
ar
X

iv
:1

50
6.

06
81

7v
2

 [c
s.

D
C

]
17

 A
ug

 2
01

5

On the Optimal Space Complexity of Consensus
for Anonymous Processes

Rati Gelashvili
MIT

gelash@mit.edu

Abstract

The optimal space complexity of consensus in shared memory is a decades-old open problem. For
a system ofn processes, no algorithm is known that uses a sublinear number of registers. However, the
best known lower bound due to Fich, Herlihy, and Shavit requiresΩ(

√
n) registers.

The special symmetric case of the problem where processes are anonymous (run the same algorithm)
has also attracted attention. Even in this case, the best lower and upper bounds are stillΩ(

√
n) and

O(n). Moreover, Fich, Herlihy, and Shavit first proved their lower bound for anonymous processes, and
then extended it to the general case. As such, resolving the anonymous case might be a significant step
towards understanding and solving the general problem.

In this work, we show that in a system of anonymous processes,any consensus algorithm satisfying
nondeterministic solo termination has to useΩ(n) read-write registers in some execution. This implies
anΩ(n) lower bound on the space complexity of deterministic obstruction-free and randomized wait-free
consensus, matching the upper bound and closing the symmetric case of the open problem.

http://arxiv.org/abs/1506.06817v2

1 Introduction
The celebrated Fischer, Lynch and Paterson (FLP) [FLP85] result proved that fundamental synchronization
tasks including consensus and test-and-set are not solvable in a wait-free manner using read-write registers.
However, the work of Ben-Or [BO83] shows that it is possible to circumvent FLP and obtain efficient
distributed algorithms, if we relax the problem specification to allow probabilistic termination. It is also
possible to solve these tasks deterministically, but obstruction-free instead of wait-free; it is known how
to convert any deterministic obstruction-free algorithm into a randomized wait-free algorithm against an
oblivious adversary (see [GHHW13]).

The space complexity of an algorithm is the maximum number ofregisters used in any execution. A lot
of research has been dedicated to improving the upper and lower bounds on the space complexity for canon-
ical tasks. For test-and-set, anΩ(log n) lower bound was shown in [SP89] and independently in [GW12].
On the other hand, anO(

√
n) deterministic obstruction-free upper bound was given in [GHHW13]. The fi-

nal breakthrough was the recent obstruction-free algorithm designed by Giakkoupis et al. [GHHW14], with
O(log n) space complexity, essentially closing the problem1.

For consensus, an upper bound withn registers was long known from [AH90]. A lower bound of
Ω(

√
n) by Fich et al. [FHS98] first appeared in 1993. The proof is notorious for its technicality and utilizes

a neat inductive combination of covering and valency arguments. Another version of the proof appeared in
a textbook [AE14]. However, a linear lower bound or a sublinear space algorithm has remained elusive to
date.

The authors of [FHS98] conjectured a tight lower bound ofΩ(n). But the linear lower bound has not
been proven even in a restricted, symmetric case, where all processes are anonymous. In such a system
processes can be thought of as running the same code: all processes with the same input start in the same
initial state and behave identically. The same linear upperbound holds for anonymous processes, since a
deterministic obstruction free consensus algorithm that usesO(n) registers is known [GR05]. Interestingly,
the proof in [FHS98] starts by showing theΩ(

√
n) lower bound for anonymous processes, which is then

extended to a much more complex argument for the general case. Therefore, a linear lower bound in the
anonymous setting might prove to be a meaningful step in better understanding and solving the general case
of the open problem.
Contribution. In this paper we prove theΩ(n) lower bound in the symmetric (anonymous) case for con-
sensus algorithms satisfying the standardnondeterministic solo terminationproperty. Any lower bound
for algorithms satisfying the nondeterministic solo termination implies a lower bound for deterministic
obstruction-free and randomized wait-free algorithms. Asin [FHS98, AE14], the bound is for the worst-
case space complexity of the algorithm, i.e. for the number of registers used in some execution, regardless
of its actual probability.

Our argument relies on a specific class of executions which wecall reserving, and on the ability to
define valency, corresponding to possible return values, for these executions. This definition of valency
and the ability to cover registers with modified contents by reserved processes greatly simplifies the task of
performing an inductive argument. We hope that these techniques will be useful for future work.

We also demonstrate how the lower bound can be extended to a non-anonymous, adaptive, setting where
processes come from a very large namespace and the bound depends on the size of the subset of processes
that actually participate in the execution. However, this extension requires additional restrictions on register
size and termination, and is provided mainly to illustrate an approach.
Definitions and Notation. We use the standard shared-memory model and similar notation to [FHS98,
AE14]. We consider anonymous processes and atomic read-write registers. A process iscoveringa register
R, if the next step ofp can be a write toR. A block writeof a set of processesP to a set of covered registers

1The space complexity of randomized test-and-set against a strong (adaptive) adversary remains open.

1

V is a sequence of write steps by processes inP , where each step is a write to a different register and all
registers get written to.

In a system of anonymous processes, if a processp in states performs a particular operation, for any
configuration with any processq in the same states, q can also perform the exactly same operation. Finally,
if p andq perform the same operation from the same state with the same outcome (i.e. read the same value),
then bothp andq end up in the same state after the operation. In the context ofrandomized algorithms,
anonymous processes always perform the same operation fromthe same state (including flipping coins with
the same random distribution), and end up in identical stateif they observe the same results.

A cloneof a processp, exactly as in [FHS98, AE14], is defined as another process with the same input
asp, that shadowsp by performing the same operations asp in lockstep, reading and writing the same values
immediately afterp, and remaining in the same state, all the way until some writeof p. Because the system
consists of anonymous processes, in any execution with sufficiently many processes, for any write operation
of p, there always exists an alternative execution with a cloneq that shadowedp all the way until the write.
In particular, in the alternative execution, processq coversthe register and is about to write the value thatp
last wrote there. Moreover, the two executions with or without the clone covering the register are completely
indistinguishable to all processes other than the clone itself.

An execution is a sequence of steps by processes and asoloexecution is an execution where all steps are
taken by a single process. An execution interval is a subsequence of consecutive steps from some execution.
In the binary consensus problem each participating processstarts with a binary input0 or 1, and must return
a binary output. The correctness criterium is that all outputs must be the same and equal to the input of some
process. We say that an execution intervaldecides0 (or 1) if some process returns0 (or 1, respectively)
during this execution interval.

A wait-free termination requirement means that each participating process must eventually return an
output within a finite number of own steps, regardless of how the other processes are scheduled. The FLP
result shows that in the asynchronous shared memory model with read-write registers, no deterministic
algorithm can solve binary consensus in a wait-free way. However, it is possible to deterministically solve
obstruction-free consensus, i.e. when processes are only required to return an output if they run solo from
some configuration. It is also possible to solve consensus ina randomized wait-free way, when processes are
allowed to flip random coins and decide their next steps accordingly. A nondeterministic solo termination
property of an algorithm means that from each reachable configuration, for each process, there exists a
finite solo execution by the process where it terminates and returns an output. We prove our lower bounds
for binary consensus algorithms that satisfy thisnondeterministic solo terminationproperty, because both
deterministic obstruction-free algorithms and randomized wait-free algorithms fall into this category.

2 Space Complexity Lower Bound
In order to demonstrate our approach, we start by presentinga different proof of theΩ(

√
n) space lower

bound in the anonymous setting. It uses induction on the number of registers written during an execution,
as opposed to induction on the tuple of sizes of pending blockwrites in [FHS98]. The proof also has an
additional benefit that the use of covering and valency arguments is decoupled. As usual, we use covering
to enforce writing to a new register, while a valency argument reminiscent of [FLP85] ensures that both
decision values remain reachable by solo executions.

Next, building upon this new argument, we prove anΩ(n) space lower bound for consensus with non-
deterministic solo termination in a system of anonymous processes. There are some significant differences,
for instance, the execution is constructed in such a way thatafter a register is written to, it always remains
covered. Moreover, valency is redefined to account for this specific class of executions. The rest is induction.

2

2.1 A Square-Root Lower Bound
In this section, we definevalencyas follows. If there is a solo execution of some process returning 0 from a
configuration, then we call this configuration0-valent(and1-valentif there is a solo execution of a process
that returns1). Solo termination implies that every configuration is0-valent or1-valent. Note that unlike the
standard definition of valency, our definition allows the same configuration to be simultaneously0-valent and
1-valent. We call such configurations that are both0-valent and1-valentbivalent, andunivalentotherwise.
Notice that a configuration is bivalent if two solo executions of the same process return different values. If a
configuration is0-valent, but not1-valent (i.e. no solo execution from this configuration decides1), then we
call it 0-univalent, meaning that the configuration is univalent with valency0. Analogously, a configuration
is 1-univalent if it is1-valent but not0-valent.

Observe that if we have at least two processes, then in every bivalent configuration we can always find
two distinct processesp and q, such that there is a solo execution ofp returning0 and a solo execution
of q returning1. This is because either the configuration is bivalent because of solo executions of distinct
processes, in which case we are done, or two solo executions of some process return different values, in
which case it suffices to consider any terminating solo execution of another process.

For the system of anonymous processes, and a consensus algorithm that uses atomic read-write registers
and satisfies the nondeterministic solo termination property, we prove the following statement by induction:

Lemma 2.1.For r ≥ 0, there exists a system of(r−1)r
2 +2 anonymous processes, such that for any consensus

algorithm, a configurationCr is reachable by an executionEr with the following properties:
• There is a setR of r registers, each of which has been written to duringEr, and
• the configurationCr is bivalent.

Proof. The proof is by induction, with the base caser = 0. Our system consists of two processesp andq,
p starts with input0, q starts with input1, andC0 is the initial state. Clearly, no registers have been written
to in C0 and bivalency follows by nondeterministic solo termination.

Now, let us assume the induction hypothesis for somer and prove it forr + 1. By the induction
hypothesis, we can reach a configurationCr using (r−1)r

2 + 2 processes. The goal is to use anotherr

processes and extendCr to Cr+1, completing the proof sincer + (r−1)r
2 + 2 = r(r+1)

2 + 2.
As discussed above, because we have at least2 processes andCr is bivalent, there exists a processp and

its solo executionα from Cr after whichp returns0 and a processq 6= p and its solo executionβ from Cr

after whichq returns1.2 Recall thatR is the set ofr registers that were written to in executionEr. For each
register inR, let a new process clone the process that last wrote to it all the way to covering the register
poised to write the same value as present in the register in configurationCr.

Let us now apply the covering argument utilizing the clones.Consider executionErαγβ, whereγ is a
block write toR by the new clones. We know that processp returns0 afterErα. During its solo executionα,
processp has to write to a register outside ofR. Otherwise, the configuration afterErαγ is indistinguishable
fromCr to processq as the values in all registers are the same, andq is still in the same state as inCr. Hence,
q will return 1 afterErαγβ as it would afterErβ, contradicting the correctness of the consensus algorithm.
Analogously, processq has to write outside ofR duringβ. Letα = α′wpα

′′, wherewp is the first write of
p outside the set of registersR, and letβ = β′wqβ

′′, with wq being the first write outside ofR. Let ℓ be the
length ofγβ′wq andBi be a prefix ofγβ′wq of lengthi, for all possible0 ≤ i ≤ ℓ.

Next, we use a valency argument to reachCr+1. We show that either the configuration reached after
Erα

′γβ′wq, or one of the configurations reached afterErα
′Biwp for somei, satisfies the properties necessary

to beCr+1. Clearly, we have used the right number of processes to reachany of these configurations and
r+ 1 registers have been written to while doing so, includingR and the register written bywp orwq. Thus,
we only need to show that one of these configurations isbivalent.

2Alternatively one can say executionErα ends withp returning0 andErβ ends withq returning1.

3

Assume the contrary. The configuration fori = 0 must be0-univalent, sincep returns0 only through-
out α′′, and we assumed that the configuration is not bivalent. Similarly, the configuration reached after
Erα

′γβ′wq = Erα
′Bℓ is 1-univalent. It is univalent by our assumption and1-valent asq running solo

returns1 throughβ′′ (α′ does not involve a write outside ofR andq cannot distinguish fromErβ
′wqβ

′′).
Because the configuration reached afterErα

′Bℓ is 1-univalent, any terminating solo execution of process
p from that configuration must also return1. In particular, every terminating solo execution that starts by
p performing its next stepwp returns1. So the configuration reached afterErα

′Bℓwp must be1-univalent:
solo executions ofp return1 (some solo execution terminates due to nondeterministic solo execution), and
it is univalent by our assumption (it is the same as configuration for i = ℓ). Therefore, the configuration
reached afterErα

′Biwp is 0-univalent fori = 0 and1-univalent fori = ℓ. Hence, we can find a switch-
ing point for somei andi + 1, where the configurationX reached byErα

′Biwp is 0-univalent, while the
configurationY reached byErα

′Bi+1wp is 1-univalent. Leto be the extra operation inBi+1.
Operationo is not byp and may not be a read or a write to the same register aswp writes to sincep

would not distinguish betweenX andY and would return the same output from both configurations through
the same solo execution, contradicting the existence of thedifferent univalencies. Otherwise, operationswp

ando commute. Letσ be a terminating solo execution fromY by the process that performed operationo,
where it returns1 due to the univalency ofY . Also consider this process performing its next operationo
from X. Sincewp ando commute, ando is not a read, the process cannot distinguish between the resulting
configuration andY and returns1 throughσ as fromY . However,oσ is a solo execution fromX that
returns1, contradicting the0-univalency ofX. The contradiction proves the induction step, completing our
induction.

Notice that forn processes,Lemma 2.1directly implies the existence of an execution whereΩ(
√
n)

registers are written to, proving the desired lower bound.

2.2 Linear Lower Bound
Consider systems withn anonymous processes and an arbitrary correct consensus algorithm satisfying the
nondeterministic solo termination property. We will assume that no execution of the algorithm uses more
thann/20 registers (otherwise, we are trivially done), and prove that such an algorithm has to useΩ(n)
registers, which completes the proof. For notational convenience, let us definem to ben/20.

The argument inLemma 2.1relies on a new set of clones in each iteration to overwrite the changes
to the contents of the registers made during the inductive step. This is the primary reason why we only
get anΩ(

√
n) lower bound. As the authors of [FHS98] also mention, to get a stronger lower bound we

would instead have to reuse existing processes. In order to do so, these existing processes need to cover the
registers in our inductive configurations (we must also ensure proper valency conditions on what they are
about to write, but let us focus on the covering). Now, even ifwe reach such a configuration, during a solo
execution interval of some process in the subsequent induction step, all the registers may get written to, and
we would have to use all the covering existing processes to overwrite the changes. Therefore, in the next
configuration, there is no way to guarantee that the existingprocesses would still cover various registers.

This is the primary reason why we have to replace solo executions in the proof with a different class
of executions that we callreserving. Intuitively, reserving executions ensure that for the registers that are
written to, some processes are reserved to cover them. This way, we can have reserved processes cover
the registers in subsequent inductive configurations. Notice that the definition of valency used in the proof
of Lemma 2.1was based on solo executions. Thus, we also redefine valency based on reserving executions.

2.2.1 Reserving executions
The following is a formal definition of a reserving executioninterval.

4

Definition 2.2. LetC be some configuration reachable by the algorithm, and letP be a set of at leastm+1
processes. We call an execution intervalγ that starts from configurationC reservingfromC byP if:

• Every step inγ is by a process inP .
• At any time during the execution ofγ: if we letRw be the set of registers written to so far duringγ,

then, for each register inRw, there is areservedprocessp ∈ P covering that register, one per register.
• If a processp ∈ P returns duringγ then it does so in the last step ofγ.

Notice that by definition any prefix of a reserving execution interval is also a reserving execution interval.
LetRes(C,P) be the set of all reserving execution intervals fromC by processes inP that end with a process
p ∈ P returning. We first show that given sufficiently many processes, such an execution interval exists.
This is essential for defining the valency later. Recall thatwe assumed a strict upper bound ofm on the
number of registers that can ever be written.

Claim 2.3. For any reachable configurationC and a set of at leastm+ 1 processesP , none of which have
returned yet, we have thatRes(C,P) 6= ∅.

Proof. For a givenC andP , we will prove the claim by constructing a particular reserving execution interval
γ that ends when some processp ∈ P returns. We start with an emptyγ and continuously extend it. In the
first stage, one by one, for each processp ∈ P :

• Due to the nondeterministic solo termination, there existsa solo execution ofp wherep returns.
– If p ever writes to any register during this solo execution, extendγ by the prefix of the execution

before this write, and move to the next process inP .
– Otherwise, completeγ by extending it with the whole solo execution ofp.

We have finitely many processes and the first stage described above consists of extending the execution
interval at most|P | times. Each time, because of the nondeterministic solo termination for some process
p ∈ P , we extendγ by a prefix of a finite solo execution ofp. Moreover, all operations are reads by
processes inP , and therefore the prefix ofγ constructed so far is reserving.

If some process returns in the first stage, the construction of γ is complete. Otherwise, since the first
stage is finite, we move on to the second stage described below. In the configuration after the first stage each
of the at leastm+ 1 processes inP is covering a register (by their next write operation after the first stage).
From that configuration, the execution intervalγ is extended by repeatedly doing the following:

1. Let R be the set of covered registers by processes ofP . Since|R| ≤ m < |P |, we can find two
processesp, q ∈ P covering the same register inR.

2. Due to the nondeterministic solo termination, there exists a solo execution ofp wherep returns.
– If p ever writes to a register outside ofR during this solo execution, extendγ by the prefix of

the execution before this write, and continue from the first step. Notice that at the beginning of
the next iteration, processp still covers a register as required.

– Otherwise, completeγ by extending it with the whole solo execution ofp.
In the second stage, each iteration terminates, since for any processp ∈ P , we can extend by at most the
terminating solo execution ofp, which exists and is finite. After each iteration, if the construction is not
complete, the size ofR increases by one. But there are at mostm registers in the system and|R| ≤ m.
Thus, after at mostm finite extensions, we will complete the construction ofγ when some process returns.

The execution is reserving because at all times, the registers that were written-to are inR. Moreover, for
each register inR, there is always a process covering it starting from the timeit was first covered by some
processp in the second step of some iteration all the way until the end of γ.

The next claim follows immediately from the definition of reserving executions.

Claim 2.4. Consider a reachable configurationC, a set of at leastm+ 1 processesP ′ none of which have
returned yet, and another configurationC ′ reached after some processp 6∈ P ′ performs a write operation

5

wp in C. Moreover, assume that another processq 6= p with q 6∈ P ′ is covering the same register thatwp

writes to. Then ifγ ∈ Res(C ′, P ′), thenwpγ is in Res(C,P) whereP = P ′ ∪ {p} ∪ {q}.

2.2.2 New definition of valency
We say that a configurationC is 0-valentU with respect to the set of processesU , if there exists a subset of
at leastm + 1 processesP ⊆ U and a reserving execution inRes(C,P) that finishes when some process
in P returns0. We callC 0-valentm+1

U w.r.t. U , if there exists a subset ofexactlym + 1 processesP ⊆ U
(|P | = m + 1), and a reserving execution interval inRes(C,P) returning0. We define1-valentU and
1-valentm+1

U analogously. IfU contains at leastm+ 1 processes that have not returned,Claim 2.3implies
that every configuration is0-valentm+1

U or 1-valentm+1
U (and thus0-valentU or 1-valentU).

As in our earlier definition inSection 2.1, but unlike the standard definition, a configuration that is0-
valentm+1

U can still also be1-valentm+1
U in which case we call it bivalentm+1

U . Basically, a configuration
is bivalentm+1

U if it is both 0-valentm+1
U due to someP ⊆ U and1-valentm+1

U due to someQ ⊆ U . A
configuration that is not bivalentm+1

U is called univalentm+1
U . Finally, similar to our earlier convention,

we define a configuration to be0-univalentm+1
U if it is 0-valentm+1

U but not 1-valentm+1
U . On the other

hand, a configuration that is1-valentm+1
U but not0-valentm+1

U is called1-univalentm+1
U . Terms bivalentU ,

univalentU , 0-univalentU and1-univalentU are defined analogously.
Next we prove a claim that lets us find reserving executions consisting of disjoint processes.

Claim 2.5. Consider a configurationC which is bivalentU w.r.t. U . Assume that there are (possibly in-
tersecting) sets of at leastm + 1 processes eachP ⊆ U andQ ⊆ U such that|U | ≥ |P | + |Q| + m,
and some reserving execution inRes(C,P) ends whenp ∈ P returns0, while some reserving execution in
Res(C,Q) ends whenq ∈ Q returns1. Then there are also disjoint sets of processesP ′ ⊆ U andQ′ ⊆ U
(P ′ ∩ Q′ = ∅), such that an execution inRes(C,P ′) returns0 and an execution inRes(C,Q′) returns1.
Moreover,m+ 1 ≤ min(|P ′|, |Q′|) ≤ min(|P |, |Q|) andmax(|P ′|, |Q′|) ≤ max(|P |, |Q|).

Proof. None of the processes inU may have already returned in configurationC, as that would contradict
the existence of a reserving execution returning the other output. If P andQ do not intersect then we set
P ′ = P andQ′ = Q. Otherwise, we can find a setH ⊆ U − P − Q of m + 1 processes. ByClaim 2.3,
Res(C,H) is non-empty, and without loss of generality, some execution in Res(C,H) returns0. Then, we
setP ′ = H andQ′ = Q (if all executions inRes(C,H) return1, we would setP ′ = P andQ′ = H).

2.2.3 The process-clone pairs and the proof
As mentioned earlier, it is obviously not sufficient to simply cover registers with existing processes without
any knowledge of what they are about to write. In the proof ofLemma 2.1we used new clones that covered
registers to block-overwrite these registers back to the contents whose valency we knew. In order to do
something similar with existing processes, we associate a dedicated clone to each process. The process and
its clone remain in the same states and perform the same operations during the whole execution.

Usually, when we schedule a process to perform an operation,its clone performs the same operation
immediately after the process. Thus the pair of the process and the clone remain in the same state. Under
these circumstances, we can treat the pair of the process andits clone as a single process, because no process
can distinguish the execution from when the clone would not take steps. However, sometimes we willsplit
the pair by having only the process perform a write operationand let the clone cover the register. We will
explicitly say when this is the case. After we split the pair of process and clone in such a way, we will not
schedule the process to take any more steps and thus the clonewill remain poised to write to the covered
register. After some delay, we will schedule the clone of theprocess to write, effectively resetting the register
to the value it had when the process wrote. Moreover, becausemeanwhile the process did not take any steps,
after the write the clone will again be in the same state as itsassociated process. Hence the pair of the
process and clone will no longer be split, and will continue taking steps in sync like a single process.

6

This is different from the way clones were used in the proof ofLemma 2.1, because after the pair of
the process and its clone is united, it can be split again. Therefore, the same clone can reset the contents of
registers written by its associated process multiple times, instead of requiring a new clone every time.

We call a split pair of a process and a clonefreshas long as the register that the process wrote to, and its
clone is covering, has not been overwritten. After the register is overwritten, we call the split pairstale.

In addition, we also use cloning in a way similar to the proof of Lemma 2.1, except that we do this
at most constantly many times, as opposed tor times, to reach the next configurationCr+1. Moreover,
each time when we do this, we create duplicates of both the process and its corresponding clone. This new
process-clone pair is in the same state as the original pair,and from there on behaves like a single new
process similar to all other pairs. We will always consider valency with respect to sets of processes whose
pairs are not split. Therefore, the definition of valency does not need to change when the clones keep taking
steps immediately after their processes.

Sometimes, when considering process-clone pairs, none of which are split, we may refer to them as
processes, i.e. we may talk about a process taking steps or returning a value. As mentioned earlier, it is
assumed that as long as the pair is not split, the clone alwaysfollows and takes the same steps right after the
process. Hence, in this context, a process taking a step means a pair taking a step.

Now we are ready to prove the main result.

Theorem 2.6.In the system of anonymous processes, consider any correct consensus algorithm satisfying
nondeterministic solo termination, with the property thatevery execution uses at mostm registers. For each
r with 0 ≤ r ≤ m, there exists a setU containing5m+6+2r process-clone pairs such that a configuration
Cr is reachable through an executionEr by processes and clones inU with the following properties:

1. There exists a setR of r registers, that can be partitioned in two disjoint subsetsR = Rs∪Rc, where:
– Rs consists of all registers in the system that each have one fresh split pair on them, last written

by some process whose clone has not yet performed the write and is covering the register.
– Rc = R−Rs. Each register inRc is covered by an unique pair of both a process and its clone.

Thus, each fresh pair is split on a different register inRs, and an additional|Rc| pairs are covering
the registers inRc. LetV be the set of these|Rs|+ |Rc| = r pairs.

2. There are at mostr stale split pairs in the system, that are all split on pairwise different registers from
R. LetL be the set of these at mostr stale split pairs.

3. There exist disjoint sets of process-clone pairs that arenot splitP,Q ⊆ U − V −L with |P |+ |Q| ≤
2m+ 4, such that an execution inRes(Cr, P) returns0 and an execution inRes(Cr, Q) returns1.3

Proof. The proof is by induction onr, with the base caser = 0. Out of the5m + 6 processes-clone pairs,
half of them start with an input0 and half start with an input1. We letC0 be the initial state,P be a set of
somem+1 pairs with input0, andQ be a set of somem+1 pairs with input1. The first two properties are
trivially satisfied; alsoP ∩ Q = ∅ and|P | + |Q| = 2m + 2. By Claim 2.3and correctness of consensus,
there is a reserving execution inRes(C0, P) that decides0, and a reserving execution inRes(C0, Q) that
decides1 (C0 is bivalentU). Observe that the pairs are not split and for the purposes ofvalency we can just
consider the steps of processes.

Now, let us assume induction hypothesis for somer, i.e. the existence ofEr andCr with the required
three properties, and prove the step forr + 1 by extendingEr to Er+1, resulting in the configurationCr+1.
Let U , P , Q, V , L andR = Rs ∪ Rc all be defined as in the theorem statement forr. Our goal is to
construct setsU ′, P ′, Q′, V ′, L′ andR′ = R′

s ∪ R′

c for r + 1. In U ′ − U we have two more process-clone
pairs available that have not taken steps and can be used to clone an existing process-clone pair. LetT
denoteU − V − L− P −Q. Since|V | = r, L ≤ r and|P |+ |Q| ≤ 2m+ 4, we have|T | ≥ 3m+ 2.

3The pairs of processes inP andQ are not split, because all split pairs belong toV ∪ L (fresh toV and stale toL). Also, the
third condition implies that the configurationCr is bivalentU−V −L.

7

For all but|Rs| + |L| split pairs both processes and clones are in the same states,about to perform the
same operations. By definition, each stale pair inL is split on a different register fromR. In the following
argument, we extend the execution fromEr to Er+1 by steps of processes and clones not inL. This can
introduce new stale split pairs and the resulting configuration Cr+1 may not immediately satisfy the second
property. We will then show how to modify the extension and unite some stale split pairs, such that the
resulting configuration satisfies all properties, including the second property with the newL′.

Let α ∈ Res(Cr, P) be the reserving execution interval that returns0, and letβ ∈ Res(Cr, Q) be the
reserving execution interval that returns1. Notice that each time a process inP or Q takes a step inα or
β, its clone performs an identical step immediately after. The executionErα ends with a process-clone pair
p ∈ P returning0 and the executionErβ ends with a process-clone pairq ∈ Q returning1.

Each register inRc was covered by some pair of both a process and its clone inV . Let γc be a block
write to all registers inRc by only the processes but not the clones of these respective covering pairs: i.e.
after each write we get a new fresh split pair. Consider a configurationD reached fromCr by executing
this block write, i.e. a configuration reached afterErγc. Assume thatD is 1-valentm+1

T , without loss of
generality, because it has a valency. For any execution interval e, let us denote byW (e) the set of registers
written to duringe. Hence,Rs ∩W (e) is the set of registers inRs that are written-to duringe. Each register
in Rs is covered by a clone of a split pair whose process has alreadyperformed the write and is stopped.
Defineγs(e) as a block write to all registers inRs ∩ W (e) by these trailing clones of the split pairs inV :
i.e. after each write another clone catches up with its process and a previously split pair is united. Basically,
if we run an execution intervale from Cr that changes contents of some registers inRs, we can then clean
these changes up by executingγs(e), which leads to all registers inRs having the same contents as inCr.

Using a crude covering argument we can first show that

Claim 2.8. The execution intervalα must contain a write operation outsideR.

Based on this we can writeα = α′wpα
′′, wherewp is the write operation to a registerreg 6∈ R, performed

by some process-clone pairp ∈ P .
Looking ahead, when we reachCr+1, the new set of registersR′ will be R ∪ {reg}. Next, we prove the

following claim using an FLP-like case analysis:

Claim 2.9. We can extend executionEr (i.e. fromCr) with an execution intervale and reach a configuration
satisfying the first and the third inductive requirements tobeCr+1 with a properly definedU ′, P ′, Q′, V ′

andR′ = R′

s∪R′

c, and with all process-clone pairs that are not split being insync. But the second property
is not immediately satisfied. All stale split pairs fromL remain stale and split, but some pairs that were fresh
and split on registers inRs ∩ W (e) may have become stale inCr+1 (because neither the process nor the
clone in the split pair has taken steps while the register wasoverwritten ine). However, these are the only
possible new stale split pairs inCr+1, and they do not belong to the new setsV ′ ∪ P ′ ∪Q′.

The proofs of these claims are provided later. In order to finish the proof of the theorem, we need to
show how to constructL′. According to the aboveClaim 2.9we can extend the execution to reach the next
configurationCr+1 satisfying first and third but not the second property about the stale split pairsL′. In
Cr we had at mostr stale pairs in the system, each split on a different register, andL was the set of these
pairs. But on the way to reachingCr+1, we may have introduced new stale pairs in the system. According
to Claim 2.9these must be the pairs that were fresh and split on registersin Rs ∩ W (e) in Cr, and whose
associated register inRs has been overwritten duringe, making them stale inCr+1.

The set of all stale pairs inCr+1 may not satisfy the requirements imposed forL′, since there could
already have been a stale pair split on a register inRs ∩W (e) in L (in Cr). Then two stale pairs would be
split on this register inCr+1, violating the second property. However, for each such register inRs ∩W (e),
we know a stale pairρ ∈ L was split on it inCr, and that this register was written-to during extensionW (e).
We now modify the extensione; we add a single write by the clone of the stale split pairρ immediately

8

before a write operation to the same register that was already in e. This way, no pair other than the clone
of ρ observes a difference between the two executions, and we will use the configuration reached by the
modified execution asCr+1. Because of this indistinguishability, the newCr+1 still satisfies other required
properties. Moreover, the pairρ is not split anymore; it is united since the clone has caught up with its
process.

We can do the above modification to the execution for each register inRs ∩W (e) that previously ended
up with two stale split processes inCr+1. Let the modified execution extension bee′. In e′, some stale split
pairs fromL are united, indistinguishably to all other processes and clones, leading to a configurationCr+1,
that still satisfies the first and third properties, and has atmost one stale pair split on any register. We takeL′

to be the set of stale split pairs. By construction, all stalepairs are split on registers inR′ and no two on the
same register, so we do have|L′| ≤ r+1 as desired. Hence, we have reached configurationCr+1 satisfying
all properties and completing the proof.

Corollary 2.7. In a system ofn anonymous processes, any consensus algorithm satisfying non-deterministic
solo termination must useΩ(n) registers.

Proof. Theorem 2.6directly implies theΩ(n) lower bound on the number of registers used in some exe-
cution. If n is the number of anonymous processes and no execution uses more thanm = n/20 registers,
by Theorem 2.6we can reachCm for large enoughn, and we have enough processesn ≥ 10m+12 + 4m.
In Cm there arem registers inR, each of which has either already been written-to (Rs) or are covered by
unique processes (Rc). We could perform a block write toRc by covering processes fromV in Cm, after
which in the resulting executionm = n/20 = Ω(n) different registers would have been written to.

We now provide the delayed proofs for the claims.

Claim 2.8. The execution intervalα must contain a write operation outsideR.

Proof. Assume the contrary. We know that the executionErα decides0. No process or clone that takes a
step inγc or γs(α) appears inα (they belong toV , disjoint fromP andQ), and by definition, no process or
clone fromT takes a step inα, γc or γs(α). Thus, to all processes (and clones) inT , the configurations after
Erαγs(α)γc and afterErγc, which is configurationD, are indistinguishable. This is because no process
(or clone) inT has taken steps, the registers inR contain the same values, and other registers were not
touched duringα, γs(α) or γc. ConfigurationD is 1-valentm+1

T , so some extension fromErαγs(α)γc by an
execution interval fromRes(D,T) decides1. This contradicts the correctness of the algorithm.

Claim 2.9. We can extend executionEr (i.e. fromCr) with execution intervale and reach a configuration
satisfying the first and the third inductive requirements tobeCr+1 with properly definedU ′, P ′, Q′, V ′ and
R′ = R′

s ∪ R′

c, and with all process-clone pairs that are not split being insync. But the second property is
not immediately satisfied. All stale split pairs fromL remain stale and split, but some pairs that were fresh
and split on registers inRs ∩ W (e) may have become stale inCr+1 (because neither the process nor the
clone in the split pair has taken steps while the register hasbeen overwritten ine). However, these can be
the only new stale split pairs inCr+1 and they do not belong to the new setsV ′ ∪ P ′ ∪Q′.

Proof. The proof works by case analysis. We use the notation fromTheorem 2.6. T does not contain any
split pairs, so we can consider valency with respect to processes inT .

9

Figure 1: Case 1

process clone

wp wp

. . .
. . .

a′ A1
a′′

A2

Aℓ

Cr

Case 1: the configuration reached by the executionErα
′ is 1-valentm+1

T : Let ℓ be the length ofwpα
′′

andAj be a prefix ofwpα
′′ of sizej for 0 ≤ j ≤ ℓ. Here we consider steps of process-clone pairs fromP ,

i.e. the difference betweenAj andAj+1 is the same operation performed twice by a process and its clone,
andl counts these couples of identical operations, as illustrated inFigure 2.2.3. Pairs inP are not split, as
by the inductive hypothesis only pairs inV ∪ L are split, and(V ∪ L) ∩ P = ∅.

We consider two further subcases.
Case 1.1: for some0 ≤ j ≤ ℓ, the configuration reached by the executionErα

′Aj is bivalentm+1
T : In

this case, we letCr+1 be precisely the configuration reached byEr+1 = Erα
′Aj , and letR′ = R ∪ {reg}.

Clearly, |R′| = r + 1. Moreover, sinceCr+1 is bivalentm+1
T there are two subsets ofm + 1 process-clone

pairs inT and respective reserving execution intervals fromCr+1 that return0 and1. Since|T | ≥ 3m+ 2,
by Claim 2.5, we can actually findP ′ ⊆ T andQ′ ⊆ T , with P ′ ∩Q′ = ∅ and|P ′| = |Q′| = m+ 1, such
that an execution inRes(Cr+1, P

′) returns0 and an execution inRes(Cr+1, Q
′) returns1. These setsP ′ and

Q′ are the new sets of pairs forCr+1, and as required|P ′|+ |Q′| = 2m+ 2 ≤ 2m+ 4.
The new setR′

s will be Rs − (Rs ∩ W (α′Aj)), i.e. the registers fromRs that have not been touched
during our execution extensionα′Aj from Cr to Cr+1. For each of these registers we still have the same
one pair fromV split on it, and since this pair was fresh inCr and the register has not been written to during
the extension, it is still fresh inCr+1 as required. There are no other fresh split pairs inCr+1: no new split
pairs were introduced during the extension, and the rest of fresh pairs inCr were split onRs ∩ α′Aj . These
pairs are not fresh inCr+1, as their register was written to during the extension.

The setR′

c is simply(R ∪ {reg})− R′

s = Rc ∪ (Rs ∩W (α′Aj)) ∪ {reg}. We must show that there is
a unique process-clone pair covering each of these registers. For each register inRc, we take the same pair
from V that was associated and covering it inCr. For each register in(Rs ∩W (α′Aj)) ∪ {reg}, we find a
unique pair fromP covering it inCr+1. Sinceα is a reserving execution interval fromCr, all its prefixes
includingα′Aj are also reserving. Thus, inCr+1 for each register that has been ever written to duringα′Aj,
in particular for registers in(Rs ∩ W (α′Aj)) ∪ {reg}, we find and associate a unique covering pair inP .
Technically, ifj = 0, registerreg is not yet written, but the next operation inα iswp by a pair coveringreg.

The setV ′ contains allr+1 pairs that we associated with registers inR′, soV ′ ⊆ V ∪P . The number of
stale split pairs may have increased, however. We still havepairs inL plus|Rs∩W (α′Aj)| of the previously
fresh pairs that are now stale. We deal with this inTheorem 2.6by modifying the execution extension to
unite some stale pairs fromL, leaving us with a desired subsetL′ of at mostr + 1 stale pairs.

Finally, asP ′, Q′ ⊆ T , andT was disjoint fromV , P , Q andL, (P ′ ∪Q′)∩ (V ′ ∪L′) = ∅ as required.
Case 1.2: for every0 ≤ j ≤ ℓ, the configuration reached by the executionErα

′Aj is univalentm+1
T :

By Case 1 assumptionErα
′A0 is 1-valentm+1

T , so it must be1-univalentm+1
T . On the other hand,α ends

with a process (and its clone) returning0, so the configuration reached byErα
′Aℓ must be0-univalentm+1

T .
No intermediate configuration is bivalent, so we can find a0 ≤ j < ℓ such thatErα

′Aj leads to a1-
univalentm+1

T configuration andErα
′Aj+1 leads to a0-univalentm+1

T configuration. We takeCr+1 to be the
configuration reached afterEr+1 = Erα

′Aj , and define setsR′

c, R
′

s, V
′ andL′ the same way as ifCr+1

was bivalent inCase 1.1. This still works, but we need a new way to findP ′ andQ′ with desired properties.
Let o be the operation by a process-clone pair inP separatingAj andAj+1. o may not be a read,

10

as no process (or clone) inT can distinguish between configurations afterErα
′Aj or Erα

′Ajo, making it
impossible for these configurations to have different univalencies w.r.t. toT . LetQ′ be a set of anym + 1
pairs inT . By Claim 2.3, Res(Cr+1, Q

′) is non-empty and sinceCr+1 is 1-univalentm+1
T , all executions in

Res(Cr+1, Q
′) return1. Recall thatU ′ is U plus two process-clone pairs that have not taken any steps, so

that |U ′| = |U |+ 2 ≤ 5m+ 6 + 2(r + 1). Let us use these process-clone pairs to create two duplicates of
the process-clone pair performing the write operationo. Both of these new pairs will be in the same state
as the original pair performingo. These duplicate processes (and their clones) are thus poised on the same
register about to perform write operationso′ ando′′ identical to the operationo at configurationCr+1.

Recall that|T | ≥ 3m+ 2 and letF be a set ofm+ 1 pairs fromT −Q′. LetP ′ be the union ofF and
the two new duplicate pairs,|P ′| = m+3 in total. LetO be the0-univalentm+1

T configuration reached after
Erα

′Aj+1 = Erα
′Ajo = Er+1o. Due to0-univalency, there is a reserving executionξ ∈ Res(O,F) that

returns0. Having one duplicate pair performo′ from Cr+1 while another covers the same register with the
same operationo′′, we reach the state indistinguishable fromO for all m + 1 pairs inF . Thus, execution
o′ξ from Cr+1 returns0, and byClaim 2.4, o′ξ ∈ Res(Cr+1, P

′). By construction|P ′| + |Q′| = 2m + 4
andP ′ ∩Q′ = ∅, as desired and the intersection ofP ′ andQ′ with V ′ or L′ is empty like inCase 1.1.

The remaining case is when the configuration reached by the executionErα
′ is 0-univalentm+1

T . It is a
bit more involved but utilizes the same general ideas and techniques. One difference is that we also split
pairs. The construction is given inAppendix A.

3 Extensions
Adaptive Lower Bound: Let us sketch a proof for an adaptive linear lower bound on thespace complexity
of consensus for non-anonymous processes but under extra restrictions on register size and solo termination.
In this setting, processes are no longer anonymous, but we assume they come from a very large namespace.
Each of these huge number of processes executes its own code,however, we get to choose which subset of
processes participates in the execution. We show that thereis a linear space lower bound that depends on
the number of participating processes, that is, for large enough namespace, we can find an execution ofn
processes (out of all processes) whereΩ(n) registers get written.

The restrictions are that the registers have a bounded size and that the consensus algorithm satisfies
bounded nondeterministic solo termination property, meaning that there always is a terminating solo execu-
tion of a process consisting of less than certain number of steps. If we had bounded nondeterministic solo
termination, the lower bound execution for anonymous processes constructed inTheorem 2.6would always
contain less thanB steps, whereB is a finite bound that only depends onn and the solo termination bound.
As registers have a bounded size, for both input values, a process can exhibit only finitely many different
behaviors during its firstB steps, because in each step it can either read or write a fixed number of different
values. For a sufficiently large namespace (depending onB, n and register size), by pigeon-hole principle,
we can findn processes such that half of them start with input1, half start with0 and all processes with the
same input behave as anonymous for the firstB steps of an execution. Hence, we can useTheorem 2.6and
get an execution wheren/20 registers are written to, as described at the end ofSection 2.2.
Future Work: We believe that is should be possible to derive the above adaptive lower bound without
the bounded solo termination assumption, and to get good estimate on the required size of the namespace.
However, the major open problem is still to resolve the general, non-anonymous and non-adaptive case, i.e.
to get tight bounds on the space required to solve consensus with exactlyn asymmetric processes.

4 Acknowledgments
Support is gratefully acknowledged from the National Science Foundation under grants CCF-1217921,
CCF-1301926, and IIS-1447786, the Department of Energy under grant ER26116/DE-SC0008923, and
the Oracle and Intel corporations.

11

The author would like to thank Nir Shavit, Michael Coulombe and Dan Alistarh for helpful conversations
and feedback, and the anonymous reviewers for their excellent comments.

References
[AE14] Hagit Attiya and Faith Ellen. Impossibility resultsfor distributed computing.Synthesis Lec-

tures on Distributed Computing Theory, 5(1):1–162, 2014.1, 2

[AH90] James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory.Journal
of Algorithms, 11(3):441–461, September 1990.1

[BO83] Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. InProceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, PODC ’83, pages 27–30, New York, NY, USA, 1983.
ACM. 1

[FHS98] Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized synchro-
nization.Journal of the ACM (JACM), 45(5):843–862, 1998.1, 2, 4

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed con-
sensus with one faulty process.Journal of the ACM (JACM), 32(2):374–382, 1985.1, 2

[GHHW13] George Giakkoupis, Maryam Helmi, Lisa Higham, andPhilipp Woelfel. AnO(
√
n) space

bound for obstruction-free leader election. InDistributed Computing, pages 46–60. Springer,
2013.1

[GHHW14] George Giakkoupis, Maryam Helmi, Lisa Higham, andPhilipp Woelfel. Test-and-set in opti-
mal space. 2014. Accepted to STOC 2015.1

[GR05] Rachid Guerraoui and Eric Ruppert. What can be implemented anonymously? InDistributed
Computing, pages 244–259. Springer, 2005.1

[GW12] George Giakkoupis and Philipp Woelfel. On the time and space complexity of randomized test-
and-set. InProceedings of the 2012 ACM symposium on Principles of Distributed Computing,
pages 19–28. ACM, 2012.1

[SP89] Eugene Styer and Gary L Peterson. Tight bounds for shared memory symmetric mutual ex-
clusion problems. InProceedings of the eighth annual ACM Symposium on Principles of
distributed computing, pages 177–191. ACM, 1989.1

12

Figure 2: Case 2

process clone
.

a′

Cr
. . .

γs(a
′)

γc

B1

B2
Bl

A Last case of the proof ofClaim 2.9
The notation here is the same as inTheorem 2.6. In particular, we use the definitions of configurationD and
execution intervalsγc andγs(α′).
Case 2: the configuration reached by the executionErα

′ is 0-univalentm+1
T : Let D′ be the configu-

ration reached after executingErα
′γs(α

′)γc. Recall that inγs(α′), the clones of split pairs overwrite all
registers inRs ∩ W (α′) with the values these registers had inCr. ConfigurationD′ is indistinguishable
from the1-valentm+1

T configurationD reached byErγc for all processes and clones inT . This is because
the processes (and clones) inT have not taken steps and the contents of all registers are thesame inD and
D′ sinceα′ contains writes only to registers inR.

Let us denote byl the length of execution intervalγs(α′)γc and letBj be the prefix of this execution
interval of size0 ≤ j ≤ l. Unlike the definition ofA, when the difference betweenAj andAj+1 was a
“pair step,” i.e. two identical operations of the process and its respective clone, the difference betweenBj

andBj+1 is actually a single step, i.e. exactly one operation by either a process or a clone of some process.
This is because by definition each of the steps inγs(α

′) is performed only by a clone (uniting a previously
split pair after each operation), while each step inγc is performed only by a processes (creating a new split
pair after each operation). This is illustrated inFigure A.
Case 2.1: for some0 ≤ j ≤ l, the configuration reached by the executionErα

′Bj is bivalentm+1
T : We

let Cr+1 be the configuration reached byEr+1 = Erα
′Bj , andR′ = R ∪ {reg}, with |R′| = r + 1. Since

Cr+1 is bivalentm+1
T there are two subsets of process-clone pairs inT and respective reserving execution

intervals fromCr+1 that decide different outputs. ByClaim 2.5, we can findP ′ ⊆ T andQ′ ⊆ T , with
P ′ ∩Q′ = ∅ and|P ′| = |Q′| = m+ 1, such that an execution inRes(Cr+1, P

′) returns0 and an execution
in Res(Cr+1, Q

′) returns1. As in Case 1.1 these setsP ′ andQ′ are the new sets of pairs forCr+1.
The new setR′

s is (Rs − (Rs ∩W (α′))) ∪ (Rc ∩W (Bj)), consisting of registers fromRs not touched
duringα′ and registers fromRc written to during the prefix of block writeγc that was executed inBj . For
each register inRs−(Rs∩W (α′)) we still have the same one pair fromV split on it as inCr. This split pair
was fresh inCr and since its register inRs has not been written during the extensionα′Bj (not written in
α′, and hence also not inγs(α′) or γc), it is still fresh as required inCr+1. New fresh split pairs are created
during the execution of the prefix ofγc in Bj, as only processes but not their clones take steps and after each
write in γc we get a new fresh split pair. These pairs are split on registers inRc ∩W (Bj), and we associate
exactly one new fresh split pair to each of these registers. No other split pairs are fresh, since fresh pairs that
were split onRs ∩ α′ cannot be fresh inCr+1, as their registers were written to duringα′.

The setR′

c is (R ∪ {reg}) − R′

s = (Rc − (Rc ∩ W (Bj))) ∪ (Rs ∩W (α′)) ∪ {reg}. As in Case 1.1,
α′ is a prefix of a reserving execution intervalα ∈ Res(Cr, P), so for each register inRs ∩W (α′) we can
find a unique covering process (and thus respective pair) from P in Cr+1. The registerreg is covered by the
process-clone pair inP with a pending writewp. For each register inRc − (Rc ∩W (Bj)), we take the pair
from V that was associated and covering it inCr. Neither process nor clone in this pair have taken any steps
in α′Bj and are still covering the same register inCr+1.

The setV ′ contains allr + 1 pairs associated with registers inR′, andV ′ ⊆ V ∪ P . The number of

13

split stale pairs has again increased fromL by at most|Rs ∩ W (α′)| due to previously fresh pairs split on
Rs ∩W (α′) that may now be stale. Also, as inCase 1.1, (P ′ ∪Q′) ∩ (V ′ ∪ L′) = ∅ as required.
Case 2.2: for every0 ≤ j ≤ l, the configuration reached by the executionErα

′Bj is univalentm+1
T :

This case is similar toCase 1.2. The configuration reached afterErα
′B0 is 0-univalentm+1

T by theCase 2
assumption and configurationD′ reached afterErα

′Bl must be1-univalentm+1
T as it is indistinguishable

from 1-valentm+1
T configurationD for all processes (and clones) inT . Therefore, we can find a0 ≤

j < l such thatErα
′Bj leads to a0-univalentm+1

T configuration andErα
′Bj+1 leads to a1-univalentm+1

T

configuration. We letCr+1 be the configuration reached afterEr+1 = Erα
′Bj , and defineR′

c, R
′

s, V
′ and

L′ as if Cr+1 was bivalent inCase 2.1. This again works, and so does the claim about stale split pairs in
Cr+1, but we have to constructP ′ andQ′ with the desired properties.

However, we can constructP ′ andQ′ in a very similar way toCase 1.2. If o is the operation separating
Bj andBj+1, o may not be a read as before, and we again create two new duplicate process-clone pairs,
both about to perform identical write operationso′ ando′′. We letP ′ be a set of anym+1 pairs andQ′ be a
set ofm+ 3 pairs withm+ 1 pairs fromT − P ′ and two new duplicate pairs. Then, by the same argument
of Case 1.2, P ′ andQ′ satisfy all required properties.

14

	1 Introduction
	2 Space Complexity Lower Bound
	2.1 A Square-Root Lower Bound
	2.2 Linear Lower Bound
	2.2.1 Reserving executions
	2.2.2 New definition of valency
	2.2.3 The process-clone pairs and the proof

	3 Extensions
	4 Acknowledgments
	A Last case of the proof of [clm:casean]Claim 2.9

