is important as revisiting nodes would negatively impact on the
approach’s time complexity.

Let us assume the check passes a vertex vs classified with mV (vs) = c1.
Further, the traversal leads over two crossing paths to a vertex vt with mV (vt) =
c1. One of these paths includes a v1 with mV (v1) = c1 and the other path
mV (v2) = c2 (with (c1, c2) : lessCriticalThan). If the path over c2 is traversed
5 A policy concerning less critical data must also hold for more critical data.

Runtime Model-Based Privacy Checks of Big Data Cloud Services 79

first, then this traversal results in a false negative (the actual violation is not
detected). The reasons are (i) that c1 is less critical than c2 such that the checked
policy holds and (ii) the path over c1 to v1 is not traversed without visiting nodes
twice, which blocks the traversal of the path for c1. In order to tackle this issue
without re-visiting nodes, the check visits vertices adjacent to a vertex v with
respect to their criticality in an ascending order (by omitting classifications less
critical than mV (v)), which avoids the blocking effect.

3.2.3 Example Policy Check
Figure 3 shows an excerpt of G2

R, which is an update of G1
R. It shows the

morphism-based typings to ease backtracking as thinner arrows, whereas the
broader arrows are the initial mappings.

Let us assume, we want to check policy p = (USA, AnonymizedInforma-
tion). We dynamically type the start node with the classification specified in p,
i.e. v2 �→ v20. The algorithm starts to traverse G2

R and dynamically resolves ⊥
with the classifications of the preceding vertices (enabling backtracking). The
classification of v5 is set to v20. The classifications of v5 and v7 differ. Thus, the
search is expanded to GT (classification traversal). As the classification of v7 is
reachable from the classification of v5 the search continues. v11 is dynamically
typed with the classification of the preceding note, i.e. v11 �→ v19. After tra-
versing the data vertex v12 and typing it with PersonallyIdentifyableInformation
the algorithm visits v13 (not shown in the figure). The algorithm checks whether
there is a path from PersonallyIdentifyableInformation to the classification of
v13 in GT , which is the case. In consequence, data that is classified more critical
than vclass can be transferred into the USA, which violates p.

4 Proof of Concept Implementation

To demonstrate the feasibility and applicability of R-PRIS, we developed a pro-
totype implementation that we deployed on actual cloud infrastructures. This
R-PRIS prototype is also used during our experimental evaluation in Sect. 5.

4.1 Prototype Architecture

The R-PRIS prototype consists of six main components (see Fig. 4): the moni-
toring probes, the monitoring server, the event processor, the model controller,
the policy checker, and a third-party host geo-location service. The probes are
deployed on the virtual machines that host the big data cloud service’s software
components. The monitoring server forwards the parsed monitoring information
to the event processor. The event processor invokes a REST service6 for resolv-
ing the VM geo-location. The processor triggers the model controller to execute
model transformation rules that modify the runtime model with respect to the
observed service changes. We use the Henshin graph transformation API for per-
forming the model updates. Henshin supports runtime model based on Ecore7.
6 http://freegeoip.net/json/.
7 http://www.eclipse.org/modeling/emf/.

http://freegeoip.net/json/
http://www.eclipse.org/modeling/emf/

80 E. Schmieders et al.

For more details on this model-update approach, see [17]. After updating the
model, the model controller triggers the policy checker component, which checks
the runtime model against the privacy policies (see Sect. 3.2).

The components we developed have been implemented in Java SE 1.7. They
are deployed on a dedicated server hosted at our institute (R-PRIS server in
Fig. 4) to have maximum control over the prototype and facilitate performance
measurements without external influences. The server is equipped with 4 GB of
RAM and a single core 2 GHz processor.

Fig. 4. R-PRIS prototype and parts of the example service

4.2 Cloud Service and Infrastructure

To test the applicability of R-PRIS, we employ a realistic cloud service that
builds on the CoCoME case study [14]. CoCoME represents a typical trading
service operated by a supermarket chain. In the CoCoME scenario of inter-
est, the CoCoME service sends personalized recommendation e-mails to online
customers by exploiting a Hadoop cluster for big data analytics. The Amazon
reference architecture for e-commerce websites8 is used as the underlying struc-
ture for the CoCoME service components. The architecture includes a recom-
mendation web service, a marketing administration application, a Hadoop name
node, and Hadoop data nodes. All virtual machines are instrumented with the
R-PRIS monitoring probes. The lower half of Fig. 4 shows a subset of these vir-
tual machines and the CoCoMe components they host. We choose Amazon EC2
as a realistic execution environment for the cloud services.

4.3 Change Scenarios

To assess the applicability of R-PRIS, we expose the prototype to four change
scenarios. These scenarios cover all changes identified in Sect. 2. For each change,
8 http://aws.amazon.com/architecture/.

http://aws.amazon.com/architecture/

Runtime Model-Based Privacy Checks of Big Data Cloud Services 81

we have defined a scenario with positive (policy violation) and negative (policy
compliance) situations.

Figure 5 shows excerpts of the actual runtime models (as Eclipse EMF trees).
As a pre-condition for each scenario, the virtual machines of the CoCoME service
are deployed on a data center in Ireland (see GInitConf

R in Fig. 5). The other
models show situations after executing the change scenarios. In each change
scenario, one virtual machine is migrated to the US and thus potentially provokes
a policy violation. Employing migration is sufficient in our change scenarios, as
from a technical perspective, a migration shuts down a virtual machine at the
source location and re-starts it at the target location (which leads to initializing
a new node, new interactions, etc.; cf. [1]).

Table 2 shows the covered properties, the provoked violation, the applied
changes, and the runtime model updates as well as the policy checker results.
As the results from the change scenarios indicate, R-PRIS is able to keep the
typed runtime model in sync with the reflected CoCoME service. Moreover,
the policy checks correctly determine violations and compliance to CoCoME’s
privacy policy. In particular, the correct true negative check after the migration
of the recommendation web service (case GCS2

R) demonstrates that R-PRIS is
able to avoid false positives that stem from ignoring data classification changes.

Fig. 5. Screenshots of runtime models (Eclipse EMF) generated by R-PRIS

82 E. Schmieders et al.

Table 2. Executed change scenarios and observations

Covered

property

Scenario Migrated VM Observed R-PRIS Behaviour

Compute node

geo-

location

(1), node

interac-

tions (3),

data classi-

fication (4)

Positive Marketing

adminis-

tration

application

The runtime model reflects the applied change

correctly (see GCS1
R in Fig. 5). The check detects a

policy violation. The check message includes the

violating data flow of personal data that starts in

one of the DataNodes, leads over the NameNode

and is requested by the getResult() method

(marked grey in the figure).

Negative Recommen-

dation web

service

The runtime model reflects the change correctly (see

GCS2
R in Fig. 5). The check assesses the CoCoME

service as policy compliant. The showStatistics()

method of the recommendation web service

invokes the getStatistics() method of the

marketing administration application.

getStatistics() accesses personal information from

the data nodes, but changes the data’s

classification from PersonalInformation to

PersonallyIndentifiableInformtion. The changed

classification does not violate the privacy policy.

By reflecting the classification change, the check

avoids a false positive in comparison to a check

that does not take data classification into account.

Storage geo-

location

(2), inter-

actions

(3),

classifica-

tions (4)

Positive Data node

(personal

data)

The runtime model reflects the change correctly (see

GCS3
R & GCS4

R in Fig. 5). The check detects the

policy violation. Storing personal data at excluded

geo-locations violates the privacy policy.

Negative Data node

(non-

personal

data)

The runtime model reflects the change correctly (see

GCS3
R & GCS4

R in Fig. 5). The check assesses the

CoCoME service to be policy compliant. Only

non-personal information is stored in the US.

5 Performance Evaluation

Policy violations need to be detected timely in order to have sufficient time to
mitigate and respond to these violations. Thus, as one key criterion of R-PRIS we
evaluate its performance. On the one hand, we measure its response time based
on the aforementioned change scenarios, thereby determining values for realistic
application scenarios (Sect. 5.1). On the other hand, we analyze the runtime
complexity by means of the O-notation in order to determine the scalability of
the approach (Sect. 5.2).

5.1 Experimental Evaluation

We evaluate the performance of R-PRIS by taking dedicated measurements for
its three main phases: (phase 1) cloud monitoring, including sending monitoring

Runtime Model-Based Privacy Checks of Big Data Cloud Services 83

Total

Phase 1

Phase 2

Phase 3

0 1000 2000 3000 4000
Time (ms)

Fig. 6. Response times per phase (on Amazon Web Services)

Table 3. Measurement per phase and total

Phase Average (ms) Median (ms) Minimum (ms) Maximum (ms)

3 1 1 1 3

2 86 76 35 172

1 113 462 267 4218

Total 1119 532 329 4032

data to the R-PRIS server and resolving host geo-location using third-party
service; (phase 2) runtime model update; and (phase 3) policy check.

We use the prototypical implementation and the change scenarios introduced
in Sect. 4. The scenarios include violations (i.e., best and typical cases for reach-
ability analysis) and non-violations (i.e., worst cases for reachability analysis as
the entire graph has to be traversed). During the execution we repeated the four
change scenarios five times each. Thus, we measure 20 response times for each
phase during the experiment. The results are shown in Fig. 6 and in Table 3.

We consider the measured worst case response time of around 4 seconds
promising. However, in order to speed up the response further, we analyzed the
time consumption in phase 1 as this phase predominates the overall duration.

Further investigation showed that the comparatively high response times as
well as the outliers in phase 1 stem from employing a third-party service for
resolving the host-geolocation. Thus, we choose an alternative cloud infrastruc-
ture that offers ‘built-in’ geo-location APIs. We have repeated the measurements
for phase 1 on the Azure cloud9, which offers a REST API for geo-locating vir-
tual machines. The measured results for phase 1 on Azure are: avg = 488 ms,
med = 441 ms, and max = 924 ms. This shows a clear reduction of the overall
worst case response time, but exhibit low impact on the med value. The rea-
son might be that the quality of the built-in geo-location API is generally more
stable than the third-party service.

9 http://azure.microsoft.com.

http://azure.microsoft.com

84 E. Schmieders et al.

A further performance improvement may be possible if cloud management
APIs were available that emit monitoring events as soon as cloud migrations
are triggered. In this case, the time that it takes for performing cloud migration
or starting a new virtual machine (which may well be in the order of tens or
hundreds of seconds [11]), may be used to run the policy checks and stop the
migration if it turns out to violate the policy.

5.2 Runtime Complexity Analysis

The above experiments delivered concrete response times for a cloud service that
was deployed on a small cloud cluster. To assess the scalability of R-PRIS with
respect to performance, we perform a complexity analysis of the approach.

The worst case runtime complexity for depth first search is given by O(|V |+
|E|). As the approach visits the vertices of VR once at most (see Sect. 3.2.2),
the worst case complexity of traversing Gti

R is O(|VR| + |ER|). However, in
our approach we perform two interwoven depth first searches. For every pair
of adjacent vertices the typed graph is traversed, such that |ER| resolves to
O(|ER| · (|VT | + |ET |)). The overall worst case complexity of the policy check is
thus given by f(Gtyped) ∈ O(|VR| + |ER| · (|VT | + |ET |)).

The actual complexity of f(Gtyped) is quite low, when taking knowledge
about the application context into account. The data classifications and their
relations represented in GT are derived from standards. Thus, |VT | and |ET |
have low values (in the order of 10) and, more importantly, are considered to
be constant (in case of FIPS, |VT | = 3 and |ET | = 2). According to the O
simplification rules, constants are to be neglected when analyzing worst case
complexity. Thus, the checking function’s complexity reduces to f(Gtyped) ∈
O(|VR| + |ER|) and scales linearly with the size of the runtime model.

6 Related Work

In this section we discuss how R-PRIS relates to existing privacy checks of cloud
services and existing runtime model approaches.

Privacy Policy Checks: Research on privacy policy compliance of big data
and cloud services mainly focusses on policy violation prevention and compliance
monitoring. In policy violation prevention, privacy-by-design principles guide the
design and implementations of privacy aware architectures. For instance, the
approach presented in [6] equips cloud services with mechanisms that permit or
grant data access after matching the client characteristics with privacy policies.
However, changes of data geo-locations imposed by migration or replication of
the component storing the data are not considered. Data transfers between the
client services and further services are not covered. Transitive data transfers that
may lead to policy violations thus remain undetected.

Compliance monitoring approaches such as [7,10] employ cloud services audits
during runtime. For instance, the approach in [7] correlates ping round-trip

Runtime Model-Based Privacy Checks of Big Data Cloud Services 85

times of the audited service with geographical information. This allows to deter-
mine whether the service interface resides at specific geo-locations. However, the
software components behind the service interfaces might be migrated or repli-
cated, while the service interface remains at the same geo-location. For instance,
Hadoop data nodes might be replicated to different locations while the request
handling master node remains invariant. Further, policy checks may exploit elas-
ticity events [1], by checking elasticity events against policies. Although this
would enable local checks, it would not cover the analysis of data classification
changes across software components.

Runtime Models: Runtime models provide global views on cloud services.
Behavioral runtime models utilize, e.g., sequence-models [12], workflow models
[9,15], and Markov-chains [5]. These models include activities and interactions
of the reflected applications but do not provide information about computing
nodes, their geo-locations, and the processed data. In contrast, architectural
runtime models, e.g., [2,8], combine behavioral aspects of the system with struc-
tural information. These models do not provide information on the geo-location,
processed data, and changes of data classifications. However, our runtime model
approach [17] provides the required information as being designed for supplying
the policy check with the necessary reflections of real world systems.

7 Conclusion and Future Work

We addressed the challenges involved in checking the compliance of big data
cloud services against data geo-location policies. In particular, we have addressed
the problem of considering different data classifications in order to avoid false
positive violations. The main ideas underlying our approach were (1) using typed
runtime models that reflect cloud services and data classifications, as well as
(2) exploiting efficient reachability analyses on these runtime models to detect
policy violations. Our proof of concept implementation and the experimental
evidence indicates that the proposed approach is able to correctly identify pol-
icy violations with reasonably fast response times. In future work, we plan to
investigate the applicability of R-PRIS to a real life example. Further, we plan
to complement the approach with pro-active policy violation detection. To this
end, we envision the assessments of adaptation plans (e.g., expressed in terms
of prescriptive runtime models) before their execution.

Acknowledgements. This work was partially supported by the DFG (German Res.
Found.) under Priority Programme “SPP1593” (grant PO 607/3-1).

References

1. Aceto, G., Botta, A., de Donato, W., Pescapè, A.: Cloud monitoring: A survey.
Comput. Netw. 57(9), 2093–2115 (2013). http://www.sciencedirect.com/science/
article/pii/S1389128613001084

http://www.sciencedirect.com/science/article/pii/S1389128613001084
http://www.sciencedirect.com/science/article/pii/S1389128613001084

86 E. Schmieders et al.

2. Brosig, F., Huber, N., Kounev, S.: Automated extraction of architecture-level
performance models of distributed component-based systems. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE)
(2011)

3. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: From
big data to big impact. MIS Q. 36(4), 1165–1188 (2012)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer-Verlag New York Inc., Secaucus (2006)

5. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time
parameter adaptation. In: 31st International Conference on Software Engineering
(ICSE) (2009)

6. e Ghazia, U., Masood, R., Shibli, M.: Comparative analysis of access control sys-
tems on cloud. In: 2012 13th ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking and Parallel Distributed Computing
(SNPD) (2012)

7. Gondree, M., Peterson, Z.N.: Geolocation of data in the cloud. In: Proceedings
of the third ACM Conference on Data and Application Security and Privacy,
CODASPY 2013. ACM, New York (2013)

8. Huber, N., Brosig, F., Kounev, S.: Modeling dynamic virtualized resource land-
scapes. In: Proceedings of the 8th International ACM SIGSOFT Conference on
Quality of Software Architectures (2012)

9. Ivanović, D., Carro, M., Hermenegildo, M.: Constraint-based runtime prediction
of SLA violations in service orchestrations. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 62–76.
Springer, Heidelberg (2011)

10. Juels, A., Oprea, A.: New approaches to security and availability for cloud data.
Commun. ACM 56(2), 64–73 (2013)

11. Mao, M., Humphrey, M.: A performance study on the VM startup time in the cloud.
In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), pp.
423–430

12. Maoz, S.: Using model-based traces as runtime models. Computer 42(10), 28–36
(2009)

13. Park, S., Chung, S.: Privacy-preserving attribute distribution mechanism for access
control in a grid. In: 21st International Conference on Tools with Artificial Intelli-
gence (2009)

14. Rausch, A., Reussner, R., Mirandola, R., Plasil, F. (eds.): The Common Compo-
nent Modelling Example (CoCoME). LNCS, vol. 5153. Springer, Heidelberg (2011)

15. Schmieders, E., Metzger, A.: Preventing performance violations of service composi-
tions using assumption-based run-time verification. In: Abramowicz, W., Llorente,
I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.) ServiceWave 2011. LNCS, vol.
6994, pp. 194–205. Springer, Heidelberg (2011)

16. Schmieders, E., Metzger, A., Pohl, K.: A runtime model approach for data geo-
location checks of cloud services. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri,
S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 306–320. Springer, Heidelberg (2014)

17. Schmieders, E., Metzger, A., Pohl, K.: Architectural runtime models for privacy
checks of cloud applications. In: Proceedings of the 7th International Workshop
on Principles of Engineering Service-Oriented and Cloud Systems, PESOS 2015,
ACM, New York (2015)

18. Szvetits, M., Zdun, U.: Systematic literature review of the objectives, techniques,
kinds, and architectures of models at runtime. Softw. Syst. Model., Dec 2013

	Runtime Model-Based Privacy Checks of Big Data Cloud Services
	1 Introduction
	2 Privacy Policy Violations in Big Data Cloud Services
	3 R-PRIS: Privacy Checks for Big Data Cloud Services
	3.1 Typed Runtime Model
	3.2 Privacy Policy Checks

	4 Proof of Concept Implementation
	4.1 Prototype Architecture
	4.2 Cloud Service and Infrastructure
	4.3 Change Scenarios

	5 Performance Evaluation
	5.1 Experimental Evaluation
	5.2 Runtime Complexity Analysis

	6 Related Work
	7 Conclusion and Future Work
	References

