
HAL Id: hal-01206174
https://hal.science/hal-01206174

Submitted on 29 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SmartMerge: A New Approach to Reconfiguration for
Atomic Storage

Leader Jehl, Roman Vitenberg, Hein Meling

To cite this version:
Leader Jehl, Roman Vitenberg, Hein Meling. SmartMerge: A New Approach to Reconfiguration
for Atomic Storage . DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan.
�10.1007/978-3-662-48653-5_11�. �hal-01206174�

https://hal.science/hal-01206174
https://hal.archives-ouvertes.fr

SmartMerge: A New Approach to
Reconfiguration for Atomic Storage

Leander Jehl1, Roman Vitenberg2, and Hein Meling1

1 Department of Electrical Engineering and Computer Science,
University of Stavanger, Norway

2 Department of Informatics, University of Oslo, Norway

Abstract. In this paper, we study reconfiguration mechanisms for atomic
storage systems. We observe that the state of the art approach for re-
configuration in an asynchronous environment has several disadvantages
compared to the classical consensus-based approach, which requires even-
tual synchrony. For example, an unfortunate combination of remove op-
erations may lead to a configuration with too few or even no processes.
We present SmartMerge, a novel approach that provides most of the
benefits of consensus-based reconfiguration, yet can be implemented in
a fully asynchronous system. SmartMerge utilizes a merge function to
aptly combine concurrently issued changes to both the set of processes
and the quorum system of the storage. The approach is general and can
use any suitable function.
In addition to the expressive reconfiguration policies enabled by Smart-
Merge, our atomic storage also has improved efficiency: Every reconfig-
uration imposes only a constant overhead on concurrent read and write
operations.

Keywords: Atomic Storage, Reconfiguration, Asynchronous System

1 Introduction

In the age of cloud computing, an abundance of compute resources with different
capabilities are available at data centers across the globe. These data centers
deploy a variety of services replicated for fault-tolerance. It is typical for the
administrators of the data center to update both the composition of machines
in the data center and the composition of replicas running a service, because
of the need to regularly upgrade the machines, replace failed components, and
accommodate for changes in the service load. Such reconfiguration operations
are rather frequent in practice as evident, e.g., from the traces of a Google data
center [1].

One of the main challenges of supporting reconfiguration is to ensure consis-
tency when multiple users submit concurrent requests. A monitoring component
can be tracking software and hardware failures, upgrades, and load of queries and
updates to the replicas. Acting upon this information, it may be issuing requests
autonomously, without human intervention [2]. It is envisioned that many such

components may be deployed in a large-scale data center at the same time, which
may result in multiple concurrent uncoordinated and even conflicting requests
for reconfiguration.

The traditional approach to resolve this situation is to use consensus to choose
one of the proposed configurations, see e.g. [3]. The proposal for a new configu-
ration in this scheme would include a desired set of replicas along with a quorum
system to use. The main disadvantage of this consensus-based approach is that
its liveness is impossible to guarantee in asynchronous systems characteristic of
large-scale data centers.

In order to address this issue, an alternative conceptual approach proposed
in the DynaStore system [4] is to provide the users with an interface to request
incremental additions or removal of processes. In case of commutative concurrent
requests, the system directly combines the changes instead of choosing just one
of them. Furthermore, since changes commute, they do not need to be ordered.
This allows the approach to be implemented in a fully asynchronous system,
without relying on eventual synchrony or leader election to solve consensus.
Henceforward we refer to this conceptual approach as DirectCombine.

Another advantage of DirectCombine over the consensus-based approach is
that non-conflicting changes can be proposed concurrently. For example, two
changes, one removing replica a and one replacing replica b with e, can be issued
concurrently by different processes and are both realized in the resulting config-
uration. Using the consensus-based approach, only one of these requests would
be chosen and applied.

However, the fact that all proposed changes are applied can also lead to prob-
lems. If two proposed reconfigurations are trying to remove a different replica
each, applying both removals may incidentally result in a configuration with a
small number of replicas and thus, low fault-tolerance. In the extreme case, a
combination of several removals may result in an empty configuration, in which
no further operations can be performed.

It might be preferable for a system to abort the reconfiguration process than
to switch to such a configuration. In general, configurations with too few or too
many processes, or with an unfavorable distribution of processes across data
centers can be unacceptable in practice, because of low fault tolerance, high
network latencies, or administrative restrictions. Using the consensus-based ap-
proach, the system can only be reconfigured to an unacceptable configuration, if
such a configuration was proposed. Thus it is easy to avoid these configurations.

Another disadvantage of the automatic combination of different reconfigura-
tion requests in DirectCombine is the need to autonomously recompute the quo-
rum system on the fly. While such dynamic computation is simple for majority
quorums, it may not be feasible in the general case or in real-world situations.
In heterogeneous systems spanning over multiple data centers and a complex
network topology, quorum systems may have topology-induced structure. Fur-
thermore, adjusting weights and the balance between read and write quorums
can be the key to meeting service level agreements under dynamic load patterns.
It is therefore undesirable to limit these systems to majority quorums.

Table 1. Comparison of reconfiguration approaches

Avoids
unacceptable
configurations?

Can combine
multiple
proposals?

Can easily
switch
quorum system?

Asynchronous
system

Consensus-based yes no yes no

DirectCombine no yes no yes

SmartMerge yes yes yes yes

In this paper we present a novel approach called SmartMerge. In the core of the
approach lies a SmartMerge function that intelligently combines different, con-
currently issued reconfiguration requests. The approach based on such a function
has several advantages:

Generalized interface for the reconfiguration operation, that instead of
just adding and removing one specific process can operate with rules and
policies to change the number of replicas, add several replicas as a group,
set weights or priorities to individual potential replicas, or introduce any
correlation between replicas. Such policies allow the SmartMerge function
to produce meaningful resulting configurations in the case of concurrent di-
vergent requests, or to configure the set of replicas automatically in presence
of failures.

Easy switching between different quorum systems: For example, a repli-
cation scheme can employ write-all read-one quorums, to minimize the la-
tency of parallel reads, while switching to majority quorums before upgrades
are performed, or whenever failures and temporary outages are expected.

Definition and avoidance of unacceptable configurations as part of the
policy: In the simplest case, it is possible to define the minimum number of
replicas and maintain it across all reconfigurations and failures.

Similarly to DirectCombine, SmartMerge can be implemented in an asynchronous
system. We summarize the pros and cons of the three approaches in Table 1.

The SmartMerge function can be tailored to the specifics of the service,
replication scheme, data center and its topology, and many additional factors.
We show a concrete example of such a function in Section 2, in order to illustrate
the aforementioned features of the approach.

We apply our approach to reconfiguration of atomic storage. Atomic stor-
age is a key problem in distributed systems that can be implemented in an
asynchronous system [5]. Both the consensus-based approach [3] and Direct-
Combine [4] have been applied to this problem.

The main contribution of this work is that we show how SmartMerge can be
implemented for atomic storage in an asynchronous system. This is done in a
generic way parametrized by an externally defined SmartMerge function, such
as the one presented in Section 2.

The key idea behind our implementation is as follows: Under the assumption
that the SmartMerge function is commutative, associative, and idempotent, it
induces a lattice of all possible reconfiguration requests. If finitely manyconcur-

rent requests are proposed, we ensure that eventually every process will adopt
the merge (i.e., a lattice join) of all these competing requests as its configuration.

To implement wait-free reads and writes, these operations cannot wait until
a reconfiguration has completed. A common solution to this problem is to read
from or write to the old, the new and all possible intermediate configurations,
while reconfigurations are ongoing. However, before reaching the lattice element
that is the join of all concurrent requests, the service can intermediately adopt
a join of any subset of these requests. The number of such joins in the lattice
is exponential with the number of competing requests. To avoid contacting pro-
cesses in all these configurations during read and write operations, we submit
proposed requests to lattice agreement, which returns elements from a totally
ordered subset of the lattice, including the greatest element. We use only ele-
ments, that were returned by lattice agreement as intermediate configurations.
The number of different configurations returned by lattice agreement during an
execution is at most the number of changes proposed during this execution,
making it feasible to read from or write to all intermediate configurations. Addi-
tionally, if one of these configurations is adopted by the service, operations need
no longer read from or write to elements smaller than this configuration.

To read a value from the register while changes are applied to the configura-
tion, we read the register values stored in all configurations returned by lattice
agreement and return the most recent one. Similarly, to write a value, we write
to all these configurations. Read and write operations do not participate in lat-
tice agreement, but only contact processes in configurations returned by lattice
agreement. We show that in an execution where at most r changes are proposed,
all read and write operations cumulatively contact processes in at most r + 1
different configurations. A single read or write operation contacts the processes
in any configuration at most twice. This gives a bound on the latency of read
and write operations that is the same as for the consensus-based approach in [3],
but a significant improvement compared to DynaStore [4].

2 System Model

We assume a possibly infinite set of processes Π, communicating via asyn-
chronous channels. Each process p ∈ Π has a unique identifier p.id.

Processes can fail at any time during an execution by stopping to take any
actions. We assume that messages are not corrupted and that, if two processes
do not fail during an execution, all messages sent between these processes are
eventually delivered.

Not all processes in Π need to be known a priori. We therefore maintain a
finite set of available processes A ⊂ Π. Newly discovered processes are added to
A by a reconfiguration operation. We also maintain a set Arm which contains
processes that are no longer available and have been removed from A. If two
processes disagree whether p is available, they can use Arm to determine if
one process missed to add p or the other missed out on removing p. Thus two
processes using A1,A1

rm and A2,A2
rm respectively, can combine their knowledge

and both switch to using A = (A1\A2
rm) ∪ (A2\A1

rm) and Arm = A1
rm ∪ A2

rm

instead. While it is impossible to distinguish a faulty process from a slow process
in an asynchronous system, recent works have proposed failure detectors that
reliably detect all [6] or at least some failures [7], without relying on timing
assumptions. The possibility to remove processes from A allows our service to
be used together with a reliable, unreliable or no failure detector.

Only a subset P ⊂ A of the available processes is actually running the service.
These are organized in a service configuration. A service configuration c is a tuple
(Pc,WQc,RQc), where Pc ⊂ Π is a finite set of processes, and WQc and RQc

are collections of subsets of Pc, called read and write quorums, such that any
read quorum from RQc intersects with every write quorum fromWQc. We write
C for the domain of all such configurations.

Given the set A of available processes, the choice of a service configuration is
determined by a policy. We model such a policy as a tuple (srvConf(), info), where
srvConf is a function Pf (Π)→ C that maps any finite subset of Π to a service
configuration. info is auxiliary information describing how the policy is combined
with other policies. We write PL for the set of all policies (srvConf(), info) that
can appear in an execution.

A reconfiguration can both add and remove available processes and propose
a new policy. We say that a reconfiguration proposes a blueprint for a service
configuration. We express a blueprint as a tuple (A,Arm,policy), with finite
sets A,Arm ⊂ Π and policy ∈ PL. We write R for all such tuples. Applying
policy.srvConf(A) results in a service configuration that includes only available
processes and satisfies the rules expressed by policy. We say that a blueprint
r = (A,Arm,policy) determines the service configuration c = policy.srvConf(A).

Lattice and order of blueprints. For SmartMerge, we require that the system
manager provides a commutative, associative and idempotent function, join, to
merge policies. These properties are quite intuitive in practice, as it can be seen
in the example later in this section. We merge blueprints by combining A and
Arm as described above and use join to combine the policies. Collectively, this
defines a function merge(R,R) → R that combines blueprints. We assume an
initial element rI ∈ R, such that ∀r ∈ R : merge(r, rI) = r holds.

Since join is commutative, associative and idempotent, these properties also
hold for merge. A set R, together with the merge function, thus is an algebraic
semi-lattice [8]. Again, due to these properties we can write merge({r1, r2, ...})
instead of merge(r1,merge(r2, ...)).

This lattice (R,merge) is bounded by the initial element rI . In the remainder
of this work, we simply write lattice instead of bounded semi-lattice. Due to its
properties, merge defines a partial ordering v on R by the relation ∀r1, r2 ∈ R :
r1 v r2 ⇔ merge(r1, r2) = r2. We write r1 @ r2 for (r1 v r2 ∧ r1 6= r2) and say
that r2 is a greater blueprint (as lattice element) than r1 and that r1 is a smaller
blueprint. We write r1 6v r2 for the negation of r1 v r2. Note that r1 6v r2 is not
equivalent to r2 @ r1, since v is only a partial order.

The properties of merge imply that for any r1, r2 ∈ R, r1 v merge(r1, r2)
holds. A process can test whether r1 v r2 holds by comparing r2 and merge(r1, r2).

In our algorithm in Section 4, we use this to compute the minimal or maximal
element in a set of comparable blueprints.

Lattice Agreement Service GLA. As mentioned in the introduction, if reconfig-
urations propose different blueprints we want to reconfigure to the merge of all
proposed blueprints. We use an external generalized lattice agreement service
(GLA) for this. GLA offers an operation la-propose(r), that takes a blueprint
r ∈ R as argument and returns another blueprint r′, such that the following
properties hold. These properties imply that the merge of all input values is
among the returned values.

Validity A returned value is the merge of inputs to la-propose operations.
Monotonicity An operation la-propose(r) returns r′ such that r v r′.
Comparability Any two values returned by la-propose are comparable with

respect to v.

GLA can be easily implemented using the algorithm specified in [9]. In gen-
eralized lattice agreement on a lattice (R,merge,v), processes can receive values
vi ∈ R from clients. The processes then learn a sequence of values w0 v w1 v ...
such that validity and comparability hold for learned values. Further, if a value
vi is received at a correct process, every correct process eventually learns a value
wj , such that vi v wj holds. The la-propose(r) operation can be easily imple-
mented by sending r to all processes running generalized lattice agreement and
returning some value r′ learned by any of these processes, for which r v r′ holds.
The complexity of the algorithm, as presented in [9] adapts to the number of
values actually proposed. Thus, if la-propose is invoked only r times during an
execution, every invocation will return after at most O(r) steps.

Some works using the consensus-based approach assume an external configu-
ration manager that receives reconfiguration requests and chooses a sequence of
configurations (e.g. [3]). Different from these works our GLA can be implemented
in an asynchronous system and does not need consensus. However GLA only re-
turns comparable elements without sequence numbers. Thus, if r and r′ have
been returned by two la-propose invocations to process p, and r @ r′ holds,
it is impossible for p to determine if some other value r̂ for which r @ r̂ @ r′

holds, has been returned by another la-propose invocation to a different pro-
cess. We show in this paper that the weaker guarantees of GLA are still sufficient
to implement a reconfigurable atomic register.

Example. We now give a more detailed example of a merge function, that illus-
trates the use of policies, easy switching between different quorum systems, and
avoidance of unacceptable configurations, which are defined as configurations
with fewer than k processes. In this example, policies are determined by a set of
rules, shown in Table 2. One reconfiguration can change several of these rules.

We can use addMan(p) to mark a specific process p as mandatory element
of P. Similarly, we can specify a process p as optional using remMan(p). Once
marked as optional, a process can no longer be marked as mandatory. The reason
for this is explained in Section 3. Additionally, we can specify a desired size for

Table 2. Rules for building a configuration, supported by our example

Rule Effect Rule Effect

addMan(p) mark p as mandatory setSize(n) specify desired size n for P
remMan(p) mark p as optional majority() use majority quorums

waro() use write-all-read-one quorums

P using setSize(n). If the number of mandatory processes is fewer than the
desired size, the policy function adds additional processes from A. Finally we
can use majority() and waro() to specify whether the quorum system should
use majority or write-all-read-one (WARO) quorums. For WARO quorums we
simply set WQc = {Pc} and RQc = {{p}|p ∈ Pc}. For majority quorums
any subset containing at least a majority of the processes in Pc forms a write
quorum (WQ), while any subset containing at least half the processes is a read
quorum (RQ). When the size or quorum system is changed, using setSize(n), or
majority() and waro(), the policy info has to specify an epoch number that is
used in the combination function.

When combining policies, we differentiate between processes explicitly marked
as optional, and unmarked processes. Combining two policies, a process explicitly
marked as optional in one of the policies retains this marking. Processes marked
as mandatory in one of the policies and not explicitly marked as optional remain
mandatory. When two policies include different setSize rules or specify different
quorum systems we adopt the size and quorum system from the policy with the
higher epoch number. If epoch numbers are equal, we choose the larger size and
majority quorums, if present, since these choices provide higher fault tolerance.

Using the rules from this example, |P| ≥ k holds as long as setSize(n) with
n < k is invoked and there are at least k processes available.

3 Problem: Atomic Storage using Smart Merge

In this section we specify our reconfigurable multi-reader multi-writer atomic
register. We assume a set of possible register values V, and a lattice of blueprints
(R,v,merge) with minimal element rI . We provide three operations, read,
write and reconf . A read() operation returns either a value v ∈ V or ⊥ /∈ V.
A write(v) operation takes an input v ∈ V.

We require that read and write operations are linearizable [10], and that
in a sequential execution, every read returns the value of the last write, or ⊥
if no write occurred before the read. This is the standard safety property of
atomic registers. The liveness of read and write depends on the reconfigurations
invoked. A reconfiguration changes which processes may fail, but also which
processes should invoke operations. We therefore discuss the reconf operation,
before presenting a common liveness property for all operations.

A reconf(r) operation proposes a blueprint r ∈ R, and returns a value r′ ∈ R
that determines the service configuration of the register. We say that a blueprint
r is chosen before time t in an execution, if r was returned by a reconf operation

before t in that execution. We say that rI is chosen by an implicit reconf oper-
ation, at the beginning of any execution. The following safety properties govern
which values may be chosen. These properties and other concepts introduced in
this section are defined in the context of a single execution:

Validity A chosen value r′ is the merge of input values to reconf operations.
Monotonicity If r′ is chosen by reconf(r), then r v r′ holds.
Comparability Any two chosen values are comparable, with respect to v.
Stability If r was chosen before the invocation of reconf, which returns r′, then

r v r′ holds.

Validity, monotonicity and comparability are standard requirements for values
returned from a lattice (e.g. in lattice agreement [9], [11]). However, to our knowl-
edge we are the first to require these properties in the context of reconfiguration.
Validity ensures that no arbitrary value is chosen. Monotonicity implies that r′

is the merge of r with another blueprint, e.g. r′ = merge(r, r′). This implies that
rules introduced in r are also applied in r′. For example, a process mandatory
in r will also be mandatory in r′, unless it was explicitly removed by another
reconf operation.

Our goal is for our service to eventually use a single service configuration.
This can be accomplished since comparability implies that at any time t, there
exists a blueprint among those chosen before t, that is maximal with respect to
v. We call this the current blueprint at time t, and the service configuration,
determined by this blueprint is called the current configuration.

To change the current blueprint, a reconf operation has to choose a blueprint
that is a greater lattice element than all previously chosen blueprints. Thus the
service can only replace r1 with r2 if r1 v r2 holds. It is therefore not possible
to add a process to A after it has been removed, since it will be listed in Arm.
Similarly for our example above, adding addMan(p) after remMan(p) will not
result in any changes. In practice however, a process can be re-added with a
different identifier.

Stability allows us to use the reconf operation to read the current blueprint.
In our example in Section 2, this can be used to determine the current epoch
number. Stability also implies that a new blueprint will always be merged with
a previously chosen blueprint. Thus, the input to a reconf operation does not
need to specify all desired rules and available processes. It is enough to include
all new rules and processes relative to some previously chosen blueprint.

We now specify which processes need to be correct to guarantee liveness.
We say that a process is correct at time t, if it did not fail before t. A service
configuration is available at time t, if there exists a read and write quorum of this
service configuration, such that all processes in these quorums are correct at t. We
require that the current configuration is available. To allow state transfer during
a reconfiguration, we also require that the service configurations of any new
blueprints are available. This is a common requirement for reconfigurations [3].
For SmartMerge, we define that r is a candidate blueprint at time t, if it is a
possible return value for some outstanding reconf operation at time t, and it is

greater than the current blueprint (cur v r). A service configuration determined
by a candidate blueprint, is called a candidate configuration.

We only require liveness for operations invoked by a process currently running
the register. These processes are called active: A process p is active if it is
correct at all times and after some time t, p ∈ Pcur always hold for the current
configuration cur. This definition is similar to [4]. We could also include a larger
set of clients, which can invoke operations, similar to [3] or [12]. This adds no
significant challenges to the problem and we omit it due to space constraints.

The following property summarizes under which conditions an operation is
required to return:

Liveness Suppose that only finitely many reconf operations are invoked during
an execution, and at any time the current and all candidate configurations
are available. Then a read, write or reconf operation, invoked by an active
process will return.

It was established in [13] that even a regular register is impossible to implement,
if the configuration changes infinitely often. Thus, we assume that only finitely
many reconfigurations are invoked.

Once cur 6v r holds for a blueprint r and the current blueprint cur, then r
can no longer become the new current blueprint. Thus r can be discarded. We
say that r is outdated. According to the definition of the current blueprint, r is
outdated, when some reconf operation returned r′, such that r′ 6v r holds. A
process can easily test the condition r′ 6v r by computing merge(r′, r) 6= r.

According to liveness, a process p can stop once it can no longer become
part of the current configuration. In our example, this is the case once p ∈ Arm

holds for the current blueprint.
To our knowledge we are the first to propose a scheme that determines which

blueprints are outdated and which processes can stop, based on return values of
reconfigurations. RAMBO [3] uses a garbage collection mechanism to find out-
dated configurations. Thus it potentially takes longer to detect outdated config-
urations. Furthermore, it is not possible to determine which configurations are
outdated, based on return values of reconfiguration operations. The specification
of DynaStore [4] does not use configurations, thus no outdated configurations
or blueprints are defined. Instead, a process can stop as soon as its removal is
proposed. To guarantee liveness DynaStore has to restrict the number of con-
current removals. This poses a significant restriction on reconfigurations, e.g. it
disallows concurrent replacement of all processes with new ones.

4 Algorithm: Atomic Storage using Smart Merge

We now present our implementation of a reconfigurable atomic register. The
implementation consists of a support for reconf operations (Algorithm 2) and
two functions get and set (Algorithm 3) that access the state of the register.
Algorithm 2 and Algorithm 3 internally use a configuration object to contact
the processes and access the state stored in a service configuration. We present

the implementation of a configuration object in Algorithm 1. The set and get
functions mask concurrent reconfigurations, so that we can use them to imple-
ment regular or atomic registers, using standard algorithms designed for a single
configuration (e.g. [5], [14]). For completeness, we show an implementation of
such atomic reads and writes in Algorithm 4.

The highlights and new techniques of our implementation include the use of
the lattice agreement abstraction in Algorithm 2 and handling of the returned
values. It makes the algorithm significantly more efficient, since the use of gen-
eralized lattice agreement reduces the number of configurations that have to
be processed. Furthermore, we implement set and get without relying on a se-
quence of chosen configurations, using only the weaker guarantees provided by
GLA. Finally, in our implementation, the removal of outdated blueprints and
their configuration objects is gracefully and efficiently integrated with concur-
rent operations.

Our reconfigurable register relies on a configuration object C (Algorithm 1),
which includes the service configuration c, the register state S, and a set next ⊂
R. A register state S ∈ V×T is a pair, consisting of a register value v ∈ V ∪{⊥}
and a timestamp ts = (n, id) ∈ T . A timestamp consists of a sequence number
n ∈ N and a process identifier id. Timestamps are ordered lexicographically.
next holds a set of blueprints whose purpose we explain below.

The configuration object C also abstracts communication between the pro-
cesses in Pc through a set of regular registers. For every process p ∈ Pc, C
contains registers p.S and p.next with the state of p’s local variables. Only pi

can write to pi.S and pi.next, but they can be read by all processes in Pc. To
read the register state of C, a process invokes C.readS(), which reads all regis-
ters p.S : p ∈ Pc and returns the state with the highest timestamp. To read the
set of next blueprints, a process reads all registers p.next and returns the union
of these values. Finally, we use reliable broadcast (rb), to notify members of a
new configuration when it becomes the current configuration. If some process
completes C.rb.broadcast(m), and a quorum of processes in Pc do not fail, all
correct processes in Pc will eventually invoke C.rb.deliver(m).

Regular registers and reliable broadcast can be implemented using textbook
algorithms [15], designed for an asynchronous message passing system with a
known finite set of processes and a fixed quorum system. Our configuration object
encapsulates the processes and quorums of a static configuration, which forms
the system on which these algorithms operate. To use a different configuration,
we create a new object. If a configuration becomes outdated, its processes might
stop and the static algorithms that operate on this configuration might never
return. We therefore abort any method in an outdated configuration.

In our algorithm, we use the la-propose primitive specified in Section 2. We
say that a value returned by la-propose is learned. Every process maintains a
set L, that contains the current and some candidate blueprints (Algorithm 2).
All elements in L were learned from la-propose. Comparability for la-propose
implies that L is totally ordered by v. For every blueprint r ∈ L, we also store
a configuration object C[r] determined by r. C[r] is created or deleted, when

Algorithm 1 Configuration object C at process pi

1: State :
2: c : (Pc,RQc,WQc) {Service configuration}
3: S : (S.v, S.ts)← s0 {Register state S ∈ V × T , s0 = (⊥,pi.id)}
4: next← ∅ {Next blueprints, next ⊂ R}
5: Communication Abstractions:
6: Regular SWMR registers
7: for each p ∈ Pc : p.S : (S.v, S.ts) {storing S ∈ V × T , initially s0}
8: for each p ∈ Pc : p.next {storing next ⊂ R, initially ∅}
9: rb {Reliable broadcast}

10: readS()
11: for p ∈ Pc

12: sp ← p.S.read()
13: t← max{sp.ts|p ∈ Pc}
14: return sp: s.t. p ∈ Pc ∧ sp.ts = t

15: writeNext(target) {invoked by pi}
16: next← next ∪ {target}
17: pi.next.write(next)

18: readNext()
19: for p ∈ Pc do
20: Cp ← p.next.read()
21: return

⋃
{Cp|p ∈ Pc}

22: writeS(s) {invoked by pi}
23: if s.ts > S.ts then
24: pi.S.write(s)
25: S ← s

r is added or removed from L. C[r] can also be created, when it is accessed
remotely though its communication abstractions. However, accesses to objects,
that belong to outdated blueprints are ignored.

We now discuss the reconf operation shown in Algorithm 2. The operation
starts by passing the blueprint rr to la-propose. We add the value learned from
la-propose to L. Since L is totally ordered by v, we can choose the maximum
in L, as target blueprint for our reconfiguration. To ensure that other processes
know that target was learned, we write target to all configurations that were
created using elements of L (Line 11). We also read the register state in all these
configurations to collect an up-to-date state (Line 12). On Line 14 we invoke
C[fr].readNext(), to find other learned blueprints and add them to L. Since we
assign elements from L to fr in order (Line 16), and C[fr].readNext() only returns
blueprints larger than fr, these new blueprints will be processed later.

Validity and comparability already hold for target on Line 6. To ensure sta-
bility, we replace target with a larger learned value on Line 8, if possible. After
processing all elements from L, we transfer the register state with the highest
timestamp, that was read, to C[target] (Line 18).

Before returning, and thus choosing target, we broadcast a 〈Chosen, target〉
message to all processes in C[target].Pc using the reliable broadcast (Line 19).

The processing of a 〈Chosen, target〉 message is shown in Algorithm 5. We
ignore a Chosen message for a blueprint smaller than cur. If 〈Chosen, target〉
was sent, some process completed state transfer to target. We can therefore
remove all elements smaller than target from L. Finally, if target was returned
by a reconf operation, smaller blueprints r @ target are outdated, according
to our definition in Section 3. Thus C[r] might no longer be available. In this

case, it may become impossible to read from or write to the registers in C[r].
We therefore abort all current and future methods on C[r]. On abort, the write
methods writeNext, writeS and rb.broadcast simply return, while readNext and
readS return the default values (∅ and s0).

We next present our set and get functions used to read and write the register
state (value, timestamp) from the current configuration. They are shown in
Algorithm 3. set writes a register state to all configuration objects C[r] that were
created using r ∈ L, while get reads the register state in all these configurations,
and returns the one with the highest timestamp. Note that when using writeS(s),
the register state is only overwritten if its timestamp is smaller than s.ts. set
and get also invoke readNext to add new learned values to L.

Algorithm 4 shows a possible implementation of atomic reads and writes us-
ing set and get. Note that on Line 7, we create a unique timestamp by increasing
the sequence number returned by get, and adding the writer’s identifier pi.id.

Discussion. We say that a blueprint r is used in an operation if the operation
invokes methods on C[r]. To analyze the overhead concurrent reconf operations
impose on read and write operations, we first establish the maximum number
of blueprints and configuration objects used in one operation. An operation only
uses blueprints from L, which only holds the initial element rI and values learned
from GLA (Algorithm 2, Lines 6, 7). In an execution with r reconf operations,
at most r different values are learned. Thus all operations use at most r + 1
different blueprints.

In DynaStore [4], the only other reconfigurable atomic register using a purely
asynchronous system, a single operation may have to contact processes in many
different configurations. Reconfigurations in DynaStore do not invoke lattice
agreement. Instead a configuration uses a weak snapshot object to store the set
of next configurations next. Without lattice agreement, non-comparable values
can be written to next. Therefore a process in DynaStore adopts the merge of
all configurations, returned by readNext as new target configuration. If three
reconfigurations, with target configurations cx, cy and cz are started concur-
rently, they can all be written to rI .next. A concurrent read operation might
not only have to contact cx, merge(cx, cy) and merge(cx, cy, cz), but also cy and
cz. Additionally, read operations in DynaStore also write to next. Thus, a read
operation concurrent with the three reconfigurations above might read {cx, cz}
from rI .next, and thus write cxz = merge(cx, cz) to cx.next. This creates another
configuration that other read operations have to contact. If 2r−1−r read opera-
tions and r reconfigurations are invoked concurrently, each by a different process,
one of these reads might have to contact as many as 2r−1 + r configurations.

We now analyze the number of communication steps for read and write
operations. Note that, the different registers that read in a readS or readNext
method, can be read concurrently (see Algorithm 1). It is even possible to per-
form the methods C[gt].readS and C[gt].readNext on Lines 4 and 6 of Algo-
rithm 3 concurrently, reading p.S and p.next at the same time. Thus a get
function only requires one communication step per used blueprint. Similarly, we
can perform the methods C[st].writeS and C[st].readNext invoked in the set

function concurrently. Since both set and get use at most r + 1 blueprints, a
read or write operation requires at most 2r + 2 communication steps. This
bound is the same as for the consensus-based approach in RAMBO [3].

Algorithm 2 Register Reconfiguration

1: State :
2: L← {rI} {Ordered set of learned, not outdated blueprints}
3: ∀r ∈ L : C[r] = CO(c : r.policy.srvConf(r.A)) {Conf. object, determined by r}
4: cur← rI {Current blueprint}
5: reconf(r)
6: target← la-propose(r) {See Section 2}
7: L← L ∪ {target}
8: fr← cur ; s← s0
9: repeat

10: target← max(L) {Maximum wrt. v; target for reconfiguration}
11: C[fr].writeNext(target) {Record: target was learned}
12: sr ← C[fr].readS()
13: if s.ts < sr.ts then s← sr {Remember most up-to-date register state}
14: L← L ∪ C[fr].readNext() {Check for learned blueprints}
15: if ∃r ∈ L : fr v r then
16: fr← min({r ∈ L|fr v r}) {Minimum wrt. v}
17: else break
18: C[target].writeS(s) {Transfer state to target}
19: C[target].rb.broadcast(〈Chosen, target〉) {Inform about new configuration}
20: return target

Algorithm 3 Get and Set Register State

1: get()
2: gt← cur ; s← s0
3: repeat
4: sr ← C[gt].readS()
5: if s.ts < sr.ts then s← sr
6: L← L ∪ C[gt].readNext()
7: if ∃r ∈ L : gt v r then
8: gt← min({r ∈ L|gt @ r})
9: else return s

10: set(s) {s a (timestamp,value) pair}
11: st← cur
12: repeat
13: C[st].writeS(s)
14: L← L ∪ C[st].readNext()
15: if ∃r ∈ L : st v r then
16: st← min({r ∈ L|st @ r})
17: else return

Algorithm 4 Atomic read/write at pi

1: read()
2: s← get()
3: set(s)
4: return s.v

5: write(v)
6: (v′, t′)← get()
7: t← (t′.n + 1,pi.id)
8: s← (v, t)
9: set(s)

Algorithm 5 Processing 〈Chosen〉
1: on C.rb.deliver(〈Chosen, target〉)

with cur @ target
2: L← L ∪ {target}
3: cur← target
4: for r ∈ L : r @ target do
5: abort any method on C[r]
6: L← L\{r}

5 Related Work

Previous work on reconfiguration of registers mainly use either the consensus-
based approach or DirectCombine, as introduced in Section 1. Early work [16,17]
assumed reconfigurations were issued by a single process. Thus avoiding the prob-
lem of concurrent reconfigurations, but failure of this process prevents further
reconfigurations.

Several works use the consensus-based approach to handle concurrent re-
configurations. They either implement consensus [18,19], or assume an external,
replicated configuration manager [3], [20]. All these systems establish a sequence
of configurations. Since consensus is impossible in the face of asynchrony [21],
these systems require additional assumptions, such as a failure detector or even-
tual synchrony. To guarantee liveness they assume, as we do, that an old config-
uration remains available until a newer configuration has started.

In [22] a group communication system is used to implement reconfiguration
of an atomic register. This approach is similar to the consensus-based approach.

To our knowledge, DirectCombine has only been used in a few systems
[4], [12,13]. These systems do not establish a sequence of configurations. Instead,
processes can be added to or removed from the service at any time. To guaran-
tee liveness they assume that only a bounded fraction of processes is removed
concurrently [4], [12], or during a specific time interval [13]. Different from our
work, [13] assumes an infinite sequence of reconfigurations. They also show this
is impossible in an asynchronous system.

A replicated state machine (RSM) [23] is a general approach to replicate
a service. An RSM can be used to implement atomic storage, where read and
write operations are chosen using consensus. Consensus-based reconfiguration of
an RSM was proposed in both [23,24] and has also been deployed in production
systems [25]. In our previous work, we showed that an RSM can be reconfigured
without relying on consensus [26]. In retrospect this work can be viewed as an
application of SmartMerge. It uses a trivial combination function, that always
chooses the configuration with the highest timestamp.

6 Conclusion

We presented an atomic register that uses a novel approach to combine concur-
rently issued reconfigurations in an asynchronous system. Our approach allows
reconfigurations to specify a policy, that determines how to form a service con-
figuration from the available processes. Different policies are aptly combined by
a merge function.

References

1. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: SOCC. (2012)

2. Ardekani, M.S., Terry, D.B.: A self-configurable geo-replicated cloud storage sys-
tem. In: OSDI 2014

3. Gilbert, S., Lynch, N., Shvartsman, A.: Rambo: a robust, reconfigurable atomic
memory service for dynamic networks. Distr. Comp. 23(4) (2010)

4. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without
consensus. J. ACM 58(2) (2011) 7

5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1) (January 1995) 124–142

6. Leners, J.B., Wu, H., Hung, W.L., Aguilera, M.K., Walfish, M.: Detecting failures
in distributed systems with the falcon spy network. In: SOSP 2011

7. Leners, J.B., Gupta, T., Aguilera, M.K., Walfish, M.: Improving availability in
distributed systems with failure informers. In: OSDI 2013

8. Vickers, S.: Topology Via Logic. Cambridge University Press (1989)
9. Faleiro, J.M., Rajamani, S., Rajan, K., Ramalingam, G., Vaswani, K.: Generalized

lattice agreement. In: PODC 2012
10. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12(3) (July 1990) 463–492
11. Attiya, H., Herlihy, M., Rachman, O.: Atomic snapshots using lattice agreement.

Distrib. Comput. 8(3) (March 1995) 121–132
12. Shraer, A., Martin, J.P., Malkhi, D., Keidar, I.: Data-centric reconfiguration with

network-attached disks. In: LADIS 2010
13. Baldoni, R., Bonomi, S., Kermarrec, A.M., Raynal, M.: Implementing a register

in a dynamic distributed system. In: ICDCS 2009
14. Shao, C., Welch, J.L., Pierce, E., Lee, H.: Multi-writer consistency conditions for

the shared memory objects. In: DISC 2003
15. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure

Distributed Programming. 2nd edn. Springer Publishing Company (2011)
16. Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using dy-

namic quorum-acknowledged broadcasts. In: FTCS 1997
17. Englert, B., Shvartsman, A.A.: Graceful quorum reconfiguration in a robust emu-

lation of shared memory. In: ICDCS 2000
18. Rodrigues, R., Liskov, B., Chen, K., Liskov, M., Schultz, D.: Automatic reconfig-

uration for large-scale reliable storage systems. IEEE Trans. Dependable Secur.
Comput. 9(2) (March 2012) 145–158

19. Chockler, G., Gilbert, S., Gramoli, V., Musial, P.M., Shvartsman, A.A.: Recon-
figurable distributed storage for dynamic networks. Journal of Parallel and Dis-
tributed Computing 69(1) (2009) 100 – 116

20. Martin, J.P., Alvisi, L.: A framework for dynamic byzantine storage. In: DSN 2004
21. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. J. ACM 32(2) (April 1985) 374–382
22. Prisco, R.D., Fekete, A., Lynch, N.A., Shvartsman, A.A.: A dynamic primary

configuration group communication service. In: DISC. (1999)
23. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. ACM Comput. Surv. 22(4) (December 1990) 299–319
24. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2) (May

1998) 133–169
25. Shraer, A., Reed, B., Malkhi, D., Junqueira, F.: Dynamic reconfiguration of pri-

mary/backup clusters. In: USENIX ATC. (2012)
26. Jehl, L., Meling, H.: Asynchronous Reconfiguration for Paxos State Machines. In:

ICDCN 2014

	SmartMerge: A New Approach to Reconfiguration for Atomic Storage

