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Abstract

In [8] an algorithm has been presented that computes a maximal independent set (MIS) within
O(log2 n/F + log n polyloglogn) rounds in ann-node multichannel radio network withF commu-
nication channels. The paper uses a multichannel variant ofthe standard graph-based radio network
model without collision detection and it assumes that the network graph is a polynomially bounded in-
dependence graph (BIG), a natural combinatorial generalization of well-known geographic families. The
upper bound of [8] is known to be optimal up to apolyloglog factor.

In this paper, we adapt algorithm and analysis to improve theresult of [8] in two ways. Mainly, we
get rid of thepolyloglog factor in the runtime and we thus obtain an asymptotically optimal multichannel
radio network MIS algorithm. In addition, our new analysis allows to generalize the class of graphs from
those with polynomially bounded local independence to graphs where the local independence is bounded
by an arbitrary function of the neighborhood radius.
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1 Introduction
In recent years there has been an increased interest in algorithms for shared spectrum networks[26].
Nowadays, most modern wireless communication networks feature a multitude of communication frequen-
cies [1,2,5]1—and we can certainly expect this trend to continue.

In the light of this development, in the present paper, we settle the question of determining theoptimal
asymptotic time complexity of computing a maximal independent set (MIS) in the multichannel variant of
the classic radio network model first introduced in [4, 7]. The task of constructing an MIS is one of the
best studied problems in the area of large-scale wireless networks. On the one hand this is due to the fact
that MIS (together with coloring problems) is one of the key problems to study the problem of symmetry
breaking in large, decentralized systems. On the other handan MIS provides a simple local clustering of
the graph, which can be used as a building block for computingmore enhanced organization structures in
these networks such as, e.g., a communication backbone based on a connected dominating set [6, 18, 29].
This is specifically relevant in the context of wireless mobile ad hoc networks or sensor networks, in which
devices cannot rely on already existing infrastructure to organize themselves—devices need to compute a
meaningful structure by themselves to coordinate their interactions.

Related Work. In [3, 21] Alon et al. and Luby presented a simple and efficient randomized parallel al-
gorithm to compute and MIS of a general graph. It is straightforward to a standard distributed message
passing model and as a consequence, the algorithm soon became an archetype for many distributed MIS
algorithms also in other—usually more limiting—settings.The model we assume here is an extension to the
radio network model, for which an MIS algorithm with runtimeO(log2 n) has been presented in [22] for the
class of unit disk graphs (UDGs). This algorithm has been proven to be asymptotically optimal [11] even
for more basic version of the problem known as the wake-up problem in single-hop radio networks. While
the UDG restriction is well-known and popular, a more general variant known as growth-bounded graphs
or bounded independence graphs that contains UDGs has also become the focus of quite some research,
e.g., [20,24,25]. In particular, in [25] it is shown that an MIS and many related structures can be compute
in (asymptotically optimal)O(log∗ n) rounds in such graphs.

Much of the early algorithmic research on multichannel radio networks has focused on networks with
faults assuming a malicious adversary that can jam up tot of theF available channels [10,13–17,19,27,28].
In addition, for fault-free networks, in [23] a series of lower bound proofs have been provided, which
show thatΩ(log2 n/F + log n) rounds are needed to solve any problem which requires communication.
In [10] a new technique (called heralding) to deal with congestionin multichannel radio networks has been
established to solve leader election in single-hop networks in time asymptotically matching the lower bound
of [23]. This technique has been extended in [12] and [8] to solve the problems of computing an approximate
minimum dominating set and an MIS, respectively. Our research here is based on this work and in particular
on the MIS algorithm of [8].

Contributions. In radio network models, in almost all cases a restriction tothe underlying graph model is
being assumed. One of the most general ones are so-calledα-bounded independence graphs, whereα(r) is
a function that limits the size of amaximumindependent set in anyr-neighborhood of the given graph. The
MIS algorithm from [8] solves the MIS problem in timeO(log2 n/F+log n(log log n)d) in such graphs for
whichα is bounded by polynomial of degreed. Here we get rid of thepolyloglog factor and thus show how
to close the gap to the lower bound from [23]. At the same time, we remove any restriction on the function
α. We do so by adjusting the algorithm from [8]—and though the change in the algorithm is relatively small,
it leads to a significantly more involved analysis.

1For example, the IEEE 802.11 WLAN standard provides a channel spectrum of up to 200 (partially overlapping) channels and
Bluetooth specifies 79 usable channels.
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2 Preliminaries
This paper bases strongly on [8] and [9], the former being the proceedings version and the latter the complete
version. However, we try to be as self-contained as possible.

Radio Network Model. We model the network as ann-node graphG = (V,E). We assume thatn or a
polynomial upper bound onn is known by all nodes. Nodes start out dormant and are awakened/activated
by an adversary. While nodes do not have access to a global clock, communication is assumed to happen in
synchronous time slots (rounds). The network comprisesF communication channels. In each round each
node can choose to operate on one channel, either by listening or broadcasting. A node that broadcasts does
not receive any message in that round, and its signal reachesall neighbors that operate on the same channel.
A nodev listeing on some channel can decode an incoming message iff in the given round, exactly one of
its neighbors broadcasts on the same channel. If two or more neighbors broadcast, their signals collide at
v andv receives nothing, unable to detect this collision. A node can only operate on one channel in each
round and therefore it does not learn anything about events on other channels.

Notation. In our algorithm all nodes move between a finite set of states:W – waiting, D – decay, A –
active, H′ – herald candidate, H – herald, L′ – leader candidate, L – leader, M – MIS node, E – elimi-
nated/dominated. We overload this notation to also indicate the set of nodes being in a certain state, e.g.,
A := {v ∈ V : v is in stateA}. Since nodes change their states, in case of ambiguity, we writeAr for the set
of active nodes in roundr. State changes always happen between rounds. We defineVhf := A∪H′∪L′∪H∪L
as the nodes in the so-called herald filter.

We useN(v) to denote the neighbors ofv in G, while we useNk(v) to denote the set of nodes in
distance at mostk from v, includingv itself. We also often writeNS(u) orNk

S
(u) to abbreviateN(u)∩S or

Nk(u) ∩ S respectively, for some stateS. ForS ⊆ V we letN(S) :=
⋃

v∈S N(v). We call a nodev alone
or lonely, if NVhf∪M(u) = ∅.

We say that an eventA happenswith high probability (w.h.p.), with decent probability, or with constant
probability (w.c.p.), if it happens with probability at least1−n−c, 1− log−c n, orΩ(1), respectively, where
c is a constant that can be chosen arbitrarily large. Byx≫ y we denote thatx > cy for a sufficiently large
c > 1.

Bounded Independence.In addition to the communication characteristics of the network, we require the
network graph to be a bounded independence graph (BIG) [20, 24]. A graphG is called anα-bounded
independence graphwith independence functionα : N → N, if for every nodev. no independent setS of
the subgraph ofG induced byNd(v) exceeds cardinalityα(d). Note that in particular,α does not depend
on n and thus for every fixedd, α(d) is a constant. In [8], α is required to be a polynomial, whereas in
this paper, we put no restrictions onα. It can easily be verified that one can always upper bound the largest
independent set of the subgraph induced byNd(v) by α(2)d and thus any independence function is always
upper bounded by some exponential function. For simplicitywe define a constantα := α(2) and we assume
that all nodes know the value ofα.

Number of Channels. We assume thatF = ω(1) as otherwise single channel algorithms achieve the same
asymptotic time bounds. ForF = ω(log n) we only actually useΘ(log n) channels since more channels
do not lead to an additional asymptotic advantage. For ease of exposition we assumeF = Ω(log log n) and
refer to [9] for an explanation of how to adapt the algorithm for the caseF = o(log log n).

Maximal Independent Set. We say an algorithm computes an MIS in timeT , if the following properties
hold w.h.p. for each roundr and nodev (waking up in roundrv):
(P1) v declares itself as eitherdominating(∈ M) or dominated(∈ E) before roundrv +T and this decision

is permanent.
(P2) If v is dominatedin roundr, thenN(v) ∩Mr 6= ∅.
(P3) If v is dominatingin roundr, thenN(v) ∩Mr = ∅.
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3 Algorithm Description

Algorithm 1 HeraldMIS—core structure
Input: σ⊕, σ⊖, ∆max, πℓ, α, n, nD = Θ(F), nA = Θ(log logn), nR = Θ(α(2)),

τW = Θ(logn), τD = Θ(logn/F), τlonely = Θ(log2 n/F + logn), τred-blue= Θ(logn)
States: W—waiting,D—decay,M—MIS node,E—eliminated

A—active,L/L′—leader (candidate),H/H′—herald (candidate)
Channels: R1, . . . ,RnR

—report,D1, . . . ,DnD
—decay,

A1, . . . ,AnA
—herald,H—handshake,G—red-blue game

1: count← 0; state←W; γ ←⊥; lonely←⊥; γmin← log−24 n
2: while state6= E do
3: count← count+ 1
4: lonely← lonely+ 1
5: γ ← min {γ · σ⊕, 1/2}
6: uniformly at random pickq ∈ [0, 1), j ∈ {1, . . . , nD} andk ∈ {1, . . . , nR}
7: switch statedo
8: caseW orD: run DFILTER ⊲ stage 1—decay filter

9: caseA: run HERALDPROTOCOL ⊲ stage 2—herald filter

10: caseH′ orL′: run HANDSHAKE

11: caseH orL: run REDBLUEGAME

12: caseM: run DOMINATOR ⊲ stage 3—MIS node

13: if lonely= τlonely then
14: state←M

15: endWhile

Theorem 3.1. AlgorithmHERALDMIS solves MIS withinO(log2 n/F + log n) rounds.

We first give a short summary of how the algorithm works, whichincludes a recap of results from [9].
The algorithm is divided into three stages, the decay filter (statesW andD), the herald filter (statesA,L′,H′,
L andH), and decided nodes (statesM andE). Nodes move forward within those stages—possibly omitting
the herald filter—but never backwards. The decay filter is a powerful tool (which we use as a black box) that
provides that over the full runtime of the algorithm the degree of the graph induced by nodes in the herald
filter is bounded byO(log3 n). In short, nodes first only listen for a while (W), then they start broadcasting
on one out ofΘ(F) random channels with probability1/n (D), doubling this probability everyO(log n/F)
rounds. A node that broadcasts moves to the herald filter and anode that receives a message restarts with
W. The decay filter has not changed and for a detailed analysis we refer to [9], while pseudo-code is given
in Algorithm 2.

Eliminated nodes (E) know that they have a neighbor in the MIS and stop their protocol. MIS nodes
(M) try to inform their neighborhood (eliminating them), but they also actively disrupt protocols in the
herald filter, causing them to fail; for more details confer Algorithm 3. Apart from this, there is no influence
between nodes being in different stages.

The focus of this paper is almost exclusively on the herald filter. It helps for understanding the complex
algorithm toonly think of the graph that is induced by nodes in the herald filterand to recall that its maximum
degree is polylogarithmic inn.

The herald filter is divided into three blocks,active state/herald protocol(A), handshake protocol(L′

andH′) andred-blue protocol(L andH). The first block has the purpose of nodes trying to make contact
with surrounding nodes. If this does indeed happen, both nodes engage in the handshake, which is only
successful, if none of the two nodes neighbors any MIS node ora node in the third block. If the handshake
succeeds, both nodes start a series of coin flipping games, with the sole purpose of ensuring that no two

3



Algorithm 2 DFILTER, run at processv
Input:F , nD = Θ(F), nR ≥ 3α2, τW = Θ(logn), τD = Θ(logn/F)
States:W—waiting,D—decay
Channels:R1, . . . ,RnR

—report,D1, . . . ,DnD
—decay

1: count← 0, state←W

2: while state6= E do
3: count← count+ 1
4: pick i ∈ {1, . . . , nR}, k ∈ {1, . . . , nD} andq ∈ [0, 1) uniformly at random
5: switch statedo
6: caseW
7: listen on channelRi

8: if count= τW then
9: count← 0, state← D, phase← 0

10: caseD
11: switch q do
12: caseq ∈ [0, 2phase/n)
13: sendmsg= (ID, state) onDk

14: exit decay filter and enter herald filter

15: caseq ∈ [2phase/n, 1/2)
16: listen onDk

17: caseq ∈ [1/2, 1)
18: listen onRi

19: if count= τD then
20: count← 0, phase← min {phase+ 1, logn− 2}

Upon receiving a messagemsg = (msg.ID,msg.state)

21: if msg.state= D then ⊲ restart decay filter
22: count← 0, state←W

23: if msg.state= M then
24: state← E

Algorithm 3 DOMINATOR

1: if enforcethen
2: send(state, ID) onH
3: enforce← false
4: else
5: switch q do
6: caseq ∈

[

0, 1
2

)

7: send(state, ID) onH
8: enforce← false

9: caseq ∈
[

1

2
, 3
4

)

10: send(state, ID) onG
11: enforce← true

12: caseq ∈
[

3

4
, 1
)

13: send(state, ID) onRk

14: enforce← true

nodes, that became leaders (L) simultaneously, can join the MIS. The blocks that differ from the algorithm
description in [9] are the active state and the red-blue protocol, although changes in the latter are made to
impact nodes in the active state.
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Ahead of all we want to mention that there are two ways for a node v to join the MIS—either by
waiting for a long time without hearing from any nearby node,or by successfully communicating with a
nodeu during the active state,teaming upwith it (as a leader-herald pair) and together passing through the
handshake and the red-blue protocol. The farther a pair of nodes advances in these blocks, the closer its
leader is to become an MIS node. We now recap and describe the behavior of a nodev in the herald filter,
i.e.,v ∈ Vhf, pointing out when changes to the original algorithm occur.

Loneliness. v maintains a counterlonely. Wheneverv hears from another node, it resetslonely to zero.
If lonely ever exceedsτlonely = Θ

(

log2 n/F + log n
)

, thenv assumesthat it isalone/lonelyin the herald
filter (i.e.,NVhf∪M(v) = ∅) and joins the MIS—w.h.p., this action is safe, i.e., shouldv not be alone, then
the neighbors ofv are far from becoming MIS nodes themselves andv has enough time to eliminate them.2

Activity. Also, v maintains anactivity value γ(v) ∈
[

γmin, 1/2
]

, whereγmin, the initial value, is in
Ω(1/polylog n). γ governs the behavior ofv in A, but all nodes inVhf maintain this value. Nodes out-
sideVhf have zero activity.γ(v) increases by a (small) constant factorσ⊕ > 1 each round, such that after
Θ(log log n) rounds it would reach the maximum value1/2. However, wheneverv receives from a neigh-
boring leaderor herald, thenv reducesγ(v) by a (large) constant factorσ⊖ ≫ σ⊕. This is a change to the
original algorithm, whereγ could only increase. The reason is the following. Leaders are nodes that likely
become MIS nodes, and if they do then they eliminate their neighbors anyway. For safety reasons a leaderl
needs to wait forΘ(log n) rounds before it may join the MIS. During that time, ifl’s neighbors keep high
activity values, progress stagnation can occur in aδ′ = O(log log n) neighborhood ofl, which is why in [9]
anα(δ′) = O(polyloglog n) speed loss had to be accepted. We show here that by reducing activities, this
stagnation can be eliminated. At the same time, ’unjustified’ reductions only cause ’minor damage’ that can
easily be mitigated. This change is reflected in line16 of Algorithm 4.

Algorithm 4 HERALDPROTOCOL

1: pick ani ∈ {1, . . . , nA,⊥} randomly with distributionP(i =⊥) = 2−nA andP(i = j) = 2−j

2: if i =⊥ then q = 1

3: switch q do
4: caseq ∈ [0, πℓγ)
5: listen onAi

6: if msg6= ∅ then
7: IDleader← msg.ID; state← H′; count← 0; handshake← succ; lonely← 0

8: caseq ∈ [πℓγ, γ)
9: send(ID) onAi

10: state← L′; count← 0; handshake← succ;
11: caseq ∈ [γ, 1]
12: listen onRk

13: if msg.state= M then
14: state← E; γ ← 0

15: if msg.state∈ {L,H} then
16: γ ← max {γ/σ⊖, γmin}; lonely← 0

Herald Protocol. Confer Algorithm4 for detailed pseudo-code. A nodev in the active state (A) participates
in the herald protocolwith probability γ(v) ∈ [γmin, 1/2], otherwise it tries to learn of nearby leaders,
heralds or MIS nodes, by listening to one ofconstantmanyreport channelsR1, . . . ,RnR

, nR ≥ 3α2. If
v participates in the herald protocol, then it chooses a channel Ai fromA1, . . . ,AnA

with probability2−i.

2In [9] there existed some component calledloneliness support block, operating on its own set of channelsS1, . . . ,SnS
; this

block and its channels have been removed.
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It then listens onAi with probabilityπℓ ≤ 1/10 or broadcasts itsID otherwise.3 If v listens, but receives
nothing, nothing happens andv stays inA. Shouldv receive the message of another nodeu onAi, then
next round it engages withu in thehandshake protocolas aherald candidate(H′), in the hope of moving
forward to thered-blue protocoltogether withu. Shouldv choose to broadcast, then it deterministically
pursues the handshake as aleader candidate(L′), hoping that some other nodeu has heard its message and
joins in for the handshake.

Algorithm 5 HANDSHAKE

1: switch statedo
2: caseH′

3: switch countdo
4: case1, 2, 5, 6
5: SendID leader onH

6: case3, 4
7: Listen onH
8: if msg= ∅ then
9: handshake← fail

10: else
11: meet← msg.[2]

12: if handshake= fail then
13: count← 0, state← A

14: if count= 6 then
15: count← 0; state← H; game← succ;

lonely← 0

16: caseL′

17: switch countdo
18: case1, 2, 5, 6
19: Listen onH
20: if msg= ∅ then
21: handshake← fail

22: case3, 4
23: meet← k
24: Send(ID,meet) onH

25: if handshake= fail then
26: count← 0, state← A

27: if count= 6 then
28: count← 0; state← L; game← succ;

lonely← 0

Handshake and Red-Blue Protocol. Pseudo-code for these two protocols can be found in Algorithms 5
and6. In short, a nodeh ∈ H

′ that received a message in the herald protocol sends for two rounds on the
handshake channelH, then listens twice, and sends again for two rounds. A nodel ∈ L

′ that was sending
before acts reversely, i.e., it listens, sends and listens.Only if a node receivesall expected messages it moves
forward to the red-blue protocol, otherwise it returns toA. The handshake can only possibly be completed
if a pair of exactly one broadcaster and one receiver participates.

The red-blue protocolis a repetition ofτred-blue/8 = Θ(log n) red-blue gamesof 8 rounds each. In
odd rounds, both nodesl andh of the leader-herald pair send a blocking signal onH, preventing nearby
handshakes to succeed. At the beginning of each game, the leader l picks randomly blue or red. If it picked
red, then in round2 it will send a message on channelG and listens onG in round4, for blue it acts reversely.
In round6, l sends on a previously decided meeting channelRk the indexk′ of the meeting channel for the
next red-blue game.4 In round8 it listens onRk′ . h on the other hand sends a message in both rounds2 and
4. It listens in round6 to update the meeting channel and in round8 it sends a message onRk′ .

By design of the handshake and the blocking signals of odd rounds in the red-blue protocol, a leader
l can neighbor a leader or herald of a different paironly if that other node moved to the red-blue protocol
simultaneously or with a2-round shift. If l does have such a neighbor, at some point it will not hear its
herald in round2/4, when it listens.l then aborts the red-blue protocol, notifiesh in round6 and returns
to A. The messages sent byl/h in round6/8 also have the purpose of letting nearby listening active nodes

3We want to note thatπℓ is a constant parameter that we can choose arbitrarily.
4The very first meeting channel is fixed byl during the handshake, confer lines11and24of Algorithm 5.
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Algorithm 6 REDBLUEGAME

1: switch statedo
2: caseH
3: γ ← max

{

γσ−20

⊕ , γmin
}

4: switch countdo
5: case1, 3, 5, 7 mod 8 ⊲ blockH

6: Send(state, ID leader) onH

7: case2 mod 8 ⊲ help leader with game

8: Send(state, ID leader) onG

9: case4 mod 8 ⊲ help leader with game

10: Send(state, ID leader) onG

11: case6 mod 8
12: Listen onRmeet ⊲ from previous game

13: if msg 6= (ID leader, succ, ∗) then
14: count← 0, state← A; lonely← 0
15: else
16: meet← msg.[3]

17: if count> τred-blue then
18: state← E

19: case8 mod 8 ⊲ notify neighbors

20: Send(state, ID leader) onRmeet

21: caseL
22: γ ← max

{

γσ−20

⊕ , γmin

}

23: switch countdo
24: case1, 3, 5, 7 mod 8 ⊲ blockH

25: if count (mod 8) = 1 then
26: pick randomlycolor∈{red, blue}

27: Send(state, ID) onH

28: case2 mod 8 ⊲ red-blue game

29: if color = blue then
30: Listen onG;
31: if msg= ∅ or ID /∈ msgthen
32: game← fail

33: elseSend(ID) onG

34: case4 mod 8 ⊲ red-blue game

35: if color = red then
36: Listen onG;
37: if msg= ∅ or ID /∈ msgthen
38: game← fail

39: elseSend(ID) onG

40: case6 mod 8 ⊲ Sendgame& new Rmeet

41: Send(ID leader, game, k) onRmeet

42: meet← k
43: if game= fail then
44: count← 0, state← A; lonely← 0

45: if count> τred-blue then
46: state← M

47: case8 mod 8
48: Listen onRmeet

reduce their activity values. Anisolated pairon the other hand cannot be knocked out anymore5 and after
τred-blue= Θ(log n) rounds the pair can assume that w.h.p. there is no other conflicting pair nearby and the
leader joins the MIS.

The handshake did not change and the red-blue protocol has been extended by2 rounds—now heralds
also can reach their neighbors, confer lines19, 20, 47, 48of Algorithm 6. Rounds1-6 are untouched. Unlike
in [9], each round a node spends in the red-blue game, it decreasesits activity significantly—after all it is
getting messages from a leader or herald all the time. This isaccounted for in lines3 and22.

Summary of Changes. Compared to the algorithm in [9], the following three things have changed. The
loneliness support blockis not executed anymore, except for maintaining the counterlonely. Also, the
thresholdτlonely has been lowered toΘ

(

log2 n/F + log n
)

to reflect the new runtime of the algorithm. The
main change is that nodes reduce their activityγ if they hear from a nearby leader or herald. The change
in the red-blue game is an addition of2 rounds: the seventh round is just a copy of rounds1, 3 and5; the
eighth round gives the herald of the pair a possibility to notify nearby active nodes in order to reduce their
activity values—so far only leaders and MIS nodes were able to reach out to their neighbors.

Note that while the algorithm itself has barely changed, theanalysis needed to be extended vastly to
reduce the runtime of the algorithm to optimal values.

5except by an MIS node, but that already implies progress
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4 Analysis

4.1 Approach

To prove that Algorithm1 indeed solves MIS in the given time bounds, we take the following approach. In
[9] it was proven that the graph, induced by nodes that passed through the decay filter, has maximum degree
∆max= O(log3 n). A nodeu in the herald filter (u ∈ Vhf) enters the MIS either if it assumes to be alone, or
if it manages to create and maintain a leader-herald bond with a neighboring node forτred-blue = Θ(log n)
rounds. Onceu ∈ Vhf, it either enters the MIS due to assumed loneliness; or ifu has a neighbor inVhf, then
within radiusδ := δα = Θ(log log n) soon a leader-herald pair is created that maintains its bondfor τred-blue

rounds.6 So far this is the same as in [9]. There, however, a stagnation of up toτred-bluerounds might follow
before the next isolated leader-herald pair or MIS node getscreated inN δ(u). Considering that up toα(δ)
nodes inN δ(u) can enter the MIS beforeu or one of its neighbors enters itself, the runtime of the herald
filter is O(τred-blueα(δ)), orO(log n polyloglog n) if α is polynomial.

In the present paper, by decreasing activity levels of nodesneighboring leader-herald pairs, the stagna-
tion that can be caused by leaders on their way to join the MIS does not last for longer thanO(log log n)
rounds in expectation. This allows the creation of isolatedleader-herald pairs inN δ(u) in a pipelined man-
ner, reducing the expected runtime of the herald filter toO(α(δ) log log n) = O(αδ log log n). Unlike in [9],
here we also can chooseδ as an arbitrarily small value inΘ(log log n) without increasing the runtime by
more than constant factors. Choosingδ < log log n/ log α and a Chernoff argument bounds the runtime of
the herald filter byO(log n) with high probability.

In more detail, letu be a node that enters the herald filter in roundtu. For the sake of contradiction
assume thatu is not decided by timetu + τruntime. If u stays lonely, it enters the MIS eventually inτlonely≪
τruntime rounds. Note that foru to move from being non-lonely to lonely, some node inN2(u) must have
entered the MIS shortly before that and eliminated all neighbors thatu had inVhf. This can happen at most
α2 times and thus the timeu spends lonely is at mostα2τlonely ≪ τruntime. Hence, assume thatu is not
lonely, i.e., has a neighboru′, and that no node inN2(u) joins the MIS. We show that then most of the time
bothu andu′ have a high activity valueγ.

The following argumentation motivates this. For a nodeu to decreaseγ(u), it must neighbor a pair. Let
us call isolated pairs (in which the leader does not neighboranother leader or herald)good pairsand the
othersbad pairs. Conditioning on the event of a pair being created, there is aconstant probability that it is
a good pair. This can be considered progress, as it guarantees one of two things: WithinO(log n) rounds
either the leader of the good pair itself enters the MIS or a neighbor of this pair does. In the opposite case
of bad pairs being created, in expectation these remain bad pairs only for a constant number of rounds.
Moreover, w.h.p., there are no more thanO(log n) roundsin total in which bad pairs exist inN3(u) aftertu,
also causing at mostO(log n) rounds ofu andu′ having an activity value below1/2. Adjusting parameters
we get that for someτprogress= O(τlonely) and an arbitrarily small constantε, for (1 − ε)τprogressrounds in
[tu, tu + τprogress] the activity values of bothu andu′ are1/2.

Furthermore, all pairs, good and bad, inform their neighbors. By the definition of good pairs, the leaders
of these form an independent set. With our choice ofδ thus at mostO(

√
log n) good pairs exist inN δ(u).

We argue that the activity values of nodes neighboring a pairthat participated in the red-blue protocol for
Ω(log log n) rounds (which almost surely holds for good pairs), are belowγlow := Θ(1/polylog n) with
some decent probability (i.e.,1− logΩ(1) n). The total number of nodes inN δ(u) becoming part of a good
pair in [tu, tu + τprogress] is O(

√
log n) and hence the total amount of nodes neighboring good pairs inthat

time isO(
√
log n∆max). A union bound and a Chernoff bound provide that the total amount of rounds in

which any nodev in N δ(u) neighboring a good pair has anγ(v) > γlow is less thanετprogress.
Together with the previous claim we get that in(1 − 2ε)τprogressrounds in[tu, tu + τprogress] both con-

6“Soon” indeed means inO(1) rounds in expectation, as long asF = Ω(log log n).
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ditions are true:γ(u) = γ(u′) = 1/2 andall good pairs inN δ(u) “silenced” their neighbors—i.e., all their
neighbors have activity belowγlow. Let us call a round with this propertypromising foru. Without going
into detail, we can show that now within distanceδ there exists a nodew with the property of being so-called
η-fat, i.e.,w’s neighborhood is at least roughly as active as that of any ofits neighbors’. Fatness implies that
w.c.p. two nodesl andh in N1(w) become agood leader-herald pair. As said before, such a pair reduces
the activity values of its neighbors rather quickly, which causes the property ofη-fatness to move away from
w to another node inN δ(u) and we can repeat the argument. If a bad pair is created, thenη-fatness might
shortly fade, but is restored quickly, so we can almost omit this case. Again using Chernoff tail bounds, we
show that at some pointu itself becomesη-fat and now the creation of an MIS node inN2(u) is inevitably.

We summarize again. Once an MIS node or good pair arises in constant distance fromu, we are done.
In anΩ(log2 n/F + log n) interval,u is mostly in a promising state. W.c.p. everyO(1) rounds a node in
N δ(u) becomes part of a good pair or joins the MIS. In expectation, within Θ(log log n) rounds MIS nodes
eliminate their neighbors and good pairssilencetheirs. After any of those events happen, we measure the
time untilu is in a promising state again. Using Chernoff overO(

√
log n) such random variables results in

needing at mostO(log n) time, thus, by thenu must be covered.

4.2 Guarantees from the Decay Filter

We informally state the two main accomplishments of the decay filter, proper lemma statements are be-
low; for proofs we refer to [9]. For each nodev the decay filter guarantees that within the runtime of
Θ(log2 n/F + log n) rounds,
(1) v or one of its neighbors enters the herald filter, but
(2) no more than∆max= O(log3 n) nodes inN1(v) do.7

From now on we only look at the graphG′ induced byV ′ := Vhf∪M, induced by non-eliminated nodes
that made it past the decay filter.All notations are tied to this subgraph, though we omit this in our notations,
i.e.,N(u) means the neighborhood ofu in G′. Instead, if we need to consider nodes from the statesW, D,
then we explicitly say so and show this e.g. by writingNG(u).

Lemma 4.1. W.h.p., for each nodev and each roundr, at mostO(log n) nodes inN1
G(v) come out of the

decay filter in roundr to enter the herald filter. Each node that enters the herald filter has spentΩ(log n)
rounds in the decay filter.

Lemma 4.2. W.h.p., for each nodeu that is in the decay filter in roundr, by roundr′ = r+O(log2 n/F +
log n), eitheru is dominated, in which case it has a dominating neighbor, or at least one node inN1(u)
gets out of the decay filter and enters the herald filter.

This statement is the same as Lemma 8.4 in [9], except that there the bound was listed asr′ = r +
O(log2 n/F)+Õ(log n). Yet the proof in [9] does actually already support the boundr′ = r+O(log2 n/F+
log n). In Algorithm 2, DFILTER, we changed the style of the algorithm compared to the one in [9], but not
the way the algorithm works, hence we omit the proof for Lemma4.2and refer to [9].8

4.3 Definitions for the Herald Filter

Practically all parameters (including the above mentioned∆max) depend in one way or another on the bound
on independence, i.e., onα, but in most cases those dependencies are captured in the hidden constants of
those asymptotic bounds.

For our analysis of a nodeu that enters the herald filter, we observe a specificδ = Θ(log log n) neigh-
borhoodN δ(u) of u. We set

7For large enoughn it holds that∆max ≤ log4 n and we assume this in our analysis.
8The underlying algorithm has been first used and analyzed in [11], in a slightly more restrictive graph model and in [8] it was

shown that it also works in BIGs.
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δ := δα :=
log log n

2 log α
= Θ(log log n), (1)

i.e.,αδ = (2log α)
log log n
2 logα =

√
log n. The choice ofδ guarantees that any independent set in aδ-neighborhood

is of size at most
√
log n.

Our main goal is to show quick progress inN δ(u). Progress is clearly achieved if an MIS node arises,
but due to the way a node can become an MIS node, we also consider the creation of an isolated leader-
herald pair progress (more precisely, theleaderof the pair needs to be isolated from other nodes inL orH),
as the leader will eventually join the MIS (or be knocked out permanently by a newly created MIS node).

Definition 4.3. (Good Pair, Bad Pair) Consider a leader-herald pair(l, h) in round r. We say(l, h) is a
good pairin roundr if none of the neighbors ofl (other thanh) is (1) in stateL or (2) in stateH or (3) is a
herald candidate in round5 or 6 of its respective handshake. Otherwise we say that(l, h) is a bad pair.

Note that the definition of a good/bad pair is independent of possibly neighboring MIS nodes. MIS nodes
existing already for4 rounds prevent the creation of leader-herald pairs in theirneighborhood completely. If
on the other hand a new MIS node appears next to a leader-herald pair (which is w.h.p. only possible through
the loneliness route), then we have progress in a close neighborhood. Also, note that only the leader of the
pair must be ’isolated’. There are two reasons for this: (1) only leaders join the MIS (2) by protocol design
the herald of a pair can only receive messages from MIS nodes or its own leader—not by other leaders
(not even in round6) nor other heralds. This is due to the fact that any neighboring heralds act completely
synchronously and a leader neighboring a non-paired heraldis ahead by precisely2 rounds.9 Note also that
bad pairs can become good, but not vice versa. This is becauseall leaders and heralds prevent the creation
of further leaders/heralds in their neighborhood.

Definition 4.4. (Activity Mass) For a nodeu we defineΓ(u) :=
∑

v∈N1(u) γ(v). We call this theactivity
sumor activity massof nodeu. Furthermore we letΓ◦(u) := Γ(u)−γ(u) =

∑

v∈N(u) γ(v). In some cases
we are only interested in the activity mass of active nodes and then we haveΓA(u) :=

∑

v∈N1
A
(u) γ(v) and

Γ◦
A
(u) is defined analogously. Also

γmin := log−24 n = Θ(1/polylog n), (2)

γlow :=
√
γmin = log−12 n. (3)

Definition 4.5. (Fatness) We call a nodeu η̂-fat for someη̂ ∈ (0, 1), if Γ(u) ≥ η̂ ·maxv∈N(u){Γ(v)}.

In simple words, in terms of activity mass,u is (at least) in the same ’league’ as its neighboring nodes.
Using this we choose a specific fatness parameterη < 1:

η = ηα := α−8 ≤ α
−2 log ∆max

log log n (4)

The choice ofη assures that a chain of activity sums(Γ(vi))i≥1 of nodesvi on a pathv1, v2, v3, . . . with
Γ(vi) ≥ η−1Γ(vi−1) andΓ(v1) ≥ 2 has length at mostδ, because

(η−1)δ = (α−8)
− log log n

2 logα ≥ (2log α)
2 log ∆max

log log n
log log n
2 logα = ∆max

γ(u)≤1/2
> max

u∈Vhf

Γ(u). (5)

The algorithm needs to know a few more parameters.σ⊕ andσ⊖ govern the changes in a node’s activity
level. The former is a small constant, greater than, but close to1. In most rounds a nodeu increasesγ(u) by

9 Cf. Lemma4.10and Algorithm6.
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σ⊕. σ⊖ is a much larger factor used for decreasing activity, large enough to undo many previous increments,
but still in O(1).

σ⊕ := 26/(1000m̄) > 1 (6)

σ⊖ := σ20m̄
⊕ = 212/100 > 1 (7)

m̄ is a large enough constant that depends onnR, but assuming thatnR ≥ 3α2, m̄ ≥ 216nR suffices.
Sinceγmin = log−24 n, 167m̄ log log n = Θ(log log n) consecutive increments raise a node’s activity value
to 1/2. Analogously,Θ(log log n) decrements decrease it to its minimal valueγmin.

Also two time thresholdsτred-blue = Θ(log n) and τlonely = Θ(log2 n/F + log n) are needed by the
algorithm. τred-blue is the number of rounds a node spends in the red-blue protocol, and it is a multiple
of 8. If a nodeu ∈ Vhf does not receive a single message forτlonely consecutive rounds, while being
in the herald filter, au deduces that it is alone or all its neighbors got eliminated,and joins the MIS. In
our analysis we use further time thresholdsτnotification = Θ(log n), τprogress = Θ(log2 n/F + log n) and
τruntime= Θ(log2 n/F + log n), for which the following inequality chain holds:

τruntime≫ τlonely≫ τprogress≫ τred-blue≫ τnotification

τnotification is the maximum time needed for an MIS node to notify, w.h.p., all its neighbors. If a nodeu is
not lonely, then, w.h.p., significant progress is achieved in less thanτprogressrounds; more precisely, an MIS
node is created inNO(1)(u). W.h.p.,τruntime is the maximum time a node spends in the herald filter before
it gets decided.

4.4 Candidate Election—Nodes in StatesA (andL′)

At first we establish a few facts about how nodes can transit from stateA to stateL′ orH′, respectively. Note
that nodes can switch between statesA andL′ without communication, but to get towards any of the three
statesH′, L andH, communication is mandatory.

The next lemma contains a variety of events. To not clutter the lemma statement, we define them here.
Let k be a positive integerconstant, r some round,u some node in the herald filter in roundr, i an index
from 1, . . . , nA, S be a (possibly empty) subset ofNk(u) ∩ A. Furthermore let∂S ⊂ S be thesubset ofS
that has connections outside ofS, but inNk(u), i.e.,∂S := S∩N

(

Nk(u)\S
)

. At last, letS = Sn ·∪Sb ·∪Sl

be a partition ofS. We call the tuple(k, u, r, i, S)) a constellation. For a constellation the following events
are defined:
• S¬i/Sn¬i: no node inS/Sn operates onAi in roundr,
• Si/Sbi /S li : all nodes inS/Sb/Sl operate onAi in roundr,
• ∂S¬i: no node in∂S operates onAi in roundr,
• Hi: no node inNk(u) \ S receives a message on channelAi in roundr,
• H¬i: no node inNk(u) receives a message on some channelAj 6= Ai in roundr and
• H: no node inNk(u) receives a message on any channel in{A1, . . . ,AnA

} in roundr.

Lemma 4.6. Let (k, u, r, i, S) be a constellation. Then,

(1) P(H) = 1−O(πℓα
k)

(2) P(H¬i|S¬i) = 1−O(πℓα
k)

(3) P(H¬i|Si) = 1−O(πℓα
k)

(4) P(H¬i|Sn¬i ∧ Sbi ∧ S li) = 1−O(πℓα
k)

(5) P(Hi|∂Sn¬i) = 1−O(πℓα
k)
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The proofs for these statements are provided in AppendixB.1.
Look at (1). The lemma says that the probability for a herald candidateto be created in any single round

for any neighborhood of constant radius is at most linear inπℓ. Sinceπℓ is an arbitrarily small constant
parameter chosen by us, we can make the probability for this event arbitrarily small. The proof for (1) is
exactly the same as the proof for Lemma 8.6 in [8], with α(k) replaced byαk. We provide its proof in
AppendixB.1 nevertheless, as (2) and (3) are new results that do directly depend on (1). What (2) says, is,
that even if we condition on some nodesS ⊂ Nk(u) not to operate on channelAi, this does not increase
the chance (significantly—i.e., by more than a constant factor) for these or other nodes to receive anything
on some channelAj 6= Ai. Analogously, (3) claims that if we condition on some nodesS ⊂ Nk(u)
to definitelyoperate on channelAi, this does still not affect the probability for any other node to receive
any message on some other channelAj 6= Ai. (4) is a combination of (2) and (3), plus we even fix the
knowledge of which nodes, that operate onAi, do broadcast (Sb) or listen (Sl). (5) has already been proven
in [8] as Claim 8.9, except that therek was fixed to2. The analogous proof is provided in the Appendix as
well.

Under certain conditions the creation of herald candidatescan be lower bounded. However, for our
algorithm to work, we need not only to prove that they are created, but that this creation happens insolitude,
i.e., in a close neighborhood no other herald candidates arecreated. Hence the next lemma is a key result in
our whole proof. It is almost Lemma 8.8 from [8], however with some adaptions. To state the lemma, we
need to introduce the parameters

γmin := log−6κ∆ n =
1

Ω(polylog n)
(8)

γlow :=
√
γmin = log−3κ∆ n, (9)

depending on the constantκ∆ ≥ loglogn∆max.

Lemma 4.7. Let t be a round in which for a nodeu in stateA in the herald filter the following holds:
• there is no herald candidate inN2(u),
• all nodesv ∈ N2(u) that neighbor a herald or leader, haveγ(v) ≤ γlow,
• all nodes inN2(u) neighboring MIS nodes are eliminated,
• Γ(u) ≥ 1,

If in addition it holds that either
(a) Γ(u) < 5α, u is 1

5α -fat andγ(u) = 1
2 , or

(b) Γ(u) ≥ 5α andu is η-fat.
Then by the end of roundt′ ∈ [t, t + 7], with probabilityΩ(πℓ) either a node inN2(u) joins the MIS or a
good pair(l, h) ∈ (L ∩N1(u))× (H ∩N1(u)) is created.

Let us start with an intuition of this Lemma. The basic intention is to show that ifu is η-fat, then w.c.p.
in constant many rounds agood leader-herald pair with both endpoints inN1(u) arises—for thisu itself
does not have to have a high activity value, i.e.,u does not need to be a likely part of the leader-herald pair.
The lemma lists many requirements. We show later that shortly after a nodev moves to the herald filter,
within distanceδ = O(log log n) most of the time there exists a nodeu that satisfies these conditions. We
also show that if an isolated pair is created inN1(u), those requirements are again satisfiedO(polyloglog n)
rounds later (in expectation) by another nodeu′ in this δ-neighborhood ofv.

The proof follows mostly the lines of the one in [9], but there a constant number of factors of1/2
accumulate, while here they have to be exchanged by factors of η—but this only causes changes in asymp-
totically irrelevant constants. In addition, nodes neighboring leaders or heralds need special attention. A
full detailed proof of this new version is listed in AppendixB.2. There are few things we want to elaborate.
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Within the neighborhood of a fat nodeu with activity mass at least one, w.c.p. “good things” happen(i.e.,
the creation of MIS nodes or good leader-herald pairs) within constant many rounds,even if there are herald
candidates nearby or if some nodes neighboringbad leaders or heralds have high activity values. In other
words, the first two statements could be relaxed a bit. Instead we use other results to show that from those
relaxed conditions one can get to the tighter conditions listed here w.c.p. in constant many rounds. Also note
that we allow7 rounds to pass, even though the handshake only needs6 rounds. This is due to the fact that
we require a certain property that might not be given in roundt′, but, w.c.p., is given one round later. As a
last remark we want to say that5α in this lemma could be replaced by any constant greater than20

7 α andη
could be replaced by any fatness constant smaller than1.

We argue in the subsections about the handshake protocol andthe red-blue protocol, Subsections4.5and
4.6, that every time an isolated pair is created, the algorithm achieves progress, as it guarantees the creation
of an MIS node nearby—even if this event is delayed byO(log n) rounds.

Therefore, Lemma4.7 “promises” progress in the proximity of a fat node. However,we do not have
such a statement for areas without fat nodes. As we describe abit more in detail later, an excessive creation
of bad pairs in such areas can even cause problems for our argumentation. However, the next result shows
that if a pair is created at all, then w.c.p. this pair is good. This allows us to proof later in Lemma4.14that
nodes in the herald filter are practically always very activein the candidate election process—unless they
already neighbor an MIS node or a good pair.

Lemma 4.8. Let r be a round in which nodeu is in stateA andNA(u) 6= ∅. LetBu be the event that at the
end of roundr, u moves to stateH′ due to receiving a message from some nodev ∈ NA(u) on some channel
Aλ̄. Further, letDu ⊆ Bu be the event thatBu holds and in addition no other nodev′ ∈ N3(v) \ {u}
receives any message on channelAλ̄ in roundr. It holds that

P(Bu) =

{

O
(

πℓ
γ(u)
Γ◦
A
(u)

)

Γ◦
A
(u) > 2

O (πℓγ(u)Γ
◦
A
(u)) Γ◦

A
(u) ≤ 2

, (10)

P(Du) =

{

Ω
(

πℓ
γ(u)
Γ◦
A
(u)

)

Γ◦
A
(u) > 2

Ω (πℓγ(u)Γ
◦
A
(u)) Γ◦

A
(u) ≤ 2

. (11)

Proof. In the calculations below we make use of the following inequalities.

1− πℓ ≥ 0.9 (12)

1− x ≤ e−x, ∀x (13)

1− x ≥ e−2x, ∀x ∈ [0, 1/2] (14)
∏

w∈A\B

f(w) ≤ F |B|
∏

w∈A

f(w), if f(w) ≥ F−1 (15)

If Γ◦
A
(u) > 2, for simplicity, we assume thatlog Γ◦

A
(u) is a positive integer. It becomes clear from the

proof that for non-integer values an adaption is straightforward, but hard to read.
We letBu,v

i be the event that anactivenodeu receives a message from anactivenodev on channelAi,
i.e.,u listens andv broadcasts onAi, while no other nodew ∈ (NA(u))\{v} broadcasts onAi. For different
v these events are disjoint, and we can defineBu

i :=
⋃

v∈NA(u)
Bu,v

i and we see thatBu =
⋃nA

i=1B
u
i .

More restrictive are the analogously defined eventsDu,v
i , Du

i , in which we also require that no node
x ∈ N3(v) \ {u} receives a message on channeli. In that case,Du =

⋃nA

i=1 D
u
i is the event that nodes

u andv engage in the handshake protocol in the round after they met on some channelAλ̄, without other
nodes nearby having received something on that same channel. In particular, no other herald candidates try
to engage withv in the handshake protocol.
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Upper Bounds
Let qwi be the probability that nodew does broadcast on channelAi, i.e.,qwi = (1−πℓ)γ(w)2

−i ≤ 1/4,
and accordinglȳqwi := 1− qwλ ≥ 3/4 is the probability thatw does not broadcast on channelAi. We denote
with pwi the probability thatw listens on channelAi.

P(Bu,v
i ) = pui q

v
i

∏

w∈NA(u)\{v}

q̄wi = πℓγ(u)2
−i(1− πℓ)γ(v)2

−i
∏

w∈NA(u)\{v}

(

1− (1− πℓ)γ(w)2
−i
)

(13),(15)
≤ πℓγ(u)γ(v)2

−2i 4

3
e−

1
2
Γ◦
A
(u)2−i

P(Bu
i ) ≤ πℓγ(u)Γ

◦
A(u)2

−2i+1e−Γ
◦
A
(u)2−i−1

= 8πℓ
γ(u)

Γ◦
A
(u)

(Γ◦A(u)2
−i−1)2e−Γ

◦
A
(u)2−i−1

=: Cu
i (16)

Consider the caseΓ◦
A
(u) > 2. For anyζ > 0 it holds thatζ2e−ζ = O(1), and by usingζ = Γ◦

A
(u)2−i

and we get that for any fixedi

Cu
i = O

(

πℓ
γ(u)

Γ◦
A
(u)

)

and Cu
i = Θ(Cu

i+1) (17)

Furthermore, withλ := log Γ◦
A
(u):

Cu
i+1

Cu
i

=
1

4
e

1
4
Γ◦
A
(u)2−i

<
1

2
∀i ≥ λ

Cu
i

Cu
i+1

= 4e−
1
4
Γ◦
A
(u)2−i

<
1

2
∀i ≤ λ− 4

Thus, the sum of allCu
i with i larger thanλ can be upper bounded byCu

λ using the geometric series, and,
if λ > 4, all i ≤ λ − 4 can be upper bounded byCu

λ−4. However, due to (17), Cu
λ−4 + · · · + Cu

λ is in

O(Cu
λ ) = O

(

πℓ
γ(u)
Γ◦
A
(u)

)

. In total we get thatP(Bu) = O
(

πℓ
γ(u)
Γ◦
A
(u)

)

.

Now consider the caseΓ◦
A
(u) ≤ 2. In (16) we upper bounde−Γ

◦
A
(u)2−i−1

by 1 and get

P(Bu
i ) ≤ πℓγ(u)Γ

◦
A(u)2

−2i+1 =: Ĉu
i and Ĉu

i+1 ≤
1

4
Ĉu
i .

Clearly,Ĉu
1 ≤

∑nA

i=1 Ĉ
u
i ≤ 2Ĉu

1 due to the convergence of the geometric series. In other words:

P(Bu) ≤ 2Cu
1 = O(πℓγ(u)Γ

◦
A(u)).

This concludes the proof of the first part of the claim, equations (10). Note that in both casesΓ◦
A
(u) ≤ 2

andΓ◦
A
(u) > 2 we had that

P(Bu
λ) = Ω(Bu). (18)

Lower Bounds
For lower bounds we study 2 specific channels, depending whetherΓ◦

A
(u) is greater than2 or not. More

precisely, we studyAλ, whereλ := max {1, log Γ◦
A
(u)} and show that eventDu happens on this channel

with the desired probability. The base idea is to show that w.c.p. no nodex ∈ N3
A
(u) with Γ◦

A
(x) . Γ◦

A
(u)

is listening on channelAλ at all, while all nodesx with Γ◦
A
(x) & Γ◦

A
(u) experience a collision onAλ.

Case 1:Γ◦

A
(u) > 2, λ = log Γ◦

A
(u) and 2−λ = 1/Γ◦

A
(u) .
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We start with some definitions. We define

Xu,v
m :=

{

x ∈ N3
A(v) \ {u, v} : 10mΓ◦A(u) ≤ Γ◦A(x) < 10(m+ 1)Γ◦A(u)

}

.

Let F u,v
λ,m be the event thatno x ∈ Xu,v

m receivesanymessage broadcasted onAλ and letEx
λ be the event

thatx ∈ A successfullyreceives a message on channelAλ. If x ∈ NA(v) \ {u}, thenEx
λ |B

u,v
λ implies that

x receivesv’s message. Further,pu,vλ = πℓ(1− πℓ)γ(u)γ(v)2
−2λ is the probability that nodesu andv meet

on channelAλ with u listening andv broadcasting.
Apparently,

P(Bu,v
λ ) = pu,vλ

∏

w∈NA(u)\{v}

q̄wλ . (19)

We want to calculateP(Ex
λ |B

u,v
λ ). For that we need to distinguish between the two casesx ∈ NA(v) \ {u}

andx /∈ N1
A
(v). For the first case, no other neighbor ofx thanv is allowed to broadcast, while in the second

case exactly one neighbor ofx needs to broadcast onAλ.

x ∈ NA(v) \ {u} : P(Ex
λ |Bu,v

λ ) =
P(Bu,v

λ ∩ Ex
λ)

P(Bu,v
λ )

=
1

P(Bu,v
λ )

P(Bu,v
λ )

q̄xλ
πℓγ(x)2

−λ
∏

y∈NA(x)\{u,v}

q̄yλ ≤
4

3
πℓ

γ(x)

Γ◦
A
(u)

∏

y∈NA(x)\{u,v}

q̄yλ (20)

x /∈ N1
A(v) : P(Ex

λ |Bu,v
λ ) = P(Ex

λ |u listens) = πℓγ(x)2
−λ · ∑

qyλ
y∈NA(x)\{u}

· ∏ q̄zλ
z∈NA(x)\{u,y}

= πℓγ(x)2
−λ · ∑

(1− πℓ)γ(y)2
−λ

y∈NA(x)\{u}
· ∏ q̄zλ
z∈NA(x)\{u,y}

≤ πℓ
γ(x)

Γ◦
A
(u)
· Γ
◦
A
(x)

Γ◦
A
(u)

∏

q̄zλ
z∈NA(x)\{u,y}

(21)

Now, using LemmaA.1, observe that
∑

x∈N3(u)
γ(x)
Γ(x) ≤ α3 and therefore:

∑

x∈Xu,v
m

γ(x) =
∑

x∈Xu,v
m

γ(x)

Γ(x)
Γ(x) ≤

∑

x∈Xu,v
m

γ(x)

Γ(x)

(

Γ◦A(x) +
1

2

)

≤ 10(m+ 1)α3Γ◦A(u) + α3 (22)

We first look at the casem = 0.

Case 1a:Γ◦

A
(u) > 2, m = 0. Then, by (22),

∑

x∈Xu,v
m

γ(x) ≤ 11α3Γ◦
A
(u). Also, (20) can be upper

bounded by43πℓ
γ(x)
Γ◦
A
(u) (since q̄yλ ≤ 1). For (21) we note thatΓ◦

A
(x) ≤ 10Γ◦

A
(u) and get combined that

P(Ex
λ |B

u,v
λ ) ≤ 10πℓ

γ(x)
Γ◦
A
(u) , regardless whetherx ∈ N1

A
(v) or not.

P(F u,v
λ,0 |B

u,v
λ ) ≥

∏

x∈Xu,v
0

(

1− 10πℓ
γ(x)

Γ◦
A
(u)

)

≥ e
−2

10πℓ
Γ◦
A
(x)

∑
x∈X

u,v
0

γ(x) (22)
≥ e−220α

3πℓ
πℓ≤

1
2= Ω(1).

Case 1b:Γ◦

A
(u) > 2, m ≥ 1. We show that, w.c.p., allx ∈ ⋃

m≥1 X
u,v
m , that listen on channelAλ,

have a collision. ForEx
λ to happen, exactly one ofx’s neighbors has to broadcast. We look again first at

x ∈ NA(v) \ {u}. We plug in the values for̄qyλ into (20) and we use thatΓ◦
A
(x) ≥ 10mΓ◦

A
(u) to get

P(Ex
λ |Bu,v

λ ) ≤ 4

3
πℓ

γ(x)

Γ◦
A
(u)

∏

(

1− (1− πℓ)
γ(y)
Γ◦
A
(u)

)

y∈NA(x)\{u,v}

≤ 64

27
πℓ

γ(x)

Γ◦
A
(u)

e
− 1

2

Γ◦
A
(x)

Γ◦
A
(u) ≤ 3πℓ

γ(x)

Γ◦
A
(u)

e−5m
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For x ∈ N3
A
(v) \ N1

A
(v) we do the same with (21). We also useΓ◦

A
(x) ≤ 10(m + 1)Γ◦

A
(u) for our

calculations:

P(Ex
λ |Bu,v

λ ) ≤ πℓ
γ(x)

Γ◦
A
(u)
· Γ
◦
A
(x)

Γ◦
A
(u)

∏

z∈NA(x)\{u,y}

(

1− (1− πℓ)
γ(z)

Γ◦
A
(u)

)

≤ 16

9
10(m+ 1)πℓ

γ(x)

Γ◦
A
(u)

e
− 1

2

Γ◦
A
(x)

Γ◦
A
(u) ≤ 40mπℓ

γ(x)

Γ◦
A
(u)

e−5m

For allx ∈ Xu,v
m we therefore haveP(Ex

λ |B
u,v
λ ) ≤ 40mπℓ

γ(x)
Γ◦
A
(u)e

−5m. Recall that by (22) we can upper

bound
∑

x∈Xu,v
m

γ(x) by 22mα3Γ◦
A
(u).

ForF u,v
λ,m≥1 :=

⋂

m≥1 F
u,v
λ,m we get

P(F u,v
λ,m≥1|B

u,v
λ ) ≥

∏

m≥1

∏

x∈Xu,v
m

(1−P(Ex
λ |Bu,v

λ )) ≥
∏

m≥1

∏

x∈Xu,v
m

(

1− 40mπℓ
γ(x)

Γ◦
A
(u)

e−5m
)

≥
∏

m≥1

e
−80mπℓe

−5m
∑

x∈X
u,v
m

γ(x)

Γ◦
A
(u) ≥

∏

m≥1

e−1760πℓα
3m2e−5m

≥ e−1760πℓα
3
∑

m≥1 m
2e−5m ≥ e−12πℓα

3
= Ω(1).

Let us now defineF u,v
λ asF u,v

λ,m=0 ∩ F u,v
λ,m≥1, then we get:

P(Du,v
λ ) = P(Bu,v

λ ∩ F u,v
λ ) = P(Bu,v

λ )P(F u,v
λ,m=0|B

u,v
λ )P(F u,v

λ,m≥1|B
u,v
λ ) = Ω(P(Bu,v

λ ))

With the results from above, this concludes the analysis forthe case ofΓ◦
A
(u) > 2.

Case 2:Γ◦

A
(u) ≤ 2, λ = 1 and 2−λ = 1/2 .

For this case we redefineXu,v
m .

Xu,v
m :=

{

x ∈ N3
A(v) \ {u, v} : 10m ≤ Γ◦A(x) < 10(m+ 1)

}

Analogously to (20) and (21) we get (with2−λ = 1/2):

x ∈ NA(v) \ {u} : P(Ex
λ |Bu,v

λ ) = P(Ex
1 |Bu,v

1 ) ≤ 2

3
πℓγ(x)

∏

q̄yλ
y∈NA(x)\{u,v}

(23)

x /∈ N1
A(v) : P(Ex

λ |Bu,v
λ ) = P(Ex

1 |Bu,v
1 ) ≤ πℓ

4
γ(x)Γ◦A(x)

∏

q̄zλ
z∈NA(x)\{u,y}

(24)

Like with (22), LemmaA.1 gives us that

∑

x∈Xu,v
m

γ(x) ≤ 10(m+ 1)α3 +
1

2
α3 ≤ 11(m+ 1)α3. (25)

Case 2a:Γ◦

A
(u) ≤ 2, m = 0.

From25 we get
∑

x∈Xu,v
0

γ(x) ≤ 11α3. With q̄yλ = q̄y1 ≤ 1 andΓ◦
A
(x) ≤ 10 we get for allx ∈ Xu,v

0

thatP(Ex
λ |B

u,v
λ ) = P(Ex

1 |Bu,v
1 ) ≤ 3πℓγ(x).

Thus,
P(F u,v

λ,0 |B
u,v
λ ) ≥

∏

x∈Xu,v
0

(1− 3πℓγ(x)) ≥ e−66πℓα
3
= Ω(1)
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Case 2b:Γ◦

A
(u) ≤ 2, m ≥ 1.

Note that sinceλ = 1 we haveqw1 = (1−πℓ)γ(w)2
−λ ≥ γ(w)/4 and thereforēqw1 ≤ e−γ(w)/4. We use

(23) and (24) to show that foranyx ∈ Xu,v
m

P(Ex
λ |Bu,v

λ ) ≤ 1

4
πℓγ(x)20m

(4

3

)2
∏

q̄zλ
z∈NA(x)

≤ 10mπℓγ(x)e
−2.5m

As indicated by (25),
∑

x∈Xu,v
m

γ(x) ≤ 22mα3 for m ≥ 1.
ForF u,v

λ,m≥1 =
⋂

m≥1 F
u,v
1,m we thus get again

P(F u,v
1,m≥1|B

u,v
1 ) ≥

∏

m≥1

∏

x∈Xu,v
m

(1−P(Ex
1 |Bu,v

1 )) ≥
∏

m≥1

∏

x∈Xu,v
m

(

1− 10mπℓγ(x)e
−2.5m

)

≥
∏

m≥1

e
−20mπℓe

−2.5m
∑

x∈X
u,v
m

γ(x) ≥
∏

m≥1

e−440mπℓα
3e−5m ≥ e−440πℓα

3
∑

m≥1 me−2.5m

≥ e−50πℓα
3
= Ω(1).

Analogously to the caseΓ◦
A
(x) > 2 it holds thatP(Du,v

1 ) = Ω(P(Bu,v
1 )).

Let c be the constant such thatP(Du,v
λ ) ≥ cP(Bu,v

λ ) for any v ∈ NA(u). Then, sinceDu
λ =

⊍ v∈NA(v)D
u,v
λ andBu

λ = ⊍ v∈NA(v)B
u,v
λ , it most hold thatP(Du

λ) ≥ cP(Bu
λ). Also,P(Du) ≥ P(Du

λ) and
since by (18) P(Bu

λ) = Ω(P(Bu)), we get thatP(Du) = Ω(P(Bu)).
This finishes the proof for the second part of the claim, equations (11).

Corollary 4.9. Let B(r)u,v be the event that in roundr nodeu ∈ Ar receives a message from one of its
neighborsv ∈ Ar, neither of them neighboring any leader, herald or herald candidate in the5th or 6th
round of its handshake protocol. Let̂H(r′)u

′,v′ be the event that at the beginning of roundr′ nodeu′ ∈ Hr′

andv′ ∈ Lr′ form a good leader-herald pair and thatH′ ∩N3(u′) = ∅, i.e., there are no herald candidates
in the3-neighborhood ofu′. Then

P(Ĥ(r + 8)u,v |B(r)u,v) = Ω(1) (26)

Proof. According to Lemma4.8, sinceDu ⊂ Bu, it holds thatP(Du|Bu) = Ω(1). Thus, ifB(r)u,v

happens, whereu receives the message on channelAi, then, w.c.p., no other nodew′ ∈ N3(u)\{u} (which
includesv’s neighborhood) receives a message onAi. If no other nodew′ ∈ N3(u)\{u} receives a message
onAi, that means that all such nodesw′ either not operate onAi, or, if they do, none or at least2 of their
neighborsw′′ ∈ N4(u) send a message onAi. Using Lemma4.6.(4) by settingk = 4, πℓ appropriately
small and conditioning on the setS = Sl ·∪Sb ·∪Sn of nodes as listening/broadcasting on channelAi or not
operating onAi at all (denoted by eventZ := Sn¬i ∧Sbi ∧S li), we get thatP(H¬i|Du) = P(H¬i|Z) > 1/2.

If in round r both eventsH¬i andDu happen (whereu gets its message on channelAi), then in round
r + 1 nodesu andv meet on channelH and can perform the first round of the handshake protocol without
any interruption from any other nearby nodes. By applying Lemma4.6.(1) multiple times, in roundsr + 1
to r + 7, w.c.p., no other new herald is created inN3(u). Thus, w.c.p., by the beginning of roundr + 8, u
andv have emerged from the handshake as a good leader-herald pair.

We next recall the analysis done for the so-calledHandshakeandRed-Blue Game, which shows that the
creation of good pairs implies progress. All lemmas for the handshake protocol and the red-blue protocol
have been proven in [9] and their proofs are almost unaffected by the changes made to the algorithm.
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4.5 Handshake Protocol—Nodes in StatesL′ and H′

Lemma 4.10. In roundr consider two leader-herald pairs (l1, h1) and (l2, h2) and suppose that the pairs
started their most recent handshakes in roundsr1 andr2, r1 ≤ r2, respectively. Say that edgee is crossing
if one of its endpoints is in{l1, h1} and its other endpoint is in{l2, h2}. Then, either no crossing edge exists
or exactly one of the following conditions is satisfied: (1)r1 = r2 and crossing edges are{l1, l2} and/or
{h1, h2}, (2) r2 = r1 + 2 and the only crossing edge is{l1, h2}.

Lemma4.10corresponds to Lemma 8.10 in [9] and in the proof there it was made use of the fact that
in the original red-blue game in every second round both leader and herald blocked channelH. But the
new red-blue game features exactly the same mechanic. Everything else in the proof stays the same as the
handshake protocol has not changed at all, hence we omit the proof here.

4.6 Red-Blue Protocol—Nodes in StatesL andH

Lemma 4.11. If a pair (l, h) is good in roundr and they started their first red-blue game in roundr′, then
by the end of roundr′ + τred-blue= r′ +Θ(log n), w.h.p., either
• the related leaderl joins the MIS, or
• a nodev ∈ N(l) ∪N(h) joins the MIS by increasing its lonely counter aboveτlonely.

This lemma and its proof are exactly the same as in [9], hence we omit any proof. Note that the lemma
stresses that a good leader does not necessarily become an MIS node. To see how the second case can
happen, assume that some nodev is in the herald filter already for a long time, with its lonelycounter
almost reaching the threshold. If now a neighboring node inG makes it out of the decay filter, and, after
increasing its activity value for a while, communicates successfully with another node. This can happen
beforev notices the existence ofu, and shortly afteru becomes a leader,v could join the MIS via the lonely
counter.

Leaders of bad pairs do not have a justified claim for being MISnodes, so we do not want them to hinder
progress. But they do that by decreasing activity values of their neighbors. The next lemma shows that bad
pairs do not last for very long, thus not causing a long stagnation.

Lemma 4.12. Consider a nodev and suppose that in an arbitrary roundr, there is a leader or herald of
a bad pair inN3(v). Then, w.c.p., in roundr + 16, no node inN3(v) is in stateH′ and all leaders and
heralds are part of a good pair.

The proof for Lemma4.12remains the same, too, except that in the original version roundr + 12 was
stated. This change is due to the fact that the length of a single red-blue game did increase from6 to 8. It
does not affect the proving method and we again omit any proof.

4.7 Joining the MIS—Nodes in StatesM and E

Property 1 (P). The setM is an independent set at all times.

This intuitive assumption is needed for some of the upcomingstatements; it is clearly true at the be-
ginning of the algorithm, whenM = ∅. We show in Lemma4.18, that if (P) is violated, then w.h.p. a
contradiction occurs. The next lemma makes sure that nodes inN(M) soon learn of their coverage.

Lemma 4.13. Assume (P) holds. Letv be a node that enters stateM at timet. Letw be a node inNG(v)
that is awake at timet′ ≥ t and, ifw ∈ L ∪ H, that it is at most in round9

10τred-blue of its corresponding
red-blue game. Then by timet′ + τnotification = t′ +O(log n), w.h.p.,w is in stateE.10

10Note that this lemma also considers nodesw from the decay filter.
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Proof. We proof the statement by showing that withinO(log n) rounds a non-sleeping nodew receives a
message fromv ∈ M on some channelRi. Since nodes in the decay filter listen on the report channelsin
any given round with probability at least1/2, and therefore at least half as often as nodes in the herald filter,
we restrict our analysis to nodes in the herald filter and proof the statement for a time bound ofτnotification/2.
State changes from the decay filter to the herald filter do not affect the analysis because of the very same
reason. Also note thatw is unableto move to stateL norH after timet+ 4, sincev disrupts any handshake
in its neighborhood by sending at least once onH in every set of two consecutive rounds.

Casew ∈ A. Consider some roundt′′ ≥ t′. If w is in stateA, w.c.p., it also is in that state in round
t′′ + 1. Further, w.c.p., MIS nodev has its variableenforceset to false in roundt′′ + 1, and thus, w.c.p.,
broadcasts on some channelRi in that round. Assumew does not neighbor any bad herald or bad leader,
then it neighbors at mostα good leaders,α2 good heralds, andα MIS nodes. To see this, note that while
good heralds are allowed to be adjacent to each other, each has a neighboring good leader, and thus the
number of adjacent good heralds in the direct neighborhood of w is upper bounded by the number of good
leaders inN2(w), and thus byα2. We can therefore upper bound the number of adjacent good leaders,
good heralds, or MIS nodes by3α2. The probability thatv chooses channelRi while no good herald, good
leader or other MIS node neighboringw chooses to operate on the same channelRi, is constant, sincenR is
greater than3α2, but still a constant. With probability at least12nR

= Ω(1), w listens onRi in roundt′′+1,
and therefore,w learns ofv’s state with constant probability.

Now let there be bad pairs inw’s neighborhood in roundt′′ andw be inA. Then, w.c.p., by Lemma
4.12, 16 rounds laterw is still/again in stateA while all bad pairs inN2(w) are knocked out and no new bad
pair has been created due to Lemma4.6.(1). As before,w learns ofv’s state w.c.p. afterO(1) rounds.

Let noww be in different states. Ifw is inH
′ (but at most in the fourth round of the handshake protocol)

or in L
′, its handshake will fail due tov’s routine of disrupting channelH at least once every2 rounds,

revertingw back to stateA. For the cases ofw being either inL, H or in the last two rounds of the
handshake protocol as a herald candidate (H

′) (which we denote byH′5,6 in this proof), note that ifw ever
moves to stateA from these states, it is unable to return. Ifw is in L, in each red-blue game, there is a
constant probability ofΘ(1) that v disrupts the game, bringingw back to stateA. Instead, ifw is in H,
during each red-blue game, there is aΩ(1/nR) probability thatv operates on the same channelRmeetasw
does in round8 of its respective red-blue game, disrupting the ongoing red-blue game and sendingw back
to stateA. Due to our condition ofw not being too far in its red-blue protocol, we can chooseτred-blue large
enough to make sure thatw, whether it is in stateL or H, hears fromv w.h.p. before it can join the MIS
itself. If w is in the last two rounds of the handshake protocol, then thiscase can be reduced tow being a
herald.

Thus, ifw is inL∪H∪H′5,6, then it leaves this set withinO(log n) rounds and never returns to it. Thus
let us assume thatw is not in this set (anymore).

Clearly, if w is not inA in any roundt′′ ≥ t′, w.c.p., it returns toA in O(1) rounds. And as argued
above, if bad pairs are inw’s neighborhood, they get eliminated w.c.p. inO(1) rounds as well. Choosing
τnotification = O(log n) sufficiently large and applying a Chernoff bound proves the statement.

4.8 Progress and Runtime

In Lemma 8.13 of [9] we have shown that once a good leader-herald pair is created, its leader (or another
node in distance2) joins the MIS withinO(log n) rounds. Also, we used the fact that within close proximity
of fat nodes (which exist in anyδ-neighborhood of any node in the herald filter) such solitarypairs are
created with a constant probability. In the algorithm in [9] it might happen that after a good pair is created
within radiusδ of some nodeu, the only fat node withinN δ(u) is close to that pair. A good pair blocks the
creation of other pairs around it, so progress might be stalled until the leader of the good pair joins the MIS,
causing it to eliminate its neighbors (and therefore their activity) and finally, forcing the local condition of
fatness to move to a different area of the graph.
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Here we changed the algorithm to take care of this potential stagnancy issue. We want the attribute of
fatness to move away from a good pair long before the leader joins the MIS. More precisely, a node not
neighboring good pairs should become fat withino(log n) rounds. For this we require good pairs to reduce
the activity levels of their neighborhoods. However, a leader-herald pair does not know whether it forms a
good pair or a bad one before theτred-blue = Θ(log n) red-blue games are over. The idea to deal with this
difficulty is the following. Good pairs manage in expectation within O(log log n) rounds to reduce their
neighborhood’s activity far enough such that most of the time those nodes can be considered inactive. Bad
pairs, however, last for only a constant number of rounds in expectation, and are created rarely enough11 for
affected nodes to recover their lost activity quickly. In other words, the longer a node is a leader, the more
likely it is that this node is good.

Careful analysis allows us to transform these observationsinto high probability results.
In the followingγ(u, t) denotes the activity level of nodeu in roundt. Also, letε be a constant smaller

than1—about0.1 is sufficiently small for the upcoming proofs.

Lemma 4.14. Let t be a time at which a nodeu /∈ N1(M) is in the herald filter. Then, w.h.p., one of
following holds:
(a) Withinτprogress= O(log2 n/F + log n) rounds,u ∈ N1(M), or
(b) | {t′ ∈ [t+ 1, t+ τprogress] : γ(u, t

′) = 1/2} | ≥ (1− ε)τprogress.

Proof. Initially assume that the lemma allows in addition to conditions (a) and (b) the following:
(c) or within τprogress= O(log2 n/F + log n) rounds, there is a good leader inN2(u).
We prove the statement by contradiction, thus assume that neither (a), (b) nor (c) holds.

Let t < T1 < T2 < · · · < Tm ≤ t + τprogress− τred-blue be the rounds in which a respective series
of leaders or heraldsv1, v2, . . . , vm ∈ N(u) neighborsu for the first time, i.e.,vi successfully finished its
handshake in roundTi − 1 and managed to reach/was reached by a single nodev′i ∈ N2(u) in roundTi − 7
on some channelAki . ForTi < Tj it can hold thatvi = vj — in this case nodevi moved fromL ∪ H to
stateA in the time interval[Ti, Tj ]. Also, at timeTi more than one leader/herald could neighboru for the
first time, in which case we letvi be any of these. For the pair(vi, v′i) denote withli the leader and withhi
the corresponding herald.

Assume that all corresponding pairs(li, hi) are bad pairs as otherwise the lemma would be trivially
fulfilled.

Fix i. li can become a bad leader in roundTi, if in roundTi−7 a nodel′ ∈ NA(li) reaches another node
h′ ∈ A in that round and manages to get through its handshake protocol as well. For(li, hi) to get through
their handshake protocol, they cannot neighbor a leader or aherald or a herald candidate in round5 or 6 at
that time. By Corollary4.9, the probability for(li, hi) to turn out a bad pair is in1−Ω(1). Another way for
li to become a bad leader is if in roundTi−5 a nodeh′ ∈ N(li) successfully receives a message. By Lemma
4.6.(1) this happens only with probabilityO(πℓ). Hence, in both cases, the probability forli to be a bad
leader conditioned on the event thatli becomes a leader in roundTi, is at most1− Ω(1). Since we assume
that all leadersl1, l2, . . . , lm are bad leaders, a Chernoff bound then gives us that, w.h.p.,m = O(log n).
Assume this is the case. LetXi be the random variable that measures the number of red-blue games leader
li survives before it either becomes part of a good pair or it gets knocked out. Ifli becomes part of a good
pair then the extended lemma statement would be fulfilled, hence we assume otherwise. Note that, w.h.p.,li
(like any other node) cannot finish its red-blue protocol as abad leader and join the MIS.

So, for alli, let us assume thatli gets knocked out of stateL while being part of a bad pair. According to
Lemma4.12this happens in each red-blue game with constant probability, i.e.,E[Xi] = Θ(1). LetY be the
number of rounds in which at least one node inN(u) plays the red-blue game. Then, sincem = O(log n),
applying Chernoff once more we have forY ≤ X :=

∑m
i=1 Xi that E[Y ] ≤ E[X] = O(log n). If u

11controlled by reducing the parameterπℓ
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always picks a channelRmeetfor the corresponding rounds on which a neighboring bad paircommunicates,
thenu reduces its activity by the factorσ⊖ in each such round. This totals to a reduction of at mostσY

⊖ ,
spread overτprogress rounds. But sinceY = O(log n) it also takes at mostY · logσ⊕

σ⊖ = Y · 20m̄ =
Θ(Y ) = O(log n) rounds to recover from those activity reductions. Choosingparameterτprogress large
enough,| {t′ ∈ [t+ 1, t+ τprogress] : γ(u, t

′) = 1/2} | ≥ (1− ε)τprogressholds with high probability.
What remains is to remove condition (c). But this follows from the simple fact that if a good leader is

created inN2(u), then withinτred-blue rounds it either joins the MIS or it gets knocked out by an MIS node
due to Lemma4.11. The latter can happen at mostα3 times. Thus we can omit condition (c) by extending
τprogressadditively byτred-blueand then by a factor ofα3.

Next we upper bound the number of rounds in whichanyneighbors of good pairs within distanceδ from
u manage to exceed the activity thresholdγlow.

Definition 4.15. For a nodeu and a roundr let I(u, r) be the event that
• all nodesx ∈ N δ(u), which neighbor an MIS node, are in stateE, and
• all nodesx ∈ N δ(u), which neighbor a good heraldh or good leaderl, h, l ∈ (H∪L) \N(M), have

γ(x) ≤ γlow =
√
γmin = log−12 n and are neither bad leaders nor bad heralds.

Lemma 4.16. Assume that (P) holds. Further, letr̄ be a round in which nodeu is in the herald filter and
setJ := [r̄ + 1, r̄ + τprogress]. Then, w.h.p., one of the following holds:
• Within τprogress= O(log n) rounds, there is an MIS node inN1(u), or
• | {r ∈ J : I(u, r)holds} | ≥ (1− ε)τprogress.

Proof. Initially, τprogressis chosen large enough to comply with Lemma4.14.
The proof is divided into four parts. In the first part we show that there are onlypolylog n many nodes

for whichI(u, r) can be violated—i.e., nodes that neighbor good leaders, good heralds or MIS nodes. In the
second part we show that each such node hears from one of theseneighbors everyO(1) rounds with constant
probability. Since neighbors of MIS nodes are immediately eliminated upon hearing a message from them,
the case of a node neighboring a good pair is the more difficultone. In the third part we argue that a
node neighboring good pairs reduces its activity value toγmin at least once withinO(log log n) rounds with
considerable probability:1 − log−c n for some constantc > 1. In the last part we combine those results
to show that withinτprogress rounds, w.h.p.,I(u, r) is only violated for a small constant fraction of those
rounds.

First part. To count the number of nodes that can violateI(u, r), we have to count the number of good
heralds, good leaders and good MIS nodes inN δ+1(u) in round r; we denote that latter set byWr ⊆
(L ∪H ∪M) ∩N δ+1(u) and their neighboring nodes in the herald filter byNr := N(Wr). Due to (P) and
Lemma4.11, w.h.p. at all times all MIS nodes form an independent set, asdo all leaders of good pairs, so
there are no more than2αδ+1 of these inWr. The number of heralds of good pairs inN δ+1(u) is at most the
number of good leaders inN δ+2(u), so in total|Wr| amounts to at most3αδ+2 ≤ 3α2

√
log n = o(log n).

Due to the guarantee we get from the decay filter, each such node has at mostO(log3 n) neighbors in the
herald filter, soNr < log4 n. Note that even overτprogressrounds the total amount of those nodes cannot
exceedo(log6 n).

Second part. An MIS node has to reach all its neighbors only once each, in order for them to fulfill the
requirement forI(u, r). Leaders and heralds on the other hand need to inform their neighbors multiple times
and continuously over the course ofτprogressrounds. In most cases a nodev ∈ Nr has a constant probability
to hear of at least one of its neighbors inWr within aO(1)-round time interval. More precisely, we claim
that withinO(log log n) rounds, in expectation,v reduces its activity by a factor polylogarithmic inn. We
prove this by analyzing the3 types of neighborsv can have inWr and the statesv can be in.
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v ∈ A: At first let v neighbor an MIS nodes. s might be forced to broadcast onH in roundr, but then with
probability1/4 it sends on one of the report channelsRk in roundr+1. Also with probability at least
1/2, v does not act on one of the active channelsAi in roundr and therefore either gets knocked out
or is also in stateA in roundr + 1, where it listens on some report channel with probability atleast
1/2. Thus, with probability at least1/16, in roundr′ ∈ [r, r + 1], s sends on a report channel andv
listens on a report channel. If that is the case, since|Wr′ ∩ N1(v)| ≤ nR, with probability at least
1

enR
, v ands act on the same channelRk while no other neighbor ofv in Wr′ operates onRk. Once

that happens,v moves to stateE.
Thus let us now assume thatv does not neighbor an MIS node, but at least one good leaderl. With
similar reasoning, there is a roundr′ ∈ [r, r + 7] in which l broadcasts on some channelRk as a
apart of its red-blue game, unlessl transitioned to stateM or E—the first case we already covered,
the second does not happen with probability at least1/2. With probability at least2−7, v is still or
again in stateA in that roundr′. With similar argumentation as above,v then getsl’s message with
probability at least 1

2enR
. In total, in each8-round interval, with probability at least 1

28enR
, v receives

a message froml.
If v does not neighbor a good leader nor an MIS node, but at least one good heraldh, then the same
logic applies for an8-round interval, unlessh gets knocked out—which only happens if its leader
joins the MIS or another MIS node is created nearby. But, withprobability at least1/2, h nor its
leader gets knocked out by a neighboring MIS node. If its leader joined the MIS, then just a new MIS
node has been created inN2(v), which can happen at mostα2 times and therefore delayv to hear
from any of its neighbors by at mostO(α2) rounds during the whole execution of the algorithm. For
simplicity we ignore thoseO(1) rounds. As above, with probability at least1

28enR
, v hears fromh in

any8-round interval.

In total we get that for every211enR rounds thatv spends inA ∩ Nr, in expectation it hears at least once
from one of its neighbors inWr. At this point we fixm̄ to be eight times as large, i.e.,214enR. Note thatm̄
is a constant depending onα only, vianR.

v ∈ H ∪ L: As long asv is in one of these states,v hears from the node it partnered up with every8 rounds
as long as the pair remains. In the algorithm it is accounted for that by decreasingγ(v) every round
by a factor ofσ20

⊕ .

v ∈ L
′ ∪H

′: If v was already inL′ orH′ when it joinedNr, then it might manage to finish its handshake, in
which case we refer to the previous case. Otherwise, if its handshake gets disrupted, thenv returns to
stateA at latest6 rounds later, which we also already covered. This also implies, that a node switching
between statesA andH′ orL′ spends at least one eight of these rounds inA.

We get thatv hears from one of its neighbors inWr at least once everȳm rounds, irrelevant of its own state.
Recalling thatσ⊖ = σ20m̄

⊕ , v reduces its activity each8 rounds by a factor of at leastσ152
⊕ in expectation.

Third part. Let ri be the round in which theith MIS node or good leader-herald pair inN δ(u) is created
and we talk of eventEri ; if more than one is created in a single round, we ignore additional ones. In round
ri all nodesv ∈ Nri haveγ(v) ≤ 1/2. Let us assume that no other good pair or MIS node is created for
Ω(log log n) rounds, as otherwise we assume all rounds betweenri andri+1 asviolated—more details on
that in part four. We want to show that all nodesv ∈ Nri decrease their activity quickly. For as long asv
is part of a pair, this reduction is guaranteed by design of the algorithm, so we also only consider rounds in
which v is not part of a pair. For some arbitrary constantc, in the nextc log log n roundsv can increase its
activity by at most a factor ofσc log logn

⊕ = Θ(polylog n). Let Dv be the random variable that counts the
number of timesv receives a message of one of its neighboring good leaders or heralds in thosec log log n
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rounds. In expectation,Dv increases at least everȳm rounds by one. With Chernoff we get

P

(

Dv ≤
(

1− 1

2

)c log log n

m̄

)

≤ e−
c log log n

4m̄ (27)

Recall that|Nri | ≤ log6 n. We choosec := 100m̄ ≥ (20+ 6) · 4 · ln 2 · m̄. If Dv > c log logn
2m̄ as in (27), then

γ(v) decreases enough in thosec log log n rounds to “touch”γmin at least once. Now we can make a union
bound over all nodes inNri and we get that with probability1 − 1

log20 n
all nodes inNri touchγmin at least

once in thosec log log n rounds.

Fourth part. Let us now count the amount of roundsr in which I(u, r) does not hold. We keep the
definition of roundsr1 < r2 < · · · < rk and of eventsEri . Due to the definition of good pairs, there can
be no more good heralds inN δ+1(u) than there are good leaders inN δ+2. Once being part of a good pair,
a node can only stop being good by being knocked out by an MIS node, which then prevents the creation
of new leaders, heralds and MIS in its neighborhood. MIS nodes in distanceδ + 3 can still influence good
leaders and heralds inN δ+1(u). However, no more thanα good leaders (and their corresponding good
heralds) and no more thanα2 good heralds (and their corresponding good leaders) can be knocked back to
stateA by an MIS node. Therefore, no more than2αδ+5 = O(

√
log n) such eventsEr can happen, i.e.,

k = O(
√
log n).

We split the interval[r̄, r̄ + τprogress] into ℓ smaller intervals(Ji)1≤i≤ℓ of lengthc log log n each, i.e.,
ℓ =

τprogress

c log logn . Then we color each such intervalJi red if it contains one of the eventsEr and we color
Ji orange if its preceding intervalJi−1 contains such an event, but notJi itself. All other intervals are
coloredblue. From the third part we know the following. Independently ofthe activity values of all nodes
in Nr = N(Wr) \Wr in some roundr, if no eventEr′ happens in roundr′ < r + c log log n, then with
probability1 − log−20 n all those nodes touchγmin within the nextc log log n rounds after roundr. I.e., in
every orange and blue interval, this is likely to happen at least once. If this happens in some orange or blue
intervalJi, let us call this eventMi. Any node that touchesγmin in intervalJi cannot recover its activity by
a factor higher than

σc log logn
⊕ = 2

24c log log n
2000m̄ = log

24·100m̄
2000m̄ n = log1.2 n,

until the end of intervalJi+1. In other words, ifJi is blue, thenJi−1 cannot be red and ifMi−1 happened,
then I(u, r) holds throughout the whole intervalJi. Let I be the index set for all blue intervals. Since
k = O(

√
log n), the total number of rounds in red and orange intervals are both in o(log n). Thus the

numberℓ′ := |I| of blue intervals is in(1 − o(1))ℓ, i.e., ℓ′ ≥ (1 − ε/2)ℓ. We define random variablesXi

that evaluate to1 if Mi−1 doesnot hold and to0 otherwise. LetX :=
∑

i∈I Xi, p := log−20 n, ε′ := ε/2
andτprogress≥ c

ε′(1−ε′) log n, then

P(X ≥ ε′ℓ′) ≤
(

ℓ′

ε′ℓ′

)

pε
′ℓ′

(nk)≤
(

en
k

)k

≤
(

eℓ′

ε′ℓ′

)ε′ℓ′

log−20ε
′ℓ′ n

≤ 2((log
e
ε′
)−20 log logn))ε′(1−ε′)

τprogress
c log log n ≤ n−19.

Hence the number of intervals of lengthc log log n, in which no violation ofI(u, r) occurs, is w.h.p. at least
(1− ε)ℓ, which concludes the proof.

Lemma 4.17. Assume that (P) holds. Lettu be a round in which a nodeu /∈ N1(M) has a neighbor
u′ /∈ N1(M) in the herald filter. Then, w.h.p., withinτprogress= O(log2 n/F + log n) rounds a node in
N1({u, u′}) joins the MIS.
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Proof. The constantτprogressis chosen by the end of this proof, and it is inO(log2 n/F + log n). Initially
we only set it to be large enough to comply with Lemma4.14and Lemma4.16. Assume that the statement
is not true, i.e., no node inN1({u, u′}) joins the MIS in the given time bounds.

Both nodesu andu′ stay competitive, i.e., they stay in the statesA, H′, L′, H or L, as statesM andE
would clearly imply the creation of an MIS node inN1({u, u′}). We now apply Lemma4.14to both nodes
to get

∣

∣

{

t′ ∈ [tu + 1, tu + τprogress] : γ(u, t
′) = γ(u′, t′) = 1/2

}
∣

∣ ≥ (1− ε)τprogress. (28)

We also apply Lemma4.16to extend (28) to
∣

∣

{

t′ ∈ [tu + 1, tu + τprogress] : γ(u, t
′) = γ(u′, t′) = 1/2 ∧ I(u, t′) holds

}∣

∣ ≥ (1− 2ε)τprogress. (29)

We call roundsr in which γ(u) = γ(u′) = 1/2 andI(u, r) holds, apromising round. In such a round
clearlyΓ(u) ≥ 1.

We first look at the case in which a round is promising,Γ(u) < 5α and u is 1
5α -fat. By Lemma

4.7 with probabilityΩ(πℓ) within 7 rounds either a good pair or an MIS node is created nearby, an event
that would contradict our assumption. Hence, as long asΘ(π−1ℓ log n) such rounds appear, w.h.p. such a
contradicting event occurs. We chooseτprogresssufficiently large such thatετprogresssuch rounds would cause
a contradiction.

W.l.o.g. we thus assume that withinτprogressrounds, a(1 − 3ε) fraction of these are promising, but it
does not hold that bothΓ(u) < 5α andu is 1

5α -fat. For simplicity we exclude these cases from our definition
of a promising round.

In all promising rounds, in distanceδ there must be a nodew, for whichΓ(w) ≥ 5α andw is η-fat. This
is obvious ifΓ(u) ≥ 5α, as then eitheru is already that node, or there exists a chain of activity sums, which
increase in each step by a factor of at leastη−1. By definition ofη, such a chain has length at mostδ. If
Γ(u) < 5α, thenu cannot be 1

5α -fat by our renewed definition of a promising round. But sinceΓ(u) ≥ 1,
u then must have a neighborv for whichΓ(v) ≥ 5α and we can apply the same logic as before to find that
η-fat nodew.

For such a nodew the requirements for Lemma4.7hold.
Now let t1,prom be the first promising round,t2,prom the second and so on.
Let T1,prom be the random variable that counts the number of promising roundsti,prom until the first time

a good pair or an MIS node is created inN δ(u) or has beencreated in a non-promising round between
ti−1,prom andti,prom (we denote such an event asA). I.e.,

T1,prom := min {i : A happens in(ti−1,prom, ti,prom]} .
Tj,prom for j > 1 is defined accordingly. By Lemma4.7 eventA happens in expectation at least every
(c1πℓ)

−1 promising rounds for some constantc1 depending only onη.
LetMu be the random variable that counts the number of eventsA happening inN δ(u) until one happens

in N1({u, u′}), i.e., until either a good herald or good leader is inN1({u, u′}). The number of good leaders
and the number of MIS nodes that can co-exist inN δ(u) is at most2αδ ≤ 2

√
log n. If a node stops being

a good leader, then it must have been knocked out by an MIS node, which still limits the total number of
these events to3

√
log n.

Note also that usually after an eventA there is anΩ(log log n) pause until the next promising round
happens, because it takes at least that many rounds for good pairs to reduce a neighbor’s activity beneath
the thresholdγlow, if that neighbors activity level is inΩ(1) by the timeA happens. We account for that by
“paying” c3 log log n rounds for each such event, for some constantc3.

Now, using a Chernoff bound we get that
∑Mu

i=1 Ti,prom≤ 6
√
log n

(

1
c1πℓ

+c3 log log n
)

+c2 log n, w.h.p.,
for some constantc2. With suitably large chosenτprogress, this is less than(1 − 3ε)τprogress, causing the last
contradiction to our assumption and thus finishing the proof.
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Lemma 4.18. W.h.p., property (P) is not violated throughout the runtimeof the algorithm.

Proof. Assume in round̄t it happens for the first time that2 neighboring nodesu1 andu2 are inM. W.l.o.g.,
we letu1 enter the MIS beforeu2 or at the same time and denote those times correspondinglyt1 ≤ t2 = t̄.
Additionally, for all pairs of nodes that violate (P) in round t2 we choose the pair for whicht1, the ’age’ of
the older MIS node, is minimized, and ties among candidates for those positions are broken byIDs, first for
u1, then foru2.

There are two ways for a node inA to join the MIS: either by increasing itslonelycounter toτlonely or
by passing through stagesL′ andL.

(A) Let us first assume that both nodesu1 andu2 enter stateM by finishing their respective red-blue games.
If t1 < t2, thenu1 started its first red-blue game beforeu2 did, but by Lemma4.10, they cannot be
in stateL at the same time. Thus,u1 joins the MIS beforeu2 becomes a leader. But as a leader,u1
disrupts handshake channelH every second round, and then as an MIS node, it does so at leastevery
second round, preventingu2 from ever becoming a leader. Therefore, lett1 = t2. Thenu1 andu2
were neighboring leaders forτred-blue/8 = Ω(log n) red-blue games, and in each such game having a
probability of at least1/2 to conflict with each others’ red-blue game. By Chernoff, w.h.p., this is not
possible.

(B) Let us next assume that both nodes enter stateM through theirlonely counters. First assume that
t2 − t1 ≥ τlonely/2 ≥ τnotification. But then in[t1, t2 − 1] (P) holds true and with Lemma4.13, u2
gets eliminated byu1 before it can become an MIS node. Thus, lett2 − t1 < τlonely/2. But then
during rounds[t1 − τlonely/2, t1] both nodes are in the active statesA, H′, L′, H andL and they do
not neighbor an MIS node. The latter stems from the following. If u1 would neighbor an MIS node
u3, then the first violation of (P) would happen in roundt1, a contradiction ift1 < t2. For t1 = t2,
nodesu1 andu2 contradict our choice of the pair being investigated, asu3 would have had a higher
age. Similar argumentation keepsu2 from neighboring an MIS node. Hence, assume that none of both
nodes neighbor an MIS node. Lemma4.17tells us that by roundt1 − τlonely + τprogress≪ t1, an MIS
nodev would arise inN1({u1, u2}), with v 6= u1, u2. The remaining rounds, by Lemma4.13suffice
for v to eliminateu1 or u2 w.h.p., again contradicting our initial assumption.

(C) Now letu1 join the MIS via loneliness andu2 by being a leader. Ift2 − t1 ≥ τred-blue/2 = Ω(log n),
then in each8-round red-blue game after roundt1+1, u1 has a constant chance to disruptu2’s game on
channelG. Choosingτred-blue large enough guarantees us that, w.h.p., this cannot happen. If t2 − t1 <
τred-blue/2, then in each8-round red-blue game in(t2 − τred-blue, t1), there is a constant probability that
u2 transmits on a report channelRi on which no other neighbor ofu1 transmits. The argumentation is
similar to the one in Lemma4.16, except thatu1 does not neighbor an MIS node yet (see argumentation
above w.r.t. to our choice ofu1 andu2): There are at most2α2 good leaders and heralds neighboring
u1, andall bad leaders/heralds get knocked out with constant probability in each red-blue game, see
Lemma4.12. At the same timeu1 listens on the same report channelRi with probability at least
1

2nR
= Ω(1). Therefore, withτred-blue large enough, w.h.p.u1 hears fromu2 before roundt1 and thus

resets itslonelycounter.

(D) Last switchu1’s andu2’s roles from the previous case. In this case,u2 is neighboringu1 throughout
its leadership state, and with analogous argumentation, regardless whetheru1 ∈ L or u1 ∈M, u2 hears
from u1 with high probability.

Now we have everything at hand to prove Theorem3.1.
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Proof of Theorem3.1. As stated earlier, Lemma4.2 provides that the runtime of the decay filter is within
O
(

log2 n/F + log n
)

, i.e., for a nodeu executing Algorithm2 (the decay filter) by that time one node
v ∈ N1

G(u) enters the herald filter. From Lemma4.1 we get that over the course ofO(log2 n) rounds the
maximum degree of the graphG′ induced by all nodes in the herald filter is at mostO(log3 n).

Let thusu be a node that enters the herald filter. If it stays lonely forτlonely = Θ
(

log2 n/F + log n
)

rounds, thenu joins the MIS and we are done. Hence assume thatu does hear from a neighboring node
u′ in the herald filter beforeτlonely rounds have passed. We can now apply Lemma4.17 to get an MIS
nodev created withinτprogress= O

(

log2 n/F + log n
)

rounds. It either neighborsu, in which case within
τnotification = O(log n) roundsu is decided w.h.p., or it neighborsu′, which is also then eliminated in
τnotification rounds. That wayu can become lonely again. However, since an MIS node has been created in
N2(u), this can happen at mostα2 times. Thus, at mostτruntime = 2α2τlonely rounds afteru entered the
herald filter,u is decided.
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A Properties of Graphs with Bounded Independence
We need a few statements about bounded independence graphs.The proofs are provided in [9].

Lemma A.1. LetG = (V,E) be a graph and assume that every nodeu ∈ V has a positive weightwu > 0.
DefineW :=

∑

v∈V wv and for eachu ∈ V , Wu :=
∑

v∈N1
G
(u) wv. It then holds that

∑

v∈V

wv

Wv
≤ α(G) and (30)

∑

v∈V

wv ·Wv ≥
W 2

α(G)
, (31)

whereα(G) is the independence number ofG.

Lemma A.2. LetG = (V,E) be a graph and assume that every nodeu ∈ V has a positive weightwu > 0.
DefineW :=

∑

v∈V wv and for eachu ∈ V , Wu :=
∑

v∈N+
G
(u) wv. LetVheavy ⊆ V be the set of nodesv

for whichWv ≥ W
2α(G) . The total weight of nodes inVheavy is at least

∑

v∈Vheavy

wv >
W

2α(G)
.

B Candidate Election—Statements and Proofs forA (andL
′)

B.1 Lemma4.6, “W.h.p. nothing happens”

Let k be a positive integerconstant, r some round,u some node in the herald filter in roundr, i an index
from 1, . . . , nA, S be a (possibly empty) subset ofNk(u) ∩ A. Furthermore let∂S ⊂ S be thesubset ofS
that has connections outside ofS, but inNk(u), i.e.,∂S := S∩N

(

Nk(u)\S
)

. At last, letS = Sn ·∪Sb ·∪Sl

be a partition ofS. We call the tuple(k, u, r, i, S)) a constellation. For a constellation the following events
are defined for roundr:
• S¬i/Sn¬i: no node inS/Sn operates onAi,
• Si/Sbi /S li : all nodes inS/Sb/Sl operate onAi,
• ∂S¬i: no node in∂S operates onAi,
• Hi: no node inNk(u) \ S receives a message on channelAi,
• H¬i: no node inNk(u) receives a message on some channelAj 6= Ai and
• H: no node inNk(u) receives a message on any channelA1, . . . ,AnA

.

Lemma B.1. Let (k, u, r, i, S) be a constellation. Then,

(1) P(H) = 1−O(πℓα
k)

(2) P(H¬i|S¬i) = 1−O(πℓα
k)

(3) P(H¬i|Si) = 1−O(πℓα
k)

(4) P(H¬i|Sn¬i ∧ Sbi ∧ S li) = 1−O(πℓα
k)

(5) P(Hi|∂Sn¬i) = 1−O(πℓα
k)

Look at (1). The lemma says that the probability for a herald candidateto be created in any single round
for any neighborhood of constant radius is at most linear inπℓ. Sinceπℓ is an arbitrarily small constant
parameter chosen by us, we can make the probability for this event arbitrarily small. The proof for (1)
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is exactly the same as the proof for Lemma 8.6 in [9], with α(k) replaced byαk. We provide its proof
nevertheless, as (2) and (3) are new results that do directly depend on (1). What (2) says, is, that even if
we condition on some nodesS ⊂ Nk(u) not to operate on channelAi, this does not increase the chance
(significantly—i.e., by more than a constant factor) for these or other nodes to receive anything on some
channelAj 6= Ai. Analogously, (3) claims that if we condition on some nodesS ⊂ Nk(u) to definitely
operate on channelAi, this does still not affect the probability for any other node to receive any message on
some other channelAj 6= Ai. (4) is a combination of (2) and (3), plus we even fix the knowledge of which
nodes, that operate onAi, do broadcast (Sb) or listen (Sl). (5) has already been proven in [9] as Claim 8.9,
except that therek was fixed to2. The analogous proof is provided as well for sake of completeness.

Proof. We first prove (1). For the whole proof we only use the graphGA induced by nodes in stateA
in roundr. We also solely focus on nodesv that do have at least one active neighbor inGA, as isolated
nodes cannot become herald candidates. We will use the notation NA(v) andNd

A
(v) to refer toNGA

(v) and
Nd

GA
(v), respectively.

To become a herald candidate, a nodev in stateA must receive a message from one of its neighbors on
one of the channelsA1, . . . ,AnA

. This is only possible if in roundr, v chooses to listen on a channelAj

and exactly one ofv’s neighbors inGA broadcasts on channelAj.
Consider an arbitrary channelAj from the herald election channelsA1, . . . ,AnA

. Letpv(j) = 2−j ·γ(v)
be the probability that an active nodev chooses to broadcast or listen on channelAj. In addition, we define
Pv(j) := 2−jΓ(v) =

∑

w∈N1
A
(v) pw(j). Let Bv,w

j be the event thatv listens on channelAj, while exactly

one of its neighborsw ∈ NA(v) transmits on channelAj and all other neighborsw′ ∈ NA(v) are either not
on channelAj or they choose to listen as well.

P(Bv,w
j ) = πℓpv(j) · (1− πℓ)pw(j) ·

∏

w′∈NA(v)\{w}

(

1− pw′(j)(1 − πℓ)
)

≤ πℓpv(j)pw(j) ·
∏

w′∈{v,w}

1

1− (1− πℓ)pw′(j)
·
∏

w′∈N1
A
(v)

(

1− pw′(j)(1 − πℓ)
)

≤ πℓpv(j)pw(j) · 4 · e−
1
2
Pv(j)

= πℓ2
−2jγ(v)γ(w) · 4e−21−jΓ(v)

(32)

In the last inequality, we use thatpw′(j) ≤ 1
2 and thatπℓ ≤ 1

2 . DefineBv
j to be the event thatv listens on

Aj and exactly one of its neighbors transmits on that channel. SinceBv
j =

⋃

w∈NA(v)
Bv,w

j and the events
Bv,w

j are disjoint for differentw, we have

P(Bv
j ) =

∑

w∈NA(v)

P(Bv,w
j ) ≤ πℓpv(j)Pv(j) · 4e−

1
2
Pv(j) =: Cv

j .

For anyx > 0 and constantc, cx2e−x = O(1), which by usingx = Pv(j) implies thatCv
j =

O
(

πℓ
pv(j)
Pv(j)

)

= O
(

πℓ
γ(v)
Γ(v)

)

for any fixedj. Next we show that
∑nA

j=1C
v
j = O

(

πℓ
γ(v)
Γ(v)

)

, too.

Cv
j+1

Cv
j

=
pv(j + 1)

pv(j)

Pv(j + 1)

Pv(j)
e−

1
2
Pv(j+1)+ 1

2
Pv(j) =

1

4
e

1
4
Γ(v)2−j

<
1

2
∀j ≥ log Γ(v) (33)

Cv
j

Cv
j+1

=
pv(j)

pv(j + 1)

Pv(j)

Pv(j + 1)
e−

1
2
Pv(j)+

1
2
Pv(j+1) = 4e−

1
4
Γ(v)2−j

<
1

2
∀j ≤ log Γ(v)− 4 (34)
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We can therefore deduce the upper bounds

∑

j≥log Γ(v)

Cv
j ≤ 2Cv

⌈log Γ(v)⌉ and
∑

j≤log Γ(v)

Cv
j ≤ 2Cv

max{1,⌊log Γ(v)−4⌋},

proving the claim that
∑nA

j=1C
v
j = O

(

πℓ
γ(v)
Γ(v)

)

.

Using LemmaA.1, choosingG′ := GA[N
k
A
(u)], w(v) := γ(v) and W (v) := Γ(v), we get that

∑

v∈G′
γ(v)
Γ(v) ≤ α(G′) ≤ αk. (Note that the independence number of a graph is larger thanor equal to

the independence number of any induced subgraph.)
LetBv be the event thatv moves from stateA to H

′ andB =
⋃

v∈Nk(u) =
⋃

v∈Nk
A
(u). Then,

P(B) ≤
∑

v∈Nk
A
(u)

P(Bv) ≤
∑

v∈Nk
A
(u)

nA
∑

j=1

Cv
j =

∑

v∈Nk
A
(u)

O

(

πℓ
γ(v)

Γ(v)

)

= O
(

πℓα
k
)

.

Choosing a sufficiently smallπℓ concludes the proof of (1).
For (2) let a proper setS be given. We apply the same calculations as before but we condition now on

Si, i.e., that all nodes inS do not operate on channelAi. We letpv(j) still be the probability that node
v operates on channelAj, but its value might now be different. Ifv /∈ S, then this probability is exactly
pv(j) as above, i.e., equals2−jγ(v). Otherwise, this probability is larger than that by a factorof 1

1−2−i

due to conditioning onv not operating onAi. This term maximizes ati = 1 and then evaluates to2, i.e.,
pv(j) ≤ 2 ·2−jγ(v). The same thought needs to be applied to all nodes and therefore alsoPv(j) can change:
It now ranges between2−jΓ(v) and21−jΓ(v). Since we are looking for an upper bound in Equation32, we
use thate−

1
2
Pv(j) ≤ e−2

1−jΓ(v). In total we get that the right hand side of Equation32 increases by a factor
at most4.

The remainder of the proof is completely analogous to the onefor (1), except that in any summations
over all channels we omit channelAi (resp. indexi), which just benefits the cause.

For (3) we assume again that a proper setS is given and we condition oñSi, i.e., all nodes inS do
operate on channelAi. But we are only interested in heralds being created on channelsAj 6= Ai. We apply
the following simple adaption to our initial setup. We only focus on the graphG′

A
induced by nodes in state

A that will notoperate on channelAi in roundr, i.e., we exclude all nodes fromS, but also nodes outside of
S whose local random bits indicate that they choose to operateonAi this round. In this case all calculations
stayexactly the same, except that channelAi (resp. indexi) needs to be removed from all summations,
unions (as a matter of fact, the probability of any analyzed event referring to channelAi equals zero in
G′

A
) and observations in general. When analyzing valuesCv

j the indexi needs to be skipped. Finally, the
subgraphG′ used in the last step must be based onG′

A
.

For (4) let initially Sn = ∅. Then the statement is the same as in (3), except that we not only know that
nodes inS operate on channelAi, we also know whether they broadcast (setSb) or listen (setSl). However,
this additional knowledge does not affect the proof of (3)—what happens among nodes on other channels
thanAi is completely detached from events onAi. Let nowSn 6= ∅, then (4) is a simple combination of (2)
and this expanded version of (3).

The proof of (5) is exactly the same as the proof for Claim 8.9 in [8], which is equivalent to setting
k = 2.

In the following, we use the notationN := Nk
A
(u, r) \ S. For a nodex ∈ N , let Bx be the event that

nodex receives a message on channelAi. EventBx occurs iffx listens on channelAi and exactly one of
its neighbors broadcasts on channelAi. The probability for a nodex ∈ N to pick channelAi is γ(x) · 2−i.
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We therefore have

P(Bx|∂S¬i) =
πℓγ(x, r)

2i

∑

z∈NA(x)\S

(1− πℓ)γ(z, r)

2i
·

∏

y∈NA(x)\(S∪{z})

(

1− (1− πℓ)γ(y, r)

2i

)

≤ πℓγ(x, r)

2i
Γ(x, r)

2i
· e−Γ(x,r)2−i

= O

(

γ(x, r)

Γ(x, r)
· πℓ

)

.

LetX be the number of nodesx ∈ N that receive a message on channelAi in roundr. For the expectation
of X, we then get

E[X|∂S¬i] = O(πℓ) ·
∑

x∈N

γ(x, r)

Γ(x, r)
= O(πℓ).

The second equation follows from LemmaA.2 because the graph induced byN has independence at most
αk. Applying the Markov inequality, we getP(X ≥ 1|∂S¬i) ≤ E[X|∂S¬i] = O(πℓ), which concludes the
proof of (5).

B.2 Lemma4.7

Lemma B.2. Let t be a round in which for a nodeu in stateA in the herald filter the following holds:
• there is no herald candidate inN2(u),
• all nodesv ∈ N2(u) that neighbor a herald or leader, haveγ(v) ≤ γlow,
• all nodes inN2(u) neighboring MIS nodes are eliminated,
• Γ(u) ≥ 1,

If in addition it holds that either
(a) Γ(u) < 5α, u is 1

5α -fat andγ(u) = 1
2 , or

(b) Γ(u) ≥ 5α andu is η-fat.
Then by the end of roundt′ ∈ [t, t + 7], with probabilityΩ(πℓ) either a node inN2(u) joins the MIS or a
good pair(l, h) ∈ (L ∩N1(u))× (H ∩N1(u)) is created.

This proof is an adaption to the following lemma, from [9]:

Lemma B.3. Let t be a round in which for a nodeu in stateA in the herald filter it holds that there is no
herald, leader, or herald candidate inN2(u). Furthermore, all neighbors of MIS nodes inN2(u) are in
stateE, Γ(u) ≥ 1, and either

(a) Γ(u) < 3α(1), u is 1
3α(1) -fat, andγ(u) = 1

2 , or

(b) u is 1
2 -fat andΓ(u) ≥ 3α(1).

Then by roundt′ ∈ [t, t + 7], with probability Ω(πℓ) either a node inN2(u) joins the MIS or a pair
(l, h) ∈ L×H is created inN1(u) such that(N({l, h}) \ {l, h}) ∩ (H′∪H ∪ L)=∅.

Note that we do not exclude the existence of leaders and heralds anymore. Instead we require such
nodes to have ’silenced’ their neighborhood, i.e., to have drove back such nodes’ activity values. Good pairs
are supposed to do so with a good probability, and while bad pairs can manage to do that, too (with a low
probability), it does not affect the lemma’s correctness ifthey do. Last, the probability for a new isolated
leader-herald pair goes down a bit, but is still inΩ(πℓ), yet the hidden constant now depends heavily onη.
One of the main reason to change3α from the original lemma to5α was to ease argumentation in one part
and to differentiate it fromnR ≥ 3α2—the value in this proof is completely unrelated tonR.

The proof follows mostly the lines of the one in [9], but in that paper a constant number of factors of
1/2 accumulate, while here they have to be exchanged by factors of η—but this only causes changes in
asymptotically irrelevant constants. In addition, nodes neighboring leaders or heralds need special attention.
We give a full detailed proof here, despite its similarity tothe proof in [9].
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Proof. We make use of the notationX(u, t) to indicate the value of local variableX at nodeu in round
t. For the remainder of the proof, assume that in roundst, . . . , t + 7, no node inN2(u) joins the MIS, as
otherwise, the claim of the lemma is trivially satisfied. In order to prove the lemma, we first show that either
in roundt or in roundt+1, w.c.p., a herald candidate is created inN1(u). Formally, we define the eventHu

as follows. In roundt′, eventHu occurs iff there are two neighboring nodesv,w ∈ N1
A
(u, t′) \N(L ∪ H)

such that

• v andw both operate on a channelλ ∈ {A1, . . . ,AnA
}

• no other neighbor ofv andw chooses channelλ, and

• no other node inN2
A
(u, t′) receives a message on channelλ.

Clearly, if eventHu holds either in roundt or t + 1, the nodesv,w have a probability of2πℓ(1 − πℓ) of
becoming a herald-leader candidate pair and no other heraldcandidate is created on channelλ in that round.
Combined with appropriate applications of LemmaB.1.(1), this suffices to prove the claim of the lemma.

For a nodev ∈ N1
A
(u, t′), let Γu

A
(v, t′) :=

∑

w∈N1(v,t′)∩N1
A
(u,t′) γ(w, t

′) be the total activity value of

all active nodes in roundt′ in the1-neighborhood ofv restricted to the1-neighborhood ofu. To estimate
the probability thatHu occurs in a roundt′ ∈ {t, t+ 1}, we first show that in one of the two rounds
t′ ∈ {t, t+ 1}, with probability at least14 it holds thatu is in stateA andΓA(u, t

′) :=
∑

v∈N1
A
(u,t′) γ(v, t

′) ≥
3
5 ·Γ(u, t); i.e., in one of both rounds, we have a high activity mass provided by nodes in stateA as opposed
to those in stateL′. Assume that the claim is not true fort′ = t. As the lemma statement is based on the
assumption thatu is in stateA in roundt, this implies thatΓA(u, t) <

3
5Γ(u, t). Also by the assumptions of

the lemma, in roundt, no nodes inN(u) are in statesH′, and those inH or L have an activity of less than
γlow. Since|N2(u) ∩N(L ∪H)| ≤ ∆2

max≤ log2κ∆ n≪ γ−1low, we can assume that the total activity mass of
nodes inN2(u) ∩N(L ∪H) is less than1/100. As nodesw in statesM andE haveγ(w) = 0 and thus do
not contribute toΓ(u), we therefore have

ΓL′(u, t) :=
∑

v∈N1
L′
(u,t)

γ(v, t) ≥ Γ(u, t)− ΓA(u, t)−
1

100

Γ(u,t)≥1
≥ 99

100
Γ(u, t)− ΓA(u, t).

Because by assumption, there are no nodes in stateH
′ in round t, all nodes that are in stateL′ in round

t switch back to stateA for the next round. As by assumption, no nodes switch to states M or E, and a
nodev that is in stateA in roundt can only move out ofA if it decides to operate on one of the channels
A1, . . . ,AnA

. This happens with probability at mostγ(v, t) ≤ 1
2 . Therefore, with probability at least12 ,

at least half of the total activity value of the nodes inN1
A
(u, t) remains in stateA for round t + 1. And

(independently) with probability at least12 , also nodeu remains in stateA for round t + 1. Thus, with
probability at least14 , u is in stateA in round t + 1 and at least half of the total activity contributing to
ΓA(u, t) also contributes toΓA(u, t+ 1). Therefore, with probability at least14 ,

ΓA(u, t+ 1)
(∗)
≥

(

98

100
Γ(u, t)− ΓA(u, t)

)

+
1

2
· ΓA(u, t)

Γ(u,t)≥1
≥ 98

100
Γ(u, t)− 1

2
· ΓA(u, t) ≥

3

5
ΓA(u, t).

The last inequality follows because we assumed thatΓA(u, t) <
3
5Γ(u, t). In (∗) we used the fact that the

activity of all nodes inN1(u) can only grow from roundt to t + 1, except for those that neighbor heralds
or leaders and those that switch to statesM or E. But the former only make up a small percentage ofu’s
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activity mass and the latter do not exist by our assumptions.We therefore in the following assume that
t′ ∈ {t, t+ 1} such thatΓA(u, t

′) ≥ 3
5 · Γ(u, t) andu is in stateA in roundt′.

To show that in roundt′, eventHu occurs, we distinguish the two cases given in the lemma statement.
We start with the simpler case (a), where in roundt, 1 ≤ Γ(u) < 5α andγ(u) = 1

2 . The latter implies that
u /∈ N(L ∪ H), due to the requirements of the lemma that such nodes have lowactivity. Because no node
in N1(u) switches to statesM or E in roundt and neighbors of leaders and heralds have low activity,u’s
activity mass cannot change much. Neighbors of leaders and heralds cause a drop of at mostΓ(u, t)/100 and
all others increase their activity by at mostσ⊕. More precisely,0.99Γ(u, t) ≤ Γ(u, t′) ≤ (1+ǫγ)Γ(u, t). We
know thatΓA(u, t

′) ≥ 3
5Γ(u, t) ≥ 3

5 . Consequently, sinceu is in stateA, it has activity levelγ(u, t′) = 1
2 ,

and the total activity massΓA(u, t
′)− γ(u, t′) of all neighborsis between1

10 andσ⊕5α = O(1). Therefore,
w.c.p.,u and exactly one of its neighborsv operate on channelλ = A1. (Recall that a nodew in state
A chooses channelA1 with probability γ(w)

2 .) Because we assume thatu is 1
5α -fat at timet, Γ(v, t) is

also bounded and therefore, w.c.p., no other neighbor ofv picks channelA1. Hence, the only thing that
is missing to show that eventHu occurs with constant probability is to prove that no other node inN2(u)
hears a message on channelA1 in roundt′.

But this follows from LemmaB.1.(5) by choosingS = N2
A
(u) ∩ (N(u) ∪N(v)).

We have shown that in case (a), the eventHu occurs with constant probability. Let us therefore switch
to case (b), whereN(u, t) is η-fat andΓ(u, t) ≥ 5α. For the following argumentation, we define

N̂1
A(u, t

′) :=

{

v ∈ N1
A(u, t

′) \N(L ∪H) : Γu
A(v, t

′) ≥ ΓA(u, t
′)

2α

}

and
Γ̂A(u, t

′) :=
∑

v∈N̂1
A
(u,t′)

γ(v, t′).

To analyze the probability of the eventHu, consider two neighboring nodesv,w ∈ N1
A
(u, t′) \N(L ∪

H). We defineLv,w to be the event that in roundt′ both v andw decide to operate on channelλ :=
⌈log2 Γ(u, t)⌉ and no other node inN(v) ∪ N(w) chooses the same channelλ. FurtherHv,w is the event
thatLv,w occurs and in addition, no node inN2(u) \ (N(v) ∪ N(w)) receives a message on channelλ
in round t′. LemmaB.1.(5) implies again thatP(Hv,w|Lv,w) = 1 − O(πℓ). Further, note thatHu =
⋃

v,w∈N1
A
(u)\N(L∪H),{v,w}∈E Hv,w, and we haveHv,w = Hw,v andHv,w∩Hv′,w′ = ∅ for {v,w} 6= {v′, w′}.

It therefore holds that

P(Hu) =
1−O(πℓ)

2
·
∑

{v,w}∈E,
(v,w)∈(N1

A
(u,t′))2

P(Lv,w). (35)

The probability for a nodev ∈ A to choose channelλ is γ(v) · 2−⌈log Γ(u,t)⌉ ∈
[ γ(v)
2Γ(u,t) ,

γ(v)
Γ(u,t)

]

. We can

therefore bound the probability thatLv,w occurs in roundt′ as

P(Lv,w) ≥
1

4
· γ(v, t

′)γ(w, t′)

Γ(u, t)2
·

∏

x∈N(v)∪N(w)

(

1− γ(x, t′)

Γ(u, t)

)

≥ γ(v, t′)γ(w, t′)

4Γ(u, t)2
· 4−

∑
x∈N(v)∪N(w)

γ(x,t′)
Γ(u,t)

≥ γ(v, t′)γ(w, t′)

4Γ(u, t)2
· 4−σ⊕

Γ(v,t)+Γ(w,t)
Γ(u,t)

≥ γ(v, t′)γ(w, t′)

Γ(u, t)2
· 4−1−σ⊕

2
η

Γ(u,t)
Γ(u,t) =

1

4 · 16
σ⊕
η

· γ(v, t
′)γ(w, t′)

Γ(u, t)2
.
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The last inequality follows because in roundt, nodeu is η-fat, and therefore

Γ(u, t) ≥ max {Γ(v, t),Γ(w, t)} .

In the following, we restrict our attention to the eventsLv,w for v ∈ N̂1
A
(u, t′) as these are the only ones

for which we obtain a significant lower bound on the probability that they occur. Forv ∈ N̂1
A
(u, t′), let

Kv :=
⋃

w∈N(v)∩N1
A
(u,t′)\N(L∪H) Lv,w be the event thatLv,w occurs for some neighborw of v. For a node

v ∈ N̂1
A
(u, t′), we then have

P(Kv) =
∑

w∈N(v)∩N1
A
(u,t′)\N(L∪H)

P(Lv,w)

≥ 1

4 · 16
σ⊕
η

· γ(v, t
′)

Γ(u, t)2

∑

w∈N(v)∩N1
A
(u,t′)\N(L∪H)

γ(w, t′)

≥ 1

4 · 16
σ⊕
η

· γ(v, t
′)
(

Γu
A
(v, t′)− γ(v, t′)− 1

100

)

Γ(u, t)2

≥ 1

4 · 16
σ⊕
η

· γ(v, t
′)
(

ΓA(u, t
′)− 1.02α

)

2αΓ(u, t)2
(36)

≥ 1

4 · 16
σ⊕
η

· γ(v, t′)

4αΓ(u, t)
.

Inequality (36) follows becauseγ(v, t′) ≤ 1
2 , v ∈ N̂1

A
(v) and thusΓu

A
(v, t′) ≥ ΓA(u,t

′)
2α . The last inequality

follows from ΓA(u, t
′) ≥ 3

5 · Γ(u, t) and thusΓA(u, t
′) − 1.02α ≥ 3

5 · Γ(u, t) − 1.02α ≥ 1
4Γ(u, t) if

Γ(u, t) ≥ 5α. Using (35), we can now bound the probability of eventHu in roundt′ as

P(Hu) ≥
1−O(πℓ)

2

∑

v∈N̂1
A
(u,t′)

P(Kv) ≥
1−O(πℓ)

64α · 16
σ⊕
η

∑

v∈N̂1
A
(u,t′)

γ(v, t′)

Γ(u, t)

=
1−O(πℓ)

64α · 16
σ⊕
η

· Γ̂A(u, t
′)

Γ(u, t)
.

(37)

Applying LemmaA.2 to the graph induced by the nodes inN1
A
(u, t′), the activity sum of nodes in̂N1

A
(u, t′)

can be lower bounded as

Γ̂A(u, t
′) ≥ ΓA(u, t

′)

2α
≥ 3Γ(u, t)

10α
.

Together with (37), this proves that also in case (b), the eventHu occurs with constant probability in a round
t′ ∈ {t, t+ 1}. Note also that in both cases (a) and (b), forπℓ andσ⊕ sufficiently small, the probability that
Hu occurs can be lower bounded by a constantCη that is independent of the probabilitiesπℓ andσ⊕.

To complete the proof, assume that in roundt′, eventHu occurs with probabilityCη and if it occurs,
nodesv andw are the two nodes inN1(u) participating on channelλ (channelA1 in case (a)). LetM be
the event that no herald is created on a channelAi 6= λ in roundt′. Clearly, the probability thatM occurs is
lower bounded by the probability that no herald is created onany channel in roundt′. By LemmaB.1.(1),
we therefore haveP(M) = 1−O(πℓ). For the probability that eventsHu andM both occur, we then get

P(M ∩Hu) = 1−P(M ∪Hu) ≥ 1−P(M )−P(Hu) = Cη −O(πℓ).

Recall that probabilityCη is a constant independent ofπℓ. Conditioned on the event thatM ∩Hu occurs, the
probability that one of the two nodesv,w listens on channelλ and the other one broadcasts on the channel
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is 2πℓ(1 − πℓ). In that case one of the two nodes becomes a herald candidate and the other one its leader
candidate. Also,M ∩Hu implies that in roundt′ no other herald candidates are created inN2(u). Let t′′

be the round in{t, t+ 1} \ t′. If in addition in roundt′′ and in the remaining roundst + 2, . . . , t + 7 no
herald candidate is created inN2(u), nodesv andw make it through the handshake and become an isolated
leader-herald pair as claimed by the lemma. By LemmaB.1.(1), this happens with probability1 − O(πℓ),
which by choosingπℓ sufficiently small concludes the proof.
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