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Abstract

In [8] an algorithm has been presented that computes a maximepémdient set (MIS) within
O(log® n/F + logn polyloglogn) rounds in ann-node multichannel radio network with commu-
nication channels. The paper uses a multichannel variatiteotandard graph-based radio network
model without collision detection and it assumes that thtevagk graph is a polynomially bounded in-
dependence graph (BIG), a natural combinatorial genetadiz of well-known geographic families. The
upper bound of{] is known to be optimal up to polyloglog factor.

In this paper, we adapt algorithm and analysis to improvedialt of [] in two ways. Mainly, we
get rid of thepolyloglog factor in the runtime and we thus obtain an asymptoticaltyno@l multichannel
radio network MIS algorithm. In addition, our new analydiswas to generalize the class of graphs from
those with polynomially bounded local independence tolgsaghere the local independence is bounded
by an arbitrary function of the neighborhood radius.
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1 Introduction

In recent years there has been an increased interest intlafgsrfor shared spectrum networkg4].
Nowadays, most modern wireless communication networksifea multitude of communication frequen-
cies [1, 2, 5]*—and we can certainly expect this trend to continue.

In the light of this development, in the present paper, wiestiie question of determining tlogtimal
asymptotic time complexity of computing a maximal indepamtdset (MIS) in the multichannel variant of
the classic radio network model first introduced ih{]. The task of constructing an MIS is one of the
best studied problems in the area of large-scale wirelgsgones. On the one hand this is due to the fact
that MIS (together with coloring problems) is one of the keglgems to study the problem of symmetry
breaking in large, decentralized systems. On the other hand|S provides a simple local clustering of
the graph, which can be used as a building block for computioge enhanced organization structures in
these networks such as, e.g., a communication backbond basg connected dominating sét 18, 29).
This is specifically relevant in the context of wireless ni@laid hoc networks or sensor networks, in which
devices cannot rely on already existing infrastructurertfanize themselves—devices need to compute a
meaningful structure by themselves to coordinate thedrautions.

Related Work. In [3,21] Alon et al. and Luby presented a simple and efficient randenhiparallel al-
gorithm to compute and MIS of a general graph. It is stramfrd to a standard distributed message
passing model and as a consequence, the algorithm soon decaarchetype for many distributed MIS
algorithms also in other—usually more limiting—settingfie model we assume here is an extension to the
radio network model, for which an MIS algorithm with runtird&log® n) has been presented in] for the
class of unit disk graphs (UDGs). This algorithm has beengirdo be asymptotically optimai [] even
for more basic version of the problem known as the wake-uplpno in single-hop radio networks. While
the UDG restriction is well-known and popular, a more geheasiant known as growth-bounded graphs
or bounded independence graphs that contains UDGs hasedsmb the focus of quite some research,
e.g., p0,24,25]. In particular, in p5] it is shown that an MIS and many related structures can bepaten
in (asymptotically optimal)D (log™ n) rounds in such graphs.

Much of the early algorithmic research on multichannel saaétworks has focused on networks with
faults assuming a malicious adversary that can jam wptehe F available channelsiD,13-17,19,27,28].
In addition, for fault-free networks, in2[] a series of lower bound proofs have been provided, which
show thatQ(log? n/F + logn) rounds are needed to solve any problem which requires coioatiom.
In [10] a new technique (called heralding) to deal with congesitiomultichannel radio networks has been
established to solve leader election in single-hop netsvorkime asymptotically matching the lower bound
of [23]. This technique has been extendedlifi][and [] to solve the problems of computing an approximate
minimum dominating set and an MIS, respectively. Our radehere is based on this work and in particular
on the MIS algorithm of .
Contributions. In radio network models, in almost all cases a restrictiotheounderlying graph model is
being assumed. One of the most general ones are so-ealbednded independence graphs, whefe) is
a function that limits the size of maximumindependent set in amyneighborhood of the given graph. The
MIS algorithm from [] solves the MIS problem in timé@ (log? n/ F +log n(log log n)?) in such graphs for
which « is bounded by polynomial of degrée Here we get rid of theolyloglog factor and thus show how
to close the gap to the lower bound froat]. At the same time, we remove any restriction on the function
«. We do so by adjusting the algorithm frofl{—and though the change in the algorithm is relatively small
it leads to a significantly more involved analysis.

1For example, the IEEE 802.11 WLAN standard provides a cHapeetrum of up to 200 (partially overlapping) channels and
Bluetooth specifies 79 usable channels.



2 Preliminaries

This paper bases strongly ¢t find [2], the former being the proceedings version and the lateectimplete
version. However, we try to be as self-contained as possible

Radio Network Model. We model the network as amnode graphz = (V, E). We assume that or a
polynomial upper bound on is known by all nodes. Nodes start out dormant and are awdkarte/ated

by an adversary. While nodes do not have access to a gloledd, dommunication is assumed to happen in
synchronous time slots (rounds). The network compriSe®mmunication channels. In each round each
node can choose to operate on one channel, either by ligtenioroadcasting. A node that broadcasts does
not receive any message in that round, and its signal reatihesighbors that operate on the same channel.
A nodew listeing on some channel can decode an incoming messaggetliféigiven round, exactly one of
its neighbors broadcasts on the same channel. If two or nmeghioors broadcast, their signals collide at
v andv receives nothing, unable to detect this collision. A node @aly operate on one channel in each
round and therefore it does not learn anything about eventtler channels.

Notation. In our algorithm all nodes move between a finite set of statés- waiting, D — decay A —
active H' — herald candidateH — herald I — leader candidatel. — leader, M — MIS node E — elimi-
nated/dominatedWe overload this notation to also indicate the set of noa@sgoin a certain state, e.g.,
A ={v eV :visin stateA}. Since nodes change their states, in case of ambiguity, e Ayrfor the set
of active nodes in round. State changes always happen between rounds. We digfine AUH'UL'UHUL
as the nodes in the so-called herald filter.

We useN (v) to denote the neighbors efin G, while we useN*(v) to denote the set of nodes in
distance at most from v, including itself. We also often writeVs(u) or N& (u) to abbreviateV (u) NS or
N*(u) NS respectively, for some stafe ForS C V we letN(S) = |J,s N(v). We call a node alone
or lonely, if Ny;om(w) = 0.

We say that an evet happenswith high probability (w.h.p,)with decent probabilityor with constant
probability (w.c.p.)if it happens with probability at least— n~¢, 1 —log™“n, or (1), respectively, where
¢ is a constant that can be chosen arbitrarily largezBy y we denote that > cy for a sufficiently large
c> 1.

Bounded Independence.In addition to the communication characteristics of thevoek, we require the
network graph to be a bounded independence graph (BiGPJ]. A graph G is called ana-bounded
independence graphith independence functiom : N — N, if for every nodev. no independent set of

the subgraph of7 induced byN%(v) exceeds cardinality(d). Note that in particulary does not depend
on n and thus for every fixed, «(d) is a constant. Ind], « is required to be a polynomial, whereas in
this paper, we put no restrictions en It can easily be verified that one can always upper boundatige $t
independent set of the subgraph induced\s}(v) by a(2)¢ and thus any independence function is always
upper bounded by some exponential function. For simpliei#ydefine a constat := «(2) and we assume
that all nodes know the value of

Number of Channels. We assume thaf = w(1) as otherwise single channel algorithms achieve the same
asymptotic time bounds. FOF = w(logn) we only actually us@(logn) channels since more channels
do not lead to an additional asymptotic advantage. For daesegosition we assumé& = (log logn) and
refer to ] for an explanation of how to adapt the algorithm for the case o(loglogn).

Maximal Independent Set. We say an algorithm computes an MIS in tifieif the following properties

hold w.h.p. for each round and nodey (waking up in round-,):

(P1) v declares itself as eithelominating(¢ M) or dominated e [E) before round-, + 7" and this decision
is permanent.

(P2) If vis dominatedn roundr, thenN (v) N M, # 0.

(P3) If v is dominatingin roundr, thenN (v) N M,. = ().



3 Algorithm Description

Algorithm 1 HeraldMIS—core structure
Input: 0@ 0oy Amax T, @, n,np = O(F), n4 = O(loglogn), ng = O(a(2)),
Tw = O(log n), mp = O(log n/]:), Tlonely = 9(10g2 n/F + log n), Tred-blue = O(logn)
States: W—waiting, D—decayM—MIS node E—eliminated
A—active,L/I’—leader (candidatelJ/H'—herald (candidate)
Channels: Ri,...,R,,—report,D,,..., D, ,—decay,
A, ..., A, ,—herald,{—handshake;—red-blue game

1: count« 0; state< W; v < L; lonely<_L; ymin < log 2*n

2: while state E do
3: count«+ count+ 1

4: lonely < lonely+ 1

5: v+ min{y-og,1/2}

6: uniformly at random piclg € [0,1),j € {1,...,np} andk € {1,...,ng}

7 switch statedo

8: caseW or D: run DRALTER > stage 1—decay filter
9: caseA: run HERALDPROTOCOL > stage 2—herald filter
10: caseH’ or I’: run HANDSHAKE
11: caseH or L: run REDBLUEGAME
12: caseM: run DOMINATOR > stage 3—MIS node
13: if lonely= 7onely then
14: state+— M
15: endWhile

Theorem 3.1. Algorithm HERALDMIS solves MIS withirO(log? n/F + log n) rounds.

We first give a short summary of how the algorithm works, whigtludes a recap of results froré][
The algorithm is divided into three stages, the decay fifietésW andD), the herald filter (states, IL’, H',

L andH), and decided nodes (stafeésandE). Nodes move forward within those stages—possibly ongjttin
the herald filter—but never backwards. The decay filter isvegoful tool (which we use as a black box) that
provides that over the full runtime of the algorithm the degof the graph induced by nodes in the herald
filter is bounded byD(log® 7). In short, nodes first only listen for a whil&W), then they start broadcasting
on one out o®(F) random channels with probabili/» (D), doubling this probability ever (log n/F)
rounds. A node that broadcasts moves to the herald filter anutla that receives a message restarts with
W. The decay filter has not changed and for a detailed analysi®f®r to P], while pseudo-code is given

in Algorithm 2.

Eliminated nodesK) know that they have a neighbor in the MIS and stop their paitoMIS nodes
(M) try to inform their neighborhood (eliminating them), biiey also actively disrupt protocols in the
herald filter, causing them to fail; for more details confégdkithm 3. Apart from this, there is no influence
between nodes being in different stages.

The focus of this paper is almost exclusively on the heralerfilt helps for understanding the complex
algorithm toonly think of the graph that is induced by nodes in the herald ftet to recall that its maximum
degree is polylogarithmic in.

The herald filter is divided into three blockactive state/herald protocdlA), handshake protocdlL’
andH’) andred-blue protoco(L andH). The first block has the purpose of nodes trying to make conta
with surrounding nodes. If this does indeed happen, botles@hgage in the handshake, which is only
successful, if none of the two nodes neighbors any MIS nodemarde in the third block. If the handshake
succeeds, both nodes start a series of coin flipping gamés tlvé sole purpose of ensuring that no two
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Algorithm 2 DFILTER, run at process

Input: F, np = O(F), ng > 3a?, 7w = O(logn), mp = O(logn/F)
States:W—waiting, D—decay

ChannelsR4, ..., R,,—treport,Dy, ..., D,,—decay

1: count« 0, state«— W
2: while state£ [E do

3: count« count+ 1
4: picki € {1,...,ng}, k€ {1,...,np} andq € [0, 1) uniformly at random
5: switch statedo
6: caseW
7: listen on channek;
8: if count= 7w then
9: count« 0, state<— D, phase«~ 0
10: caseD
11 switch ¢ do
12: caseq € [0, 2Phase/p)
13: sendmsg= (ID, state on D,
14: exit decay filter and enter herald filter
15: caseq € [2P"3¢/p 1/2)
16: listen onD,,
17: caseq € [1/2,1)
18: listen onR;
19: if count= mp then
20: count+ 0, phase~ min {phase+ 1,logn — 2}
Upon receiving a messagensg = (msg.I D, msg.state)
21: if msgstate= DD then > restart decay filter
22: count« 0, state<— W

23: if msgstate= M then
24: state<— E

Algorithm 3 DOMINATOR

1: if enforcethen
2: send(state ID) onH

3 enforce+ false
4: else
5 switch ¢ do
6: caseg € [0,1)
7 send(state ID) on’H
8 enforce« false
9 caseg € [4,32)
10: send(state ID) onG
11 enforce«+ true
12: caseg € [2,1)
13: send(state ID) on Ry,
14: enforce«+ true

nodes, that became leadekg 6imultaneouslycan join the MIS. The blocks that differ from the algorithm
description in §] are the active state and the red-blue protocol, althougim@és in the latter are made to
impact nodes in the active state.



Ahead of all we want to mention that there are two ways for aenodo join the MIS—either by
waiting for a long time without hearing from any nearby nodepy successfully communicating with a
nodew during the active statégeaming upwith it (as a leader-herald pair) and together passing tiivabe
handshake and the red-blue protocol. The farther a pair dé¢s@dvances in these blocks, the closer its
leader is to become an MIS node. We now recap and describeettavibr of a node in the herald filter,
i.e.,v € Vi, pointing out when changes to the original algorithm occur.

Loneliness. v maintains a countdonely. Whenever hears from another node, it resésely to zero.

If lonely ever exceedsionely = O (log? n/F + logn), thenv assumeshat it is alone/lonelyin the herald
filter (i.e., Ny,,um(v) = 0) and joins the MIS—w.h.p., this action is safe, i.e., shaulibt be alone, then
the neighbors ob are far from becoming MIS nodes themselves ats enough time to eliminate them.
Activity.  Also, v maintains aractivity value y(v) € [’Ymim 1/2], where ymin, the initial value, is in
Q(1/ polylogn). ~ governs the behavior af in A, but all nodes inVjs maintain this value. Nodes out-
side Vit have zero activity-y(v) increases by a (small) constant factqs > 1 each round, such that after
©(log logn) rounds it would reach the maximum valuig2. However, whenever receives from a neigh-
boringleaderor herald thenwv reducesy(v) by a (large) constant facter; > o4. This is a change to the
original algorithm, wherey could only increase. The reason is the following. Leadezsnades that likely
become MIS nodes, and if they do then they eliminate theghi®irs anyway. For safety reasons a ledder
needs to wait fo© (log n) rounds before it may join the MIS. During that time /8 neighbors keep high
activity values, progress stagnation can occurdh-a O(log logn) neighborhood of, which is why in P]
ana(d’) = O(polyloglog n) speed loss had to be accepted. We show here that by redutiviess; this
stagnation can be eliminated. At the same time, 'unjustifiedluctions only cause 'minor damage’ that can
easily be mitigated. This change is reflected in i&eof Algorithm 4.

Algorithm 4 HERALDPROTOCOL

1: pick ani € {1,...,n4, L} randomly with distributioP (i =1) = 274 andP(i = j) = 277
2:ifi=Ltheng=1

3: switch ¢ do

4: caseg € [0, mpy)

5: listen onA;

6: if msg# () then

7: IDjeader < MsgID; state<— H'; count« 0; handshake— sucg lonely <+ 0
8: caseq € [m¢v,7)

9 send(ID) on A;

10: state«+ LL’; count« 0; handshake— sucg
11: caseq € [, 1]

12: listen onR;,

13: if msgstate= M then

14: state«— E; v+ 0

15: if msgstatec {IL, H} then

16: ~ + max {y/0e, Ymin}; lonely« 0

Herald Protocol. Confer Algorithm4 for detailed pseudo-code. A nodén the active stateX) participates
in the herald protocolwith probability v(v) € [ymin, 1/2], otherwise it tries to learn of nearby leaders,
heralds or MIS nodes, by listening to oneaainstantmanyreport channelsRy, ..., R, ng > 3a?. If

v participates in the herald protocol, then it chooses a akladpfrom Ay, ..., A, , with probability 2.

2In [9] there existed some component calledeliness support blogloperating on its own set of channes, . . ., Sn; this
block and its channels have been removed.



It then listens on4; with probability 7, < 1/10 or broadcasts ittD otherwise?® If v listens, but receives
nothing, nothing happens andstays inA. Shouldv receive the message of another naden 4;, then
next round it engages with in the handshake protocals aherald candidatgH’), in the hope of moving
forward to thered-blue protocoltogether withu. Shouldv choose to broadcast, then it deterministically
pursues the handshake aeader candidatd€l.’), hoping that some other nodehas heard its message and
joins in for the handshake.

Algorithm 5 HANDSHAKE
1: switch statedo

2: caseH’ 16: casel
3: switch countdo 17: switch countdo
4 casel,2,5,6 18: casel,2,5,6
5: SendIDgagerONH 19: Listen onH
20: if msg= () then
21: handshake— fail
6: cases, 4 22: case3, 4
7: Listen onH 23: meet— k
8: if msg= 0 then 24: Send(ID, meej onH
9: handshake— fall
10: else
11 meet«— msg|2]
12 if handshake= fail then 25: it handshake= fail then
13: count« 0, state«< A 26: count«— 0, state«— A
14: if count= 6 then 21 if count= 6 then
15: count« 0; state« H; game+ sucg 28: count«— 0; state< LL; game«— sucg
lonely <« 0 lonely < 0

Handshake and Red-Blue Protocol. Pseudo-code for these two protocols can be found in Algosth
and6. In short, a nodé» € H’ that received a message in the herald protocol sends forawuds on the
handshake channél{, then listens twice, and sends again for two rounds. A ricgd.’ that was sending
before acts reversely, i.e., it listens, sends and list®ndy if a node receiveall expected messages it moves
forward to the red-blue protocol, otherwise it returnsitoThe handshake can only possibly be completed
if a pair of exactly one broadcaster and one receiver ppdies.

The red-blue protocolis a repetition 0freg.piue/8 = ©(logn) red-blue gamesf 8 rounds each. In
odd rounds, both noddsandh of the leader-herald pair send a blocking signal?¢énpreventing nearby
handshakes to succeed. At the beginning of each game, tiher lgaicks randomly blue or red. If it picked
red, then in rouna@ it will send a message on chantggand listens org; in round4, for blue it acts reversely.

In round6, [ sends on a previously decided meeting chafethe indexk’ of the meeting channel for the
next red-blue gameIn rounds it listens onR;.. k on the other hand sends a message in both roiaasl
4. It listens in round to update the meeting channel and in rogntdsends a message @y .

By design of the handshake and the blocking signals of oddd®in the red-blue protocol, a leader
[ can neighbor a leader or herald of a different ity if that other node moved to the red-blue protocol
simultaneously or with &-round shift. If/ does have such a neighbor, at some point it will not hear its
herald in roun/4, when it listens.! then aborts the red-blue protocol, notifiesn round6 and returns
to A. The messages sent by in round6/8 also have the purpose of letting nearby listening activeesod

We want to note that, is a constant parameter that we can choose arbitrarily.
“The very first meeting channel is fixed bduring the handshake, confer linesand24 of Algorithm 5.



Algorithm 6 REDBLUEGAME

1: switch statedo

2: caseH 21: caselL
_ ) —20
3: ¥ + max {7‘7@920v ’Ymin} 22: v 4+ max {7069 a'Ymin}
4: switch countdo 23: switch countdo
5: casel, 3,5,7 mod 8 Dblock# 24 casel,3,5,7 mod 8 D> block
6: Send(state IDjeager) ONH 25: if count (mod 8) = 1 then
26: pick randomlycolor € {red, blue}
27: Send(state ID) onH
7. case2 mod 8 > help leader with game 28: cas_e2 mod 8 > red-blue game
8: Send(state IDjeader) ONG 29: if color = bluethen
30: Listen ong;
31: if msg= 0 or ID ¢ msgthen
32: game<— fail
33: elseSend(ID) ong
9: cased mod 8 > help leader with game 34 cas_e4 mod 8 > red-blue game
10: Send(state IDjeader) ONG 35: if color = redthen
36: Listen ong;
37: if msg= 0 or ID ¢ msgthen
38: game<— fail
39: elseSend(ID) onG
11: case6 mod 8 40: case6 mod 8 1> Sendgame& new R meet
12: Listen onRmeet > from previous game 41: Send(IDIeaden game k) 0N Rmeet
13: if msg# (IDjeader, SUCG %) then 42: meet— k
14: count< 0, state« A; lonely < 0 43: if game= fail then
15: else 44: count«— 0, state<— A; lonely < 0
16: meet«— msg|3]
17: if count> Tieg-piuethen 45: if count> Tieq-piuethen
18: state<« E 46: state< M
19: case8 mod 8 > notify neighbors 47: Case_s mod 8
20: Send(state IDjeader) ON Rmeet 48: Listen onRmeet

reduce their activity values. Aisolated pairon the other hand cannot be knocked out anymarel after
Tred-blue = ©(log n) rounds the pair can assume that w.h.p. there is no other cardlipair nearby and the
leader joins the MIS.

The handshake did not change and the red-blue protocol lessdx¢ended b rounds—now heralds
also can reach their neighbors, confer lia8s20, 47, 48 of Algorithm 6. Roundsl-6 are untouched. Unlike
in [9], each round a node spends in the red-blue game, it decriéasesivity significantly—after all it is
getting messages from a leader or herald all the time. Thlisdeunted for in line§ and22.

Summary of Changes. Compared to the algorithm ir¥], the following three things have changed. The
loneliness support blocks not executed anymore, except for maintaining the couotesely. Also, the
thresholdnenely has been lowered 1@( log? n/F + log n) to reflect the new runtime of the algorithm. The
main change is that nodes reduce their activity they hear from a nearby leader or herald. The change
in the red-blue game is an addition dfounds: the seventh round is just a copy of rouhd3 and5; the
eighth round gives the herald of the pair a possibility tdfgatearby active nodes in order to reduce their
activity values—so far only leaders and MIS nodes were abtedch out to their neighbors.

Note that while the algorithm itself has barely changed, ahalysis needed to be extended vastly to
reduce the runtime of the algorithm to optimal values.

Sexcept by an MIS node, but that already implies progress



4 Analysis

4.1 Approach

To prove that Algorithml indeed solves MIS in the given time bounds, we take the faligvapproach. In
[9] it was proven that the graph, induced by nodes that passedgh the decay filter, has maximum degree
Amax = O(log3 n). Anodeu in the herald filter¢ € Vi¢) enters the MIS either if it assumes to be alone, or
if it manages to create and maintain a leader-herald bortdaviteighboring node fofied-piue = ©(logn)
rounds. Once; € Viy, it either enters the MIS due to assumed loneliness; whi&is a neighbor ifiv;, then
within radiusé := 6, = ©(loglogn) soon a leader-herald pair is created that maintains its fmmgkq-piue
rounds® So far this is the same as if][ There, however, a stagnation of uprgq-piue rounds might follow
before the next isolated leader-herald pair or MIS node getated inN? (). Considering that up te(s)
nodes inN?(u) can enter the MIS before or one of its neighbors enters itself, the runtime of the ldera
filter is O (7red-bluex(9)), or O(log n polyloglog n) if « is polynomial.

In the present paper, by decreasing activity levels of noggeghboring leader-herald pairs, the stagna-
tion that can be caused by leaders on their way to join the Mk dot last for longer tha@(log log n)
rounds in expectation. This allows the creation of isolaéedier-herald pairs iV’ () in a pipelined man-
ner, reducing the expected runtime of the herald filt&d ta (5) log log n) = O(a? loglogn). Unlike in [2],
here we also can choogeas an arbitrarily small value i®(log log n) without increasing the runtime by
more than constant factors. Choosing: loglog n/log a and a Chernoff argument bounds the runtime of
the herald filter byO(log n) with high probability.

In more detail, letw be a node that enters the herald filter in rodpd For the sake of contradiction
assume that is not decided by time, + Tunime. If u Stays lonely, it enters the MIS eventually7ignely <
Truntime Founds. Note that for to move from being non-lonely to lonely, some nodeNA(u) must have
entered the MIS shortly before that and eliminated all neigh thatu had inV4¢. This can happen at most
o? times and thus the time spends lonely is at most2none|y < Truntimee HENce, assume thatis not
lonely, i.e., has a neighbaf, and that no node inf?(u) joins the MIS. We show that then most of the time
bothu andu’ have a high activity value.

The following argumentation motivates this. For a nade decrease(u), it must neighbor a pair. Let
us call isolated pairs (in which the leader does not neiglsimather leader or heral@djood pairsand the
othersbad pairs Conditioning on the event of a pair being created, therecisnstant probability that it is
a good pair. This can be considered progress, as it guasaoiteeof two things: WithirO(logn) rounds
either the leader of the good pair itself enters the MIS orighimor of this pair does. In the opposite case
of bad pairs being created, in expectation these remain bad pnly for a constant number of rounds.
Moreover, w.h.p., there are no more th@flog n) roundsin total in which bad pairs exist itv3(u) aftert,,,
also causing at mo$?(log n) rounds ofu andw’ having an activity value below/2. Adjusting parameters
we get that for someprogress= O(Tionely) @and an arbitrarily small constasf for (1 — €)7progressfounds in
[tu, tu + Tprogresq the activity values of both andw’ are1/2.

Furthermore, all pairs, good and bad, inform their neighbBly the definition of good pairs, the leaders
of these form an independent set. With our choicé tifus at most)(y/Iogn) good pairs exist inV? ().
We argue that the activity values of nodes neighboring athairparticipated in the red-blue protocol for
Q(log log n) rounds (which almost surely holds for good pairs), are bejew := ©(1/ polylog n) with
some decent probability (i.el,— log™™) n). The total number of nodes iN°(u) becoming part of a good
pair in [t., t, + Tprogresq IS O(v/Iog n) and hence the total amount of nodes neighboring good pattetin
time is O(v/log nAmax). A union bound and a Chernoff bound provide that the totalwamhof rounds in
which any node in N°(u) neighboring a good pair has afw) > 7w is less tharETprogress

Together with the previous claim we get that(in— 2¢) Tprogressfounds inft,, t,, + Tprogresd bOth con-

®“Soon” indeed means i@ (1) rounds in expectation, as long &= Q(log log n).



ditions are truex(u) = v(v') = 1/2 andall good pairs inN%(u) “silenced” their neighbors—i.e., all their
neighbors have activity belowi,,. Let us call a round with this propergyromising foru. Without going
into detail, we can show that now within distancihere exists a node with the property of being so-called
n-fat, i.e.,w’s neighborhood is at least roughly as active as that of aiitg okeighbors’. Fatness implies that
w.c.p. two nodeg andh in N'(w) become ajood leader-herald pair. As said before, such a pair reduces
the activity values of its neighbors rather quickly, whicuses the property gffatness to move away from
w to another node iV’ (u) and we can repeat the argument. If a bad pair is createdHness might
shortly fade, but is restored quickly, so we can almost ohist tase. Again using Chernoff tail bounds, we
show that at some point itself becomes)-fat and now the creation of an MIS node/N¥ (u) is inevitably.

We summarize again. Once an MIS node or good pair arises stanndistance from, we are done.
In anQ(log? n/F + logn) interval, v is mostly in a promising state. W.c.p. evedy(1) rounds a node in
N°(u) becomes part of a good pair or joins the MIS. In expectatigthim® (log log n) rounds MIS nodes
eliminate their neighbors and good pasifencetheirs. After any of those events happen, we measure the
time until « is in a promising state again. Using Chernoff o@n/Tog n) such random variables results in
needing at mosP (log n) time, thus, by them must be covered.

4.2 Guarantees from the Decay Filter

We informally state the two main accomplishments of the dditer, proper lemma statements are be-
low; for proofs we refer toJ]. For each node the decay filter guarantees that within the runtime of
O(log? n/F + logn) rounds,

(1) v or one of its neighbors enters the herald filter, but

(2) no more tham\max = O(log® n) nodes inN'! (v) do.’

From now on we only look at the gragf induced byl”’ := V;, UM, induced by non-eliminated nodes
that made it past the decay filtékll notations are tied to this subgraph, though we omit this imatations,
i.e., N(u) means the neighborhood ofin G'. Instead, if we need to consider nodes from the stéte®,
then we explicitly say so and show this e.g. by writiNg: (u).

Lemma 4.1. W.h.p., for each node and each round, at mostO(log n) nodes inN/;(v) come out of the
decay filter in round- to enter the herald filter. Each node that enters the heratdrfthas spenf2(logn)
rounds in the decay filter.

Lemma 4.2. W.h.p., for each node that is in the decay filter in round, by roundr’ = r + O(log? n/F +
log n), either is dominated in which case it has a dominating neighbor, or at least ondenm N!(u)
gets out of the decay filter and enters the herald filter.

This statement is the same as Lemma 8.4%n ¢xcept that there the bound was listedras= r +
O(log?n/F)+O(logn). Yetthe proof in P] does actually already support the boutié= r+O(log? n/F+
logn). In Algorithm 2, DFILTER, we changed the style of the algorithm compared to the ond,itbit not
the way the algorithm works, hence we omit the proof for Lemnzaand refer to §].2

4.3 Definitions for the Herald Filter

Practically all parameters (including the above mentioAggd,) depend in one way or another on the bound
on independence, i.e., an but in most cases those dependencies are captured in thenhédnstants of
those asymptotic bounds.

For our analysis of a node that enters the herald filter, we observe a spegific ©(log log n) neigh-
borhoodN(u) of u. We set

"For large enough it holds thatAmax < log* n and we assume this in our analysis.
8The underlying algorithm has been first used and analyzetlinih a slightly more restrictive graph model and §j [t was
shown that it also works in BIGs.



5= 6, = log log n

Sloga = O(loglogn), 1)
i.e.,a’ = (210%0)13%% = +/log n. The choice ob guarantees that any independent setimaighborhood
is of size at most/log n.

Our main goal is to show quick progressi (u). Progress is clearly achieved if an MIS node arises,
but due to the way a node can become an MIS node, we also cotis&lereation of an isolated leader-
herald pair progress (more precisely, lbaderof the pair needs to be isolated from other nodés or H),
as the leader will eventually join the MIS (or be knocked cerrpanently by a newly created MIS node).

Definition 4.3. (Good Pair, Bad Pair) Consider a leader-herald paifl, 2) in round . We say(l/, h) is a
good pairin roundr if none of the neighbors éf(other thanh) is (1) in statelL or (2) in stateH or (3) is a
herald candidate in round or 6 of its respective handshake. Otherwise we say (thaf) is abad pair

Note that the definition of a good/bad pair is independenbssjbly neighboring MIS nodes. MIS nodes
existing already fod rounds prevent the creation of leader-herald pairs in tie@ghborhood completely. If
on the other hand a new MIS node appears next to a leadedtpaialwhich is w.h.p. only possible through
the loneliness route), then we have progress in a close lm@igbod. Also, note that only the leader of the
pair must be ’isolated’. There are two reasons for this: (1Y teaders join the MIS (2) by protocol design
the herald of a pair can only receive messages from MIS nodes or its oatlele—not by other leaders
(not even in rounds) nor other heralds. This is due to the fact that any neighigoneralds act completely
synchronously and a leader neighboring a non-paired hiraldead by precisely rounds? Note also that
bad pairs can become good, but not vice versa. This is beedlusaders and heralds prevent the creation
of further leaders/heralds in their neighborhood.

Definition 4.4. (Activity Mass) For a nodeu we definel’(u) := 3, ¢ y1(,) 7(v). We call this theactivity
sumor activity massof nodeu. Furthermore we lef"® (u) :=T'(u) —y(u) = 3_,c v,y 7(v). In SOMe cases
we are only interested in the activity mass of active nodekthen we havé'y (u) := > . NI (u) ~(v) and

I'3 (u) is defined analogously. Also

Ymin = log=*n = ©(1/ polylogn), 2
Yow = A/Ymin = IOg_lz n. (3

Definition 4.5. (Fatness) We call a node: 7-fat for some) € (0,1), if T'(u) > 7 - max,e ) {T'(v) }-

In simple words, in terms of activity mass,is (at least) in the same ’league’ as its neighboring nodes.
Using this we choose a specific fatness paramegterl:

__o log Amax

’I7 = 7704 = ()[‘8 S o loglogn (4)

The choice ofi) assures that a chain of activity suifi¥v;));>1 of nodesv; on a pathvy, v, v, ... with
I'(v;) > n~'T'(v;_1) andl(v1) > 2 has length at most, because
__loglogn 2 log Amax loglog n 'y(u)§1/2

(77_1)6 = (a_g) 2log 2 (2loga) loglogn 2loga — Amax > max P(u) (5)
u€ Ve

The algorithm needs to know a few more parametetsandos govern the changes in a node’s activity
level. The former is a small constant, greater than, butedo$. In most rounds a nodeincreases(u) by

® Cf. Lemma4.10and Algorithm6.
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og. 0o IS amuch larger factor used for decreasing activity, larggigh to undo many previous increments,
but still in O(1).

g = 26/(1000777,) >1 (6)
oo = O,é(]m — 212/100 > 1 (7)

m is a large enough constant that depends:@n but assuming thatr > 3a2, m > 2'%ny suffices.
Sinceymin = log=* n, 167m log log n = O(log log n) consecutive increments raise a node’s activity value
to 1/2. Analogously,©(loglog n) decrements decrease it to its minimal valug.

Also two time thresholdSieg-piue = O (logn) andTionely = O(log? n/F + logn) are needed by the
algorithm. 7eq-biue IS the number of rounds a node spends in the red-blue protaad! it is a multiple
of 8. If a nodeu € Vi does not receive a single message fighely cOnsecutive rounds, while being
in the herald filter, a:« deduces that it is alone or all its neighbors got eliminated] joins the MIS. In
our analysis we use further time threshol@lsification = ©(log 1), Tprogress = @(log2 n/F + logn) and
Truntime = @(log2 n/JF + logn), for which the following inequality chain holds:

Truntime =2 Tlonely > Tprogress->> Tred-blue =>> Thotification

Thotification 1S the maximum time needed for an MIS node to notify, w.h.pit@aneighbors. If a nhode: is

not lonely, then, w.h.p., significant progress is achieveléss tharrgressrounds; more precisely, an MIS
node is created imo(l)(u). W.h.p., Truntime IS the maximum time a node spends in the herald filter before
it gets decided.

4.4 Candidate Election—Nodes in Stated (and 1)

At first we establish a few facts about how nodes can trarmin BtateA to statel.’ or H', respectively. Note
that nodes can switch between stateand’ without communication, but to get towards any of the three
statesH’, . andH, communication is mandatory.

The next lemma contains a variety of events. To not clutteddinma statement, we define them here.
Let k£ be a positive integetonstant » some roundy some node in the herald filter in roumd: an index
from1,...,n4, S be a (possibly empty) subset &t (u) N A. Furthermore ledS C S bethesubset ofS
that has connections outside®fbut in N*(u), i.e.,05 := SN N (N*(u)\ 5). Atlast, letS = S"uSPLS!
be a partition ofS. We call the tuplgk, u, r, i,S)) aconstellation For a constellation the following events

are defined:
S-i/Sh: nonode inS/S™ operates o, in roundr,

e S;/SP/SE  all nodes inS/S°/S! operate on4; in roundr,

o 05 no node indS operates or; in roundr,

o H;: nonode inN*(u) \ S receives a message on chandglin roundr,

o H nonode inN*(u) receives a message on some chaohie}: A; in roundr and

o H: nonode inN*(u) receives a message on any channgli, ..., A, , } in roundr.

Lemma 4.6. Let (k, u,r,i,.S) be a constellation. Then,

(1) P(H) = 1 — O(mpa)
(2) P(H-;|S-) = 1 — O(mpa)
() P(H-i|S:) = 1 — O(mea®)
(4) P(H-;|S™ NS AS!) = 1 — O(mpak)
(5) P(H;|0S™,) = 1 — O(mea)

11



The proofs for these statements are provided in AppeBdix

Look at (1). The lemma says that the probability for a herald candittates created in any single round
for any neighborhood of constant radius is at most linearin Sincer, is an arbitrarily small constant
parameter chosen by us, we can make the probability for Weistearbitrarily small. The proof forlj is
exactly the same as the proof for Lemma 8.66h vith (k) replaced bya*. We provide its proof in
AppendixB.1 nevertheless, ag)and @) are new results that do directly depend @h What @) says, is,
that even if we condition on some nod§sc N*(u) notto operate on channel;, this does not increase
the chance (significantly—i.e., by more than a constanbfador these or other nodes to receive anything
on some channel; # A;. Analogously, §) claims that if we condition on some nodgs C NF(u)
to definitelyoperate on channed;, this does still not affect the probability for any other eadw receive
any message on some other chandel# A;. (4) is a combination of%) and @), plus we even fix the
knowledge of which nodes, that operate.4pn do broadcastg®) or listen (S*). (5) has already been proven
in [8] as Claim 8.9, except that thekewas fixed ta2. The analogous proof is provided in the Appendix as
well.

Under certain conditions the creation of herald candidatesbe lower bounded. However, for our
algorithm to work, we need not only to prove that they areterabut that this creation happensswlitude
i.e., in a close neighborhood no other herald candidatesraagded. Hence the next lemma is a key result in
our whole proof. It is almost Lemma 8.8 frori][ however with some adaptions. To state the lemma, we
need to introduce the parameters

' 1
n = log % p=_—— 8
Ymin 0g n Q(polylog n) (8)
Yow =  /7Ymin = IOg_?mA n, 9)

depending on the constamhk > log), ,, Amax

Lemma 4.7. Lett be a round in which for a node in stateA in the herald filter the following holds:
e there is no herald candidate iN?(u),
e all nodesv € N2(u) that neighbor a herald or leader, havgv) < yiow,
e all nodes inN?(u) neighboring MIS nodes are eliminated,
° F(u) >1,
If in addition it holds that either
(@) T'(u) < 5a, uis -fat and(u) = 3, or
(b) I'(u) > ba andu is n-fat.
Then by the end of round € [t,t + 7], with probability 2(r,) either a node inV?(u) joins the MIS or a
good pair(l,h) € (LN N'(u)) x (HN N(u)) is created.

Let us start with an intuition of this Lemma. The basic intentis to show that it is n-fat, then w.c.p.
in constant many rounds good leader-herald pair with both endpoints M! (u) arises—for thisu itself
does not have to have a high activity value, hedoes not need to be a likely part of the leader-herald pair.
The lemma lists many requirements. We show later that shaftér a nodev moves to the herald filter,
within distanced = O(loglogn) most of the time there exists a nodehat satisfies these conditions. We
also show that if an isolated pair is createdVifi(u), those requirements are again satistiégolyloglog n)
rounds later (in expectation) by another nadén this 6-neighborhood of.

The proof follows mostly the lines of the one ia]] but there a constant number of factors 1gP
accumulate, while here they have to be exchanged by factors-but this only causes changes in asymp-
totically irrelevant constants. In addition, nodes neigiiig leaders or heralds need special attention. A
full detailed proof of this new version is listed in Appendix2. There are few things we want to elaborate.
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Within the neighborhood of a fat nodewith activity mass at least one, w.c.p. “good things” hapfien,

the creation of MIS nodes or good leader-herald pairs) witbinstant many roundsyen ifthere are herald
candidates nearby or if some nodes neighboliag leaders or heralds have high activity values. In other
words, the first two statements could be relaxed a bit. Idstemuse other results to show that from those
relaxed conditions one can get to the tighter conditioriedifiere w.c.p. in constant many rounds. Also note
that we allow7 rounds to pass, even though the handshake only rieexisids. This is due to the fact that
we require a certain property that might not be given in rotintut, w.c.p., is given one round later. As a
last remark we want to say thad in this lemma could be replaced by any constant greater%j?larandn
could be replaced by any fatness constant smallerthan

We argue in the subsections about the handshake protoctiie@ned-blue protocol, Subsectiohsand
4.6, that every time an isolated pair is created, the algoritbhiewes progress, as it guarantees the creation
of an MIS node nearby—even if this event is delayedtiyog n) rounds.

Therefore, Lemmal.7 “promises” progress in the proximity of a fat node. Howewee do not have
such a statement for areas without fat nodes. As we deschlierere in detail later, an excessive creation
of bad pairs in such areas can even cause problems for ounamgation. However, the next result shows
thatif a pair is created at all, then w.c.p. this pair is good. THimaa us to proof later in Lemmé. 14that
nodes in the herald filter are practically always very activéhe candidate election process—unless they
already neighbor an MIS node or a good pair.

Lemma 4.8. Letr be a round in which node is in stateA and N (u) # 0. Let B“ be the event that at the
end of round-, u moves to statél’ due to receiving a message from some nodeN, (u) on some channel
A;. Further, letD* C B* be the event thaB“ holds and in addition no other nod¢ € N3(v) \ {u}
receives any message on chandglin roundr. It holds that

v(u) o
O (mey(u)l§ (w) Tg(u) <2’
y(u) o
P(DU) — {Q WZFZ\(U)) FA(U) > 2 (11)
Q(mey(uw)l(w) T(u) <2
Proof. In the calculations below we make use of the following inditjea.
1—m > 0.9 (12)
1l—ox < 7% Va (13)
l—z > e 2% Vre [0 1/2] (14)
IT rw < FPOT fw), if flw)>F" (15)
weA\B weA

If I'% (u) > 2, for simplicity, we assume thabg I'3 (u) is a positive integer. It becomes clear from the
proof that for non-integer values an adaption is straightéod, but hard to read.

We let B;"" be the event that amctivenodeu receives a message from activenodev on channel4;,
i.e.,u listens and broadcasts onl;, while no other node € (Ny(u))\{v} broadcasts oil;. For different
v these events are disjoint, and we can defiffe= J ., (,) B;"* and we see tha" = |4 Bj".

More restrictive are the analogously defined evenfs’, D¥, in which we also require that no node
z € N3(v) \ {u} receives a message on chanheln that caseD" = |JI#4 DY is the event that nodes
u andv engage in the handshake protocol in the round after they mebme channelly, without other
nodes nearby having received something on that same chanmarticular, no other herald candidates try
to engage withy in the handshake protocol.

13



Upper Bounds

Let ¢ be the probability that node does broadcast on channé}, i.e.,q® = (1 —m)y(w)2™* < 1/4,
and accordingly” := 1 — ¢} > 3/4 is the probability thatv does not broadcast on chanugl We denote
with pi” the probability thatv listens on channehl,;.

P =ptaf I @ =m0 w2 I (10— m)r(w)27)
weN (u)\{v} wEN, (u)\{v}
(13),(15) 4

P(BY) < mpy(u)T (u)2 2 e T2 = g er1(< )) (DG (w2712 T2 = (16)

Consider the casE; (u) > 2. For any¢ > 0 it holds that(?e=¢ = O(1), and by using = I'{ (u)2~
and we get that for any fixed

cr=0(m ) and cr = o(Ciy) (17)

Furthermore, with\ := log I'} (u):

Cy:u—{-l 1 11'\0 (’U‘)27L 1
— eil? - Vi >\
cr ¢ <3 b
u .
OF _ yeimpwr 1 Vi<A—4
Cita 2

Thus, the sum of al’}* with 7 larger than\ can be upper bounded lgyy' using the geometric series, and,
if A > 4, alli < X\ — 4 can be upper bounded lty}_,. However, due toX7), C{_, 4+ --- + C{ isin
ocy) = O(mro(( ))) In total we get thaP(B) = O(mll)(ég))

Now consider the casé (u) < 2. In (16) we upper bound "% ()2

—i—1

by 1 and get
u —2i4+1 __ u Au 1 N
P(B;") < mpy(u)l'y ()2 C and Ci, < ZCZ‘ .

Clearly, C*f <3 C’Z“ < 2(5% due to the convergence of the geometric series. In othersvord
P(B") < 207 = O(myy(u)l'g (u)).

This concludes the proof of the first part of the claim, equreti(L0). Note that in both casds; (u) < 2
andI'§ (u) > 2 we had that
P(BY) = Q(B"). (18)

Lower Bounds

For lower bounds we study 2 specific channels, dependinghehBf, (v) is greater thar2 or not. More
precisely, we study4,, where\ := max {1,log I'} (u) } and show that eved* happens on this channel
with the desired probability. The base idea is to show thatpwno noder € N3 (u) with I' (z) < T' (u)

is listening on channeM, at all, while all nodes: with 'S () 2 I'} (u) experience a collision od,.

Case 1:TS(u) > 2, A = logI'{(u) and2=* = 1/T¢ (u) .
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We start with some definitions. We define
Xpv = {z e Ny(w)\ {u,v} : 10mI (u) < T (x) < 10(m + 1)TG (u)}

Let Fy', be the event thato = € X;;" receivesany message broadcasted @i and letE5 be the event
thatz € A successfullyeceives a message on chandgl If 2 € Ny (v) \ {u}, thenE%|B}"" implies that
x receivesy’s message. Furthep,” = (1 — m¢)y(u)vy(v)2~2* is the probability that nodes andv meet

on channeld, with « listening andv broadcasting.

Apparently,
PBY ) =py" I @ (19)
weNy (u)\{v}

). For that we need to distinguish between the two casesVy (v) \ {u}

We want to calculatd®(E%|By"").
andx ¢ N, (v). For the first case, no other neighbonathanv is allowed to broadcast, while in the second

1
V).
case exactly one neighbor pfneeds to broadcast oy,

P(B"" N EY)

v € Ny(w)\{u}: P(EX|BY") = Tgv)
1 P(BY x
A A yeNm)\{uv} AV ye N (2)\{u,0}
¢ Ni(v): P(EF|BY’) =P(Efjulisteny = mpy(z)2™ - Y ¢ - [1 &
yENy (z)\{u} z€Nx(z)\{u,y}

_ _ _, x) I}z ,

=m0 6 <mel A g
2€Np(@)\{uy} 2w TR (WLen, @\ fuy)

yENy (x)\{u}
2@ < o3 and therefore:

Now, using Lemmah.1, observe tha} EN3(u) T(z)
(x) ° 1 310 3
>( 2@ +5) <100+ DT +a  (22)

> a@= ¥ jres ¥ I
rEX LY

SCEXuU EXuU

We first look at the caser = 0.
Case la:I'j(u) > 2, m = 0. Then, by €2), >, yuvy(z) < 11T (u). Also, (20) can be upper
bounded by47TgFO (sinceqy < 1). For (21) we note thafl; (z) < 10T} (u) and get combined that
v(x)

P(E5|B}") < 10m;r% 5, regardless whether € N} (v) or not.
A

<

(22) <l
) S 2200w, ™ 2 0(1).

107y

u U (IL') —271_‘0 Z cxU? y(x
P(F\y1BY") > <1 — 107, >e il e
H '3 (u)

Xu v
Y, that listen on channefl,,

Case 1b:T'g(u) > 2, m > 1. We show that, w.c.p., alt € {J,,>, X,
have a collision. FoEZ{ to happen, exactly one afs neighbors has to broadcast We look again first at
x) > 2w

z € Nu(v) \ {u}. We plug in the values faff into (20) and we use thatg (z) > 10mI'} (u) to get

r9 ()
/y(l') e_%l"ﬁ(u) §3ﬂ_€ ’);(m) e—5m
I3 (u)

() i aw ) 84
[T (1= =m)rg >)§27”r5§(u)

I) f?x lgu7v < —7
(EX] A )_3 éro(l)
A yENA(z)\{u,v}
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Forz € N3(v) \ N}(v) we do the same with2(l). We also usd’} (z) < 10(m + 1)I'} (u) for our
calculations:

— v(x) Ti(=z) 7(2)
P(ES|BYY) < mpbil At 1—(1—m)—L
BB < mpy e (-0mgg)
16 v(z) —%?‘g@ () 5
< —10(m + D) mp—c—~e "2 < A0mmp—=—~e "
9 ( ) g (u) g (u)

Forallz € X;;" we therefore hav®(E%|BY"") < 40mmy F”(J(E"’Z)e—m. Recall that by 22) we can upper
A
boundy”, . v v(x) by 22ma’T (u).
ForFi‘;,iL>1 = N1 Fam We get

P By = [ II @ -P@Ese )= I I] (1—40mmF’YOAf8)e—5m>

m2>1ge XY m2>1geXv
-5 v(z)
> [T Rk T > ] e 1To0mamte
m>1 m>1

v

e—l7607rgoz3 >om>1 m2e=5m > e—l27rga3 _ Q(l)
Let us now defing’\"" asFy _, N Fy’ -, then we get:
P(DYY) = P(BY" N EYY) = P(BY)P(FY ol BY)P(EY 5 [BYY) = QP(B)™))

With the results from above, this concludes the analysishieicase of'§ (u) > 2.
Case 2T (u) < 2,A=1and27* =1/2.
For this case we redefing,;".

Xpv = {r e Ny(w)\ {u,v} : 10m < T (z) < 10(m + 1)}

Analogously to 20) and @1) we get (with2=* = 1/2):

u,v €T u,v 2 —
v € Na(@w)\{u}:  P(E[BY") = P(Ef|B)") < gmey(a) T] 4 (23)
yENL (z)\{u,v}
xr U,U X ’U,,U 7T o ~Z
x ¢ Ni(v):  PE|BY") = P(ET|BY") < ()T} (2) T1 g (24)

2€Na (z)\{w.y}

Like with (22), LemmaA.1 gives us that

1
Z y(z) < 10(m + 1)a® + 50;’ < 11(m + 1)a3. (25)
reX”

Case 2aI'}(u) < 2,m = 0.

From25we gety . xuv () < 11e®. With ¢§ = ¢{ < 1 andI'}(z) < 10 we get for allz € X"
thatP(E§|By") = P(Ef|BL") < 3703(a).

Thus, )

P(FIBY) 2 [ (1=38mn(@) = e = (1)
reXy""
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Case 2b:I'(u) < 2,m > 1.
Note that since\ = 1 we havegl = (1 — m¢)y(w)2™* > v(w)/4 and thereforgy < e~7()/4, We use
(23) and @4) to show that foanyz € X,;"

T | RU,Y 1 4\2 ~Z —2.5m
P(ES|By") < ZW@’Y(%)QO?TL<§> II & < 10mmey(x)e™™
zEN ()

As indicated by £5), > uv y(z) < 22ma? form > 1.
For F\' <1 = N1 Fi We thus get again

P(Fy 1 |By") = H H (1-P(ET|B)"")) > H H (1 — 10mmpy(z)e™22™)
m>1x€XuU m>1x€qu
> H e—20m7rge*2»5m Zwexxiv v(z) > H 6—440m7re043e’5m > e_440#[0(3 ZWZlme—ZSm
m21 m>1

> e—507rgo¢3 — Q(l)

Analogously to the casE; (x) > 2 it holds thatP(D“ “) = Q(P(B"")).

Let ¢ be the constant such th&(Dy") > ¢P(BY") for anyv € Na(u). Then, sinceD} =
Woen, Dy andBY = yen, (v By'", it most hold thalP(D“) > ¢P(BY). Also,P(D") > P(DY) and
since by (8) P(BY) = Q(P(B")), we get thalP(D") = Q(P(B")).

This finishes the proof for the second part of the claim, eqoat(11). O

Corollary 4.9. Let B(r)*" be the event that in round nodeu € A, receives a message from one of its
neighborsv € A,., neither of them neighboring any leader, herald or heralahdidate in the5th or 6th
round of its handshake protocol. LEt(r/)**" be the event that at the beginning of rourichodew’ € H,.
andv’ € L, form a good leader-herald pair and that’ N N3(u') = 0, i.e., there are no herald candidates
in the 3-neighborhood of/’. Then

P(H(r + 8)“Y|B(r)"") = Q(1) (26)

Proof. According to Lemmat.8, sinceD* C B, it holds thatP(D"|B") = Q(1). Thus, if B(r)""
happens, where receives the message on chandglthen, w.c.p., no other node’ € N3(u)\ {u} (which
includesv’s neighborhood) receives a messagenlf no other nodes’ € N3(u)\ {u} receives a message
on A;, that means that all such nodeeither not operate os;, or, if they do, none or at leagtof their
neighborsw” € N*(u) send a message o#;. Using Lemma4.6.(4) by settingk = 4, , appropriately
small and conditioning on the sét= S'wS%uS™ of nodes as listening/broadcasting on chagbr not
operating ond; at all (denoted by everff := S, A S? A S!), we get thalP(H_;|D*) = P(H-;|Z) > 1/2.

If in round r both eventsH_; and D* happen (where gets its message on chanog)), then in round
r + 1 nodesu andv meet on channel and can perform the first round of the handshake protocolowtith
any interruption from any other nearby nodes. By applyinghbea4.6.(1) multiple times, in rounds + 1
tor + 7, w.c.p., no other new herald is createdNii (u). Thus, w.c.p., by the beginning of rounds 8, u
andv have emerged from the handshake as a good leader-herald pair O

We next recall the analysis done for the so-caltthdshakeandRed-Blue Gamewvhich shows that the
creation of good pairs implies progress. All lemmas for taadshake protocol and the red-blue protocol
have been proven irt] and their proofs are almost unaffected by the changes neetthe algorithm.
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45 Handshake Protocol—Nodes in States’ and H'

Lemma 4.10. In roundr consider two leader-herald pairg,( k1) and (s, h2) and suppose that the pairs
started their most recent handshakes in roundandr,, 1 < ro, respectively. Say that edges crossing

if one of its endpoints is ifil1, k1 } and its other endpoint is ifilz, h2 }. Then, either no crossing edge exists
or exactly one of the following conditions is satisfied: {1)= r, and crossing edges a®g,, [} and/or
{h1,h2}, (2) 72 = r1 4+ 2 and the only crossing edge {$;, ha}.

Lemma4.10corresponds to Lemma 8.10 if][and in the proof there it was made use of the fact that
in the original red-blue game in every second round bothdeadd herald blocked chanrgl. But the
new red-blue game features exactly the same mechanic. tBiar\else in the proof stays the same as the
handshake protocol has not changed at all, hence we omitdloé Igere.

4.6 Red-Blue Protocol—Nodes in Statek and H

Lemma 4.11. If a pair (I, k) is good in round- and they started their first red-blue game in rouridthen
by the end of round’ + Treg-plue= ' + O(log n), w.h.p., either

¢ the related leadef joins the MIS, or

e anodev € N(I) U N(h) joins the MIS by increasing its lonely counter aboygeyy.

This lemma and its proof are exactly the same agjnHence we omit any proof. Note that the lemma
stresses that a good leader does not necessarily becomeSanddé. To see how the second case can
happen, assume that some nade in the herald filter already for a long time, with its lonedgunter
almost reaching the threshold. If now a neighboring nod€ imakes it out of the decay filter, and, after
increasing its activity value for a while, communicatescassfully with another node. This can happen
beforev notices the existence af and shortly after, becomes a leader,could join the MIS via the lonely
counter.

Leaders of bad pairs do not have a justified claim for being Mi&es, so we do not want them to hinder
progress. But they do that by decreasing activity values@if neighbors. The next lemma shows that bad
pairs do not last for very long, thus not causing a long stagma

Lemma 4.12. Consider a node and suppose that in an arbitrary round there is a leader or herald of
a bad pair in N3(v). Then, w.c.p., in round + 16, no node inN3(v) is in stateH’ and all leaders and
heralds are part of a good pair.

The proof for Lemmat.12remains the same, too, except that in the original versiande + 12 was
stated. This change is due to the fact that the length of desred-blue game did increase fraino 8. It
does not affect the proving method and we again omit any proof

4.7 Joining the MIS—Nodes in StatesVl and E
Property 1 (P). The setM is an independent set at all times.
This intuitive assumption is needed for some of the upconsiagements; it is clearly true at the be-

ginning of the algorithm, wheil = (). We show in Lemmat.18 that if (P) is violated, then w.h.p. a
contradiction occurs. The next lemma makes sure that nod¥$N) soon learn of their coverage.

Lemma 4.13. Assume (P) holds. Letbe a node that enters stald at timet. Letw be a node inNg(v)
that is awake at time¢’ > ¢ and, ifw € L U H, that it is at most in roundl%ned_tﬂue of its corresponding
red-blue game. Then by time+ Thotification = ' + O(log n), w.h.p.,w is in state.*°

10Note that this lemma also considers nodeom the decay filter.
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Proof. We proof the statement by showing that witliiflog ) rounds a non-sleeping nodereceives a
message from € M on some channéR;. Since nodes in the decay filter listen on the report charinels
any given round with probability at leasf2, and therefore at least half as often as nodes in the herld fil
we restrict our analysis to nodes in the herald filter and fotwstatement for a time bound Bfyification/ 2-
State changes from the decay filter to the herald filter do fiettathe analysis because of the very same
reason. Also note that is unableto move to stat&. nor H after timet + 4, sincev disrupts any handshake
in its neighborhood by sending at least once?vm every set of two consecutive rounds.

Casew € A. Consider some rountf > ¢'. If w is in stateA, w.c.p., it also is in that state in round
t” + 1. Further, w.c.p., MIS node has its variableenforceset to false in round” + 1, and thus, w.c.p.,
broadcasts on some chanrig] in that round. Assume does not neighbor any bad herald or bad leader,
then it neighbors at most good leadersq? good heralds, and MIS nodes. To see this, note that while
good heralds are allowed to be adjacent to each other, each haighboring good leader, and thus the
number of adjacent good heralds in the direct neighborhdad ie upper bounded by the number of good
leaders inN?(w), and thus bya?. We can therefore upper bound the number of adjacent goderga
good heralds, or MIS nodes By?. The probability thai: chooses channé&; while no good herald, good
leader or other MIS node neighborimgchooses to operate on the same chafels constant, sincer is
greater tharda?, but still a constant. With probability at Iea%% = Q(1), w listens onR; in roundt” + 1,
and thereforew learns ofv’s state with constant probability.

Now let there be bad pairs im’s neighborhood in round” andw be in A. Then, w.c.p., by Lemma
4.12,16 rounds latenw is still/again in state\ while all bad pairs inV2(w) are knocked out and no new bad
pair has been created due to Lem#n@(1l). As before,w learns ofv’s state w.c.p. afte©(1) rounds.

Let noww be in different states. li is in H' (but at most in the fourth round of the handshake protocol)
or in I/, its handshake will fail due te's routine of disrupting channe¥ at least once every rounds,
revertingw back to stateA. For the cases ofv being either inl, H or in the last two rounds of the
handshake protocol as a herald candid&tg (which we denote bjEIg,6 in this proof), note that ifw ever
moves to staté\ from these states, it is unable to return.udfis in L., in each red-blue game, there is a
constant probability o®(1) thatv disrupts the game, bringing back to stated. Instead, ifw is in H,
during each red-blue game, there iQ@ /n ) probability thatv operates on the same chanfgheetasw
does in round of its respective red-blue game, disrupting the ongoinghbled game and sending back
to stateA. Due to our condition ofv not being too far in its red-blue protocol, we can choaggnelarge
enough to make sure that, whether it is in statd. or H, hears fromv w.h.p. before it can join the MIS
itself. If w is in the last two rounds of the handshake protocol, thenddée can be reduced #obeing a
herald.

Thus, ifw is inL UH U HE 4, then it leaves this set withi@ (log n) rounds and never returns to it. Thus
let us assume that is not in this set (anymore).

Clearly, if w is not in A in any roundt” > ¢, w.c.p., it returns ta\ in O(1) rounds. And as argued
above, if bad pairs are im’s neighborhood, they get eliminated w.c.p.(X1) rounds as well. Choosing
Tnotification = O (log n) sufficiently large and applying a Chernoff bound proves th&gesnent. O

4.8 Progress and Runtime

In Lemma 8.13 of §] we have shown that once a good leader-herald pair is creiggddader (or another
node in distance) joins the MIS withinO(log n) rounds. Also, we used the fact that within close proximity
of fat nodes (which exist in any-neighborhood of any node in the herald filter) such solifgayrs are
created with a constant probability. In the algorithm $hif might happen that after a good pair is created
within radiusd of some node:, the only fat node withinV?(u) is close to that pair. A good pair blocks the
creation of other pairs around it, so progress might beestalhtil the leader of the good pair joins the MIS,
causing it to eliminate its neighbors (and therefore thelfivdy) and finally, forcing the local condition of
fatness to move to a different area of the graph.
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Here we changed the algorithm to take care of this potertagineincy issue. We want the attribute of
fatness to move away from a good pair long before the leadies jhe MIS. More precisely, a node not
neighboring good pairs should become fat withitog n) rounds. For this we require good pairs to reduce
the activity levels of their neighborhoods. However, a &duerald pair does not know whether it forms a
good pair or a bad one before theg.pue = ©(logn) red-blue games are over. The idea to deal with this
difficulty is the following. Good pairs manage in expectatiwithin O(log logn) rounds to reduce their
neighborhood’s activity far enough such that most of thestthose nodes can be considered inactive. Bad
pairs, however, last for only a constant number of roundsjreetation, and are created rarely endidbr
affected nodes to recover their lost activity quickly. et words, the longer a node is a leader, the more
likely it is that this node is good.

Careful analysis allows us to transform these observatitnshigh probability results.

In the following~y(u, t) denotes the activity level of nodein roundt. Also, lete be a constant smaller
than1—about0.1 is sufficiently small for the upcoming proofs.

Lemma 4.14. Lett be a time at which a node ¢ N'(M) is in the herald filter. Then, w.h.p., one of
following holds:

(&) Within Tprogress= O(log? n/F + log n) rounds,u € N'(M), or

(b) [{t' € [t+ 1,t + Tprogresd : ¥(u, ') = 1/2} [ = (1 — €)Tprogress

Proof. Initially assume that the lemma allows in addition to coiodis (a) and (b) the following:
(c) or within Tprogress= O(log? n/F + logn) rounds, there is a good leader N?(u).
We prove the statement by contradiction, thus assume tithenéa), (b) nor (c) holds.

Lett < Ty < Ty < -+ < T, < t+ Tprogress— Tred-blue D€ the rounds in which a respective series
of leaders or heralds;, vo, ..., v, € N(u) neighborsu for the first time, i.e.p; successfully finished its
handshake in round; — 1 and managed to reach/was reached by a single tlodeV?(u) in roundT; — 7
on some channell;,. ForT; < T} it can hold thaty; = v; — in this case node; moved fromL U H to
stateA in the time intervalT;, T;]. Also, at timeT; more than one leader/herald could neighbdor the
first time, in which case we let; be any of these. For the pdis;, v) denote withl; the leader and witth;
the corresponding herald.

Assume that all corresponding paifs, ;) are bad pairs as otherwise the lemma would be trivially
fulfilled.

Fix i. [; can become a bad leader in roufidif in round7; — 7 a nodel’ € Ny (l;) reaches another node
h' € A in that round and manages to get through its handshake piasavell. For(l;, h;) to get through
their handshake protocol, they cannot neighbor a leadeherad or a herald candidate in roubdr 6 at
that time. By Corollaryt.9, the probability for(l;, h;) to turn out a bad pair is ih — €2(1). Another way for
l; to become a bad leader is if in roufi— 5 a nodeh’ € N(I;) successfully receives a message. By Lemma
4.6.(1) this happens only with probabilit¢)(7,). Hence, in both cases, the probability fptto be a bad
leader conditioned on the event tliabecomes a leader in roufld, is at mostl — ©2(1). Since we assume
that all leadersy, lo, ... ,[,, are bad leaders, a Chernoff bound then gives us that, wih.p=, O(logn).
Assume this is the case. L&t be the random variable that measures the number of red-bluegleader
l; survives before it either becomes part of a good pair or & gabcked out. If; becomes part of a good
pair then the extended lemma statement would be fulfilled¢c@eve assume otherwise. Note that, w.H;p.,
(like any other node) cannot finish its red-blue protocol dadleader and join the MIS.

So, for alli, let us assume thatgets knocked out of staflewhile being part of a bad pair. According to
Lemma4.12this happens in each red-blue game with constant probahiét, E[X;] = ©(1). LetY be the
number of rounds in which at least one nodé\ifu) plays the red-blue game. Then, sinee= O(logn),
applying Chernoff once more we have for < X := > " X, thatE[Y] < E[X] = O(logn). If u

Heontrolled by reducing the parameter
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always picks a channétyeetfor the corresponding rounds on which a neighboring badqmirmunicates,
thenw reduces its activity by the facters in each such round. This totals to a reduction of at na@st
spread OVerrprogressfounds. But sincd” = O(logn) it also takes at mosyt” - log,, 00 =Y -20m =

©(Y) = O(logn) rounds to recover from those activity reductions. Choogiagameterrppgresslarge
enough|| {t’ € [t + 1, + Tprogress : Y(u,t’) = 1/2} | > (1 — ) Tprogressholds with high probability.

What remains is to remove condition (c). But this followsnfrehe simple fact that if a good leader is
created inN2(u), then withinTeg.piue rounds it either joins the MIS or it gets knocked out by an Migl@
due to Lemmat.11. The latter can happen at mast times. Thus we can omit condition (c) by extending
Tprogressadditively by req.piue and then by a factor af3. O

Next we upper bound the number of rounds in whagly neighbors of good pairs within distanéérom
u manage to exceed the activity threshejg, .

Definition 4.15. For a nodeu and a roundr let I(u, ) be the event that
e all nodesr ¢ N5(u), which neighbor an MIS node, are in stdfeand
e all nodesr € N’ (u), which neighbor a good heraltd or good leadet, &, € (HUL)\ N(M), have
Y(7) < Yow = y/Tmmm = log™*?n and are neither bad leaders nor bad heralds.

Lemma 4.16. Assume that (P) holds. Further, letbe a round in which node is in the herald filter and
setJ := [F + 1,7 + Tprogres- Then, w.h.p., one of the following holds:

e Within 7progress= O(log n) rounds, there is an MIS node iN!(u), or

o [{reJ:I(u,r)holds} | > (1 — &)Tprogress

Proof. Initially, TprogressiS chosen large enough to comply with Lem#a4

The proof is divided into four parts. In the first part we shdwattthere are onlyolylog n many nodes
for which I (u, r) can be violated—i.e., nodes that neighbor good leadersl gexalds or MIS nodes. In the
second part we show that each such node hears from one ofigigbbors every)(1) rounds with constant
probability. Since neighbors of MIS nodes are immediatéiypieated upon hearing a message from them,
the case of a node neighboring a good pair is the more diffamdt In the third part we argue that a
node neighboring good pairs reduces its activity valug,ig at least once withi® (log log n) rounds with
considerable probabilityl — log™¢n for some constant > 1. In the last part we combine those results
to show that withinrprgressfounds, w.h.p./(u,r) is only violated for a small constant fraction of those
rounds.

First part.  To count the number of nodes that can violate, ), we have to count the number of good
heralds, good leaders and good MIS nodesViti! () in round r; we denote that latter set By, C

(L UH UM) N N°*t!(u) and their neighboring nodes in the herald filter/8y := N (W,.). Due to (P) and
Lemma4.11, w.h.p. at all times all MIS nodes form an independent seticaall leaders of good pairs, so
there are no more thaim®*" of these inf¥/,.. The number of heralds of good pairsi+! (u) is at most the
number of good leaders iN°*2(u), so in total|IW,.| amounts to at mosta®*? < 3a2,/logn = o(logn).
Due to the guarantee we get from the decay filter, each suct masl at mosD (log® n) neighbors in the
herald filter, saV, < log*n. Note that even OVefprogressfounds the total amount of those nodes cannot
excee(log® n).

Second part. An MIS node has to reach all its neighbors only once each,derdior them to fulfill the
requirement fol (u, ). Leaders and heralds on the other hand need to inform thginloars multiple times
and continuously over the coursegfogressrounds. In most cases a node N, has a constant probability
to hear of at least one of its neighborsln. within a O(1)-round time interval. More precisely, we claim
that within O (log log n) rounds, in expectation; reduces its activity by a factor polylogarithmicin We
prove this by analyzing th& types of neighbors can have in¥,. and the states can be in.
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v € A: Atfirst let v neighbor an MIS node. s might be forced to broadcast 6tin roundr, but then with
probability 1 /4 it sends on one of the report chann®ls in roundr + 1. Also with probability at least
1/2, v does not act on one of the active channéjdn roundr and therefore either gets knocked out
or is also in state\ in roundr + 1, where it listens on some report channel with probabilitieast
1/2. Thus, with probability at least/16, in roundr’ € [r,r + 1], s sends on a report channel and
listens on a report channel. If that is the case, siite N N!(v)| < ngr, with probability at least
87}72, v ands act on the same chann®gl, while no other neighbor aof in WW,.. operates ork;.. Once
that happensy moves to staté.
Thus let us now assume thatdoes not neighbor an MIS node, but at least one good Idad#fith
similar reasoning, there is a roumd € [r,r + 7] in which [ broadcasts on some chanrie} as a
apart of its red-blue game, unlekfransitioned to stat®l or E—the first case we already covered,
the second does not happen with probability at leé#8t With probability at leas2~7, v is still or
again in state\ in that roundr’. With similar argumentation as abovethen getd’s message with
probability at Ieastk%R. In total, in eacl8-round interval, with probability at Ieagt%lTR, v receives
a message frorh
If v does not neighbor a good leader nor an MIS node, but at leasgjaod herald:, then the same
logic applies for ar8-round interval, unlesé gets knocked out—which only happens if its leader
joins the MIS or another MIS node is created nearby. But, withbability at leastl/2, h nor its
leader gets knocked out by a neighboring MIS node. If itséegained the MIS, then just a new MIS
node has been created N (v), which can happen at mosf times and therefore delayto hear
from any of its neighbors by at moét(a?) rounds during the whole execution of the algorithm. For
simplicity we ignore thosé (1) rounds. As above, with probability at Ie@teln—R, v hears fromh in
any8-round interval.

In total we get that for ever@!'!eng rounds that spends inA N N,., in expectation it hears at least once
from one of its neighbors ifi,.. At this point we fix/m to be eight times as large, i.€.en. Note thatn
is a constant depending @nonly, viang.

v € HUL: Aslong asv is in one of these states hears from the node it partnered up with evempunds
as long as the pair remains. In the algorithm it is accountedhat by decreasing(v) every round
by a factor ofc 2.

v el UH If vwas already ifi.’ or H' when it joinedV,., then it might manage to finish its handshake, in
which case we refer to the previous case. Otherwise, if itsiflaake gets disrupted, themeturns to
stateA at lates6 rounds later, which we also already covered. This also espthat a node switching
between stated andH’ or L’ spends at least one eight of these rounda.in

We get thaty hears from one of its neighbors W, at least once evermy, rounds, irrelevant of its own state.
Recalling thatrs = 029, v reduces its activity eachrounds by a factor of at least?? in expectation.

Third part.  Letr; be the round in which théh MIS node or good leader-herald pair¥f () is created
and we talk of event,,; if more than one is created in a single round, we ignore emtdit ones. In round

r; all nodesv € N,, havey(v) < 1/2. Let us assume that no other good pair or MIS node is created fo
Q(loglog n) rounds, as otherwise we assume all rounds betwgandr;; asviolated—more details on
that in part four. We want to show that all nodes N, decrease their activity quickly. For as longas

is part of a pair, this reduction is guaranteed by design e@ftgorithm, so we also only consider rounds in
which v is not part of a pair. For some arbitrary constanin the nextclog log n roundsv can increase its
activity by at most a factor of%/°8'™ = ©(polylogn). Let D, be the random variable that counts the
number of times receives a message of one of its neighboring good leadersraids in those log log n
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rounds. In expectatiorl), increases at least evefly rounds by one. With Chernoff we get

(o= (1-4)doslosn) o oo .
2 m

Recall thaf N, | < log®n. We choose: := 100/ > (20 +6) - 4-In2-m. If D, > 9%18" a5in 7), then
v(v) decreases enough in thaskeg log n rounds to “touch™mi, at least once. Now we can make a union
bound over all nodes itV,, and we get that with probability — @}rn all nodes inV,, touchvymi, at least

once in those log log n rounds.

Fourth part. Let us now count the amount of roundsn which I(u,r) does not hold. We keep the
definition of rounds"; < r; < --- < r, and of events,,. Due to the definition of good pairs, there can
be no more good heralds N°t! () than there are good leadersii#+2. Once being part of a good pair,
a node can only stop being good by being knocked out by an Mtfe,nehich then prevents the creation
of new leaders, heralds and MIS in its neighborhood. MIS madalistance) + 3 can still influence good
leaders and heralds iN°*'(u). However, no more than good leaders (and their corresponding good
heralds) and no more tharf good heralds (and their corresponding good leaders) candiekid back to
stateA by an MIS node. Therefore, no more than’*> = O(y/logn) such events, can happen, i.e.,
k= 0(vIogn).

We split the interval7, 7 + Tprogresd iNt0 ¢ smaller intervalgJ;);<;<¢ of lengthcloglogn each, i.e.,
(= Cﬂfgﬁ- Then we color each such interva) red if it contains one of the events, and we color
J; orangelif its preceding interval/;_; contains such an event, but nét itself. All other intervals are
coloredblue From the third part we know the following. Independentiytiod activity values of all nodes
in N, = N(W,.) \ W, in some round-, if no event&,. happens in round’ < r + cloglogn, then with
probability 1 — log=2° . all those nodes touchiin within the nextelog log n rounds after round. l.e., in
every orange and blue interval, this is likely to happen asti@nce. If this happens in some orange or blue
interval J;, let us call this event\V{;. Any node that touchesnyn in interval J; cannot recover its activity by
a factor higher than

24cloglogn 24-100m
g—él()g logn = 27 2000m — ]Og 2000m 1, = 10g1‘2 n,

until the end of interval/; 1. In other words, ifJ; is blue, then/; _; cannot be red and i#1;_, happened,
then I(u,r) holds throughout the whole interval. LetZ be the index set for all blue intervals. Since
k = O(y/Iogn), the total number of rounds in red and orange intervals atle imoo(logn). Thus the
number? := |Z| of blue intervals is i1 — o(1))¢, i.e., ¢’ > (1 — ¢/2)¢. We define random variables;
that evaluate td if M;_; doesnothold and to0 otherwise. LetX := Y. ; X;, p = log™ ' n, &' == ¢/2
andTprogress > 8,(170_6,) log n, then

k
0N Ly D=(E) e\t »
P(X 2 E/e/) S <E,£,>p€ 14 k S k <%> 10g—20€ 14 n

2((10g %)—20loglog n))e’ (1—¢’) c"l—g:?;e;; < n 19

<

Hence the number of intervals of lengtlog log 2, in which no violation ofl (u, ) occurs, is w.h.p. at least
(1 — €)¢, which concludes the proof. O

Lemma 4.17. Assume that (P) holds. Leét be a round in which a node ¢ N'(M) has a neighbor
u' ¢ N'(M) in the herald filter. Then, w.h.p., withifhogress = O(log? n/F + logn) rounds a node in
N'({u,u'}) joins the MIS.
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Proof. The constantygressiS chosen by the end of this proof, and it is(DrQlog2 n/F + logn). Initially
we only set it to be large enough to comply with Lemiadand Lemmal.16 Assume that the statement
is not true, i.e., no node iV!({u,u'}) joins the MIS in the given time bounds.

Both nodes: andw’ stay competitive, i.e., they stay in the stafesH’, I/, H or L, as state® andE
would clearly imply the creation of an MIS node M! ({u, u'}). We now apply Lemmd.14to both nodes
to get

|{t/ S [tu + 1, tu + Tprogr934 : ’y(u, t/) = ’y(u/, t/) = 1/2}‘ Z (1 — €)Tprogress (28)
We also apply Lemméd.16to extend £8) to
Ht’ € [tu + 1ty + Tprogresd : Y(u, ') = v(u', ') = 1/2 AN I (u, ') holdSH > (1 — 2¢)Tprogress (29)

We call rounds- in which y(u) = y(u') = 1/2 andI(u, r) holds, apromising round In such a round
clearlyI'(u) > 1.

We first look at the case in which a round is promisififu) < 5« andu is Z=-fat. By Lemma
4.7 with probability Q(7;) within 7 rounds either a good pair or an MIS node is created nearbyyemt e
that would contradict our assumption. Hence, as Ion@)ézs[1 logn) such rounds appear, w.h.p. such a
contradicting event occurs. We choagggresssufficiently large such thatryrogresssuch rounds would cause
a contradiction.

W.l.o.g. we thus assume that withigogressfounds, a1 — 3¢) fraction of these are promising, but it
does not hold that bothi(u) < 5« andu is =--fat. For simplicity we exclude these cases from our definiti
of a promising round.

In all promising rounds, in distaneethere must be a node, for whichI'(w) > 5a andw is n-fat. This
is obvious ifl"(u) > 5a, as then either is already that node, or there exists a chain of activity suvhgch
increase in each step by a factor of at least. By definition of), such a chain has length at maéstlf
I'(u) < 5a, thenu cannot be5la-fat by our renewed definition of a promising round. But sifi¢e) > 1,

u then must have a neighborfor whichI'(v) > 5a and we can apply the same logic as before to find that
n-fat nodew.

For such a node the requirements for Lemm&a7 hold.

Now lett; prom be the first promising rounds prom the second and so on.

Let T’ prom be the random variable that counts the number of promisingdst; prom until the first time
a good pair or an MIS node is created i (u) or has beercreated in a non-promising round between
ti—1,prom @ndt; prom (We denote such an event 43. l.e.,

TLprom = mln {Z : A happenS ir(tl'_Lprom, ti7pr0m:|} .

T; prom for j > 1 is defined accordingly. By Lemma.7 event A happens in expectation at least every
(e1m¢)~! promising rounds for some constantdepending only om.

Let M, be the random variable that counts the number of evéhizppening inV? (v) until one happens
in N'({u,u'}), i.e., until either a good herald or good leader iit({u, u'}). The number of good leaders
and the number of MIS nodes that can co-exisNif(«) is at most2a? < 2y/logn. If a node stops being
a good leader, then it must have been knocked out by an MIS, nddeh still limits the total number of
these events t8y/log n.

Note also that usually after an evestthere is arf2(log log n) pause until the next promising round
happens, because it takes at least that many rounds for gocdt@ reduce a neighbor’s activity beneath
the thresholdyw, if that neighbors activity level is if2(1) by the timeA happens. We account for that by
“paying” cs log log n rounds for each such event, for some constant

Now, using a Chernoff bound we get that"* T prom < 6\/@(Cfm +cgloglogn)+cz logn, w.h.p.,
for some constant,. With suitably large chosefpogress this is less thafl — 3¢)rprogress causing the last
contradiction to our assumption and thus finishing the proof O
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Lemma 4.18. W.h.p., property (P) is not violated throughout the runtiai¢he algorithm.

Proof. Assume in round it happens for the first time thatneighboring nodes; andus are inM. W.l.0.g.,

we

letu; enter the MIS before, or at the same time and denote those times correspondinglyt, = t.

Additionally, for all pairs of nodes that violate (P) in radity, we choose the pair for which, the 'age’ of

the
ull

older MIS node, is minimized, and ties among candidatethbse positions are broken Hys, first for
then forus.
There are two ways for a node iato join the MIS: either by increasing itenely counter tongnely OF

by passing through stag&s andL.

(A)

(B)

©

(D)

Let us first assume that both nodesandus enter statéV by finishing their respective red-blue games.
If t1 < to, thenu; started its first red-blue game befate did, but by Lemmad.10, they cannot be

in statell at the same time. Thus, joins the MIS beforeu, becomes a leader. But as a leadar,
disrupts handshake chanriélevery second round, and then as an MIS node, it does so aeleagt
second round, preventing, from ever becoming a leader. Therefore, det= ¢5. Thenwu; andus
were neighboring leaders fofeq.piue/8 = 2(logn) red-blue games, and in each such game having a
probability of at least /2 to conflict with each others’ red-blue game. By Chernoff,.p.fthis is not
possible.

Let us next assume that both nodes enter stétthrough theirlonely counters. First assume that
to —t1 > ﬂone|y/2 > Thotification- But then in[tl,tg — 1] (P) holds true and with Lemma.13 wus
gets eliminated by:; before it can become an MIS node. Thus,tiet- t; < Tonely/2. But then
during rounds{t; — Tionely/2, t1] both nodes are in the active statesH’, L', H andLL and they do
not neighbor an MIS node. The latter stems from the followitfigu; would neighbor an MIS node
ug, then the first violation of (P) would happen in routd a contradiction ift; < t5. Fort; = to,
nodesu; anduy contradict our choice of the pair being investigatedugasvould have had a higher
age. Similar argumentation keepsfrom neighboring an MIS node. Hence, assume that none of both
nodes neighbor an MIS node. Lemmd 7tells us that by round; — Tionely + Tprogress < t1, an MIS
nodewv would arise inN* ({uy, us}), with v # w1, us. The remaining rounds, by Lemmdal3 suffice
for v to eliminateu; or u, w.h.p., again contradicting our initial assumption.

Now letu; join the MIS via loneliness ands by being a leader. lfs — t; > Treg-biue/2 = Q(logn),
then in eacl8-round red-blue game after roung+- 1, u; has a constant chance to disrupts game on
channelG. Choosingreqd-piue large enough guarantees us that, w.h.p., this cannot hagpen- ¢, <
Tred-blue/ 2, then in eact8-round red-blue game ity — Treq-biue t1), there is a constant probability that
uo transmits on a report chanrn®&l; on which no other neighbor af; transmits. The argumentation is
similar to the one in Lemmé.16 except that;; does not neighbor an MIS node yet (see argumentation
above w.r.t. to our choice af; andus): There are at mosto? good leaders and heralds neighboring
uy, andall bad leaders/heralds get knocked out with constant pratyabileach red-blue game, see
Lemma4.12 At the same timeu; listens on the same report chanrie] with probability at least
ﬁ = Q(1). Therefore, withrieg-piue large enough, w.h.pi; hears fromus before round; and thus
resets itdonely counter.

Last switchuy's andus’s roles from the previous case. In this case,is neighboringu; throughout
its leadership state, and with analogous argumentatigaydéess whether; € I or u; € M, us hears
from wu; with high probability. O

Now we have everything at hand to prove Theoi&th
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Proof of Theoren8.1. As stated earlier, Lemmé.2 provides that the runtime of the decay filter is within
O(log®n/F + logn), i.e., for a nodeu executing Algorithm2 (the decay filter) by that time one node
v € N} (u) enters the herald filter. From Lemmal we get that over the course 6f(log? n) rounds the
maximum degree of the graglf induced by all nodes in the herald filter is at moXtog? n).

Let thusu be a node that enters the herald filter. If it stays lonelyrfgiey = (9(log2 n/F + log n)
rounds, then: joins the MIS and we are done. Hence assume dhdbes hear from a neighboring node
«’ in the herald filter beforeyonely rounds have passed. We can now apply Lemhid to get an MIS
nodev created withinrprgress= O (log? n/F + logn) rounds. It either neighbors, in which case within
Tnotification = O(logn) roundsu is decided w.h.p., or it neighborg, which is also then eliminated in
Thotification founds. That way, can become lonely again. However, since an MIS node has beated in
N2(u), this can happen at mosf times. Thus, at MoStunime = 2aMonely rounds afteru entered the
herald filter,u is decided. O

26



References
[1] 1. 802.11. Wireless LAN MAC and Physical Layer Specifioas, March 2012.

[2] Z. Alliance. Zigbee specificatiorzigBee Document 053474r06, 2005.

[3] N. Alon, L. Babai, and A. Itai. A Fast and Simple RandonuZ@arallel Algorithm for the Maximal
Independent Set Problerdournal of Algorithms1986.

[4] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the Time-CGuexity of Broadcast in Multi-Hop Radio
Networks: An Exponential Gap Between Determinism and Ramgation. Journal of Computer and
System Science45(1):104-126, 1992.

[5] Bluetooth ConsortiumBluetooth Specification Version 4Recember 2014.

[6] K. Censor-Hillel, S. Gilbert, F. Kuhn, N. Lynch, and C. Weort. Structuring Unreliable Radio Net-
works. InProc. ACM Symp. on Principles of Distributed Computing (ROQDpages 79-88, 2011.

[7] I. Chlamtac and S. Kutten. On Broadcasting in Radio NekseProblem Analysis and Protocol De-
sign. IEEE Transactions on CommunicatiQrg3(12):1240-1246, 1985.

[8] S.Daum, M. Ghaffari, S. Gilbert, F. Kuhn, and C. Newpdfiaximal Independent Sets in Multichannel
Radio Networks. IfProc. ACM Symp. on Principles of Distributed Computing (ROX2013.

[9] S.Daum, M. Ghaffari, S. Gilbert, F. Kuhn, and C. Newpdfiaximal Independent Sets in Multichannel
Radio Networks. Technical Report 275, University of Freghiept. of Computer Science, 2013.

[10] S. Daum, S. Gilbert, F. Kuhn, and C. Newport. Leader fitecin Shared Spectrum Networks. In
Proc. ACM Symp. on Principles of Distributed Computing (ROX2012.

[11] S. Daum, F. Kuhn, and C. Newport. Efficient Symmetry Bieg in Multi-Channel Radio Networks.
In Proc. Int. Symp. on Distributed Computing (DIS@p12.

[12] S. Daum, F. Kuhn, and C. Newport. Efficient Symmetry Bieg in Multi-Channel Radio Networks.
Technical Report 271, University of Freiburg, Dept. of Cartgy Science, 2012.

[13] S. Doley, S. Gilbert, R. Guerraoui, D. R. Kowalski, C.Waort, F. Kuhn, and N. Lynch. Reliable Dis-
tributed Computing on Unreliable Radio ChannelsPtoceedings of the 2009 MobiH&E Workshop
20009.

[14] S. Dolev, S. Gilbert, R. Guerraoui, F. Kuhn, and C. Nevipd he wireless synchronization problem.
In Proc. ACM Symp. on Principles of Distributed Computing (RQDpages 190-199, 2009.

[15] S. Dolev, S. Gilbert, R. Guerraoui, and C. Newport. Guisg in a Multi-Channel Radio Network:
An Oblivious Approach to Coping with Malicious Interferenc In Proc. Int. Symp. on Distributed
Computing (DISCG)2007.

[16] S. Dolev, S. Gilbert, R. Guerraoui, and C. Newport. $ectiommunication Over Radio Channels. In
Proc. ACM Symp. on Principles of Distributed Computing (R©)[2008.

[17] S.Dolev, S. Gilbert, M. Khabbazian, and C. Newport. é&ging Channel Diversity to Gain Efficiency
and Robustness for Wireless BroadcastPtac. Int. Symp. on Distributed Computing (DISE)11.

[18] A. Ephremides, J. E. Wieselthier, and D. J. Baker. A BesConcept for Reliable Mobile Radio
Networks with Frequency Hopping Signalingroceedings of the IEEE5(56—73), 1987.

27



[19] S. Gilbert, R. Guerraoui, D. Kowalski, and C. Newporitdrference-Resilient Information Exchange.
In Proc. IEEE Int. Conf. on Computer Communications (INFOCQ2009.

[20] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhokerst Deterministic Distributed Maximal Inde-
pendent Set Computation on Growth-Bounded Graph®rae. Int. Symp. on Distributed Computing
(DISC), 2005.

[21] M. Luby. A Simple Parallel Algorithm for the Maximal Irghendent Set ProblengIAM Journal on
Computing 15(4):1036-1053, 1986.

[22] T. Moscibroda and R. Wattenhofer. Maximal independsts in radio networks. IRroc. ACM Symp.
on Principles of Distributed Computing (POD(Jages 148-157, 2005.

[23] C. Newport. Radio Network Lower Bounds Made Easy.Phoceedings of the International Sympo-
sium on Distributed Computing (DIS()014.

[24] S. Schmid and R. Wattenhofer. Algorithmic models fonsa networks. IrProc. Int. Workshop on
Parallel and Distributed Real-Time Systmes (WPDRP&yes 1-11, 2006.

[25] J. Schneider and R. Wattenhofer. A Log-Star Distridukéaximal Independent Set Algorithm for
Growth-Bounded Graphs. IRroc. ACM Symp. on Principles of Distributed Computing (ROD
pages 35-44, 2008.

[26] M. Sherman, A. Mody, R. Martinez, C. Rodriguez, and Rd&e IEEE Standards Supporting Cog-
nitive Radio and Networks, Dynamic Spectrum Access, andxiSnce. IEEE Communications
Magazine 46(7):72—79, 2008.

[27] M. Strasser, C. Popper, and S. Capkun. Efficient Urdioated FHSS Anti-jamming Communication.
In Proc. ACM Int. Symp. on Mobile Ad Hoc Networking and CompguMiOBIHOC) 2009.

[28] M. Strasser, C. Popper, S. Capkun, and M. Cagal]. Jawgpmasistant Key Establishment using Un-
coordinated Frequency Hopping. Rroc. of the IEEE Symposium on Security and Privacy (S & P)
2008.

[29] P.-J. Wan, K. M. Alzoubi, and O. Frieder. Distributed ri@truction of Connected Dominating Set
in Wireless Ad Hoc Networks. IProceedings of the IEEE International Conference on Coemput
Communications (INFOCOMR002.

28



A Properties of Graphs with Bounded Independence
We need a few statements about bounded independence grdgghsroofs are provided irt].

LemmaA.l. LetG = (V, E) be a graph and assume that every nade V has a positive weight,, > 0.
DefineW := >,y wy and foreachu € V, W, := 3 e y1 () wo- It then holds that

3y ;”/_ <a(G) and (30)
veV

W2
ng cWoy =2 W» (31)

wherea(G) is the independence number@f

LemmaA.2. LetG = (V, E) be a graph and assume that every nade V' has a positive weight,, > 0.
DefineW := )" ., w, and for eachu € V, W,, := ZUeNg( ) W LetVieany C V be the set of nodes

for whichv,, > WWG) The total weight of nodes W, is at least

w
> wv>m.

ve ‘/}Leavy

B Candidate Election—Statements and Proofs fo (and IL")

B.1 Lemma4.6, “W.h.p. nothing happens”

Let k be a positive integeconstant » some roundy some node in the herald filter in roumd: an index
from1,...,n4, S be a (possibly empty) subset &t (u) N A. Furthermore ledS C S bethesubset ofS
that has connections outside®fbut in N*(u), i.e., 05 := SNN (N*(u)\ S). Atlast, letS = S"uSPUS!
be a partition ofS. We call the tuplgk, u, r, i,S)) aconstellation For a constellation the following events

are defined for round:
e S.,/S": nonodeinS/S™ operates o4,,

e S;/S/SE  all nodes inS/S%/S! operate ond;,

o 05 no node indS operates o;,

e H; nonode inN*(u) \ S receives a message on chandg)

o H: nonode inN*(u) receives a message on some chaohie} A; and
o M: nonode inN*(u) receives a message on any chansel. . . s An -

LemmaB.1. Let(k, u,r,4,S) be a constellation. Then,

(1) P(H) = 1 — O(ma®)
(2) P(H-[S~i) = 1 = O(mea®)
() P(H-i|S;) = 1 - O(mea®)
(4) P(H-;|S™, ANSP ASH = 1 — O(mpa)
(5) P(H;|0S™,) = 1 — O(mea)

Look at (1). The lemma says that the probability for a herald candittates created in any single round
for any neighborhood of constant radius is at most linear,in Sincen, is an arbitrarily small constant
parameter chosen by us, we can make the probability for thaatearbitrarily small. The proof forlj
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is exactly the same as the proof for Lemma 8.6 fith «(k) replaced bya*. We provide its proof
nevertheless, a®) and ) are new results that do directly depend ah (What @) says, is, that even if
we condition on some node% C N*(u) notto operate on channel;, this does not increase the chance
(significantly—i.e., by more than a constant factor) forsth@r other nodes to receive anything on some
channelA; # A;. Analogously, ) claims that if we condition on some nod&sc NF(u) to definitely
operate on channel;, this does still not affect the probability for any other edd receive any message on
some other channed; # A;. (4) is a combination ofZ) and @), plus we even fix the knowledge of which
nodes, that operate o#;, do broadcasty?) or listen (S). (5) has already been proven if] fas Claim 8.9,
except that theré was fixed ta2. The analogous proof is provided as well for sake of compkxs.

Proof. We first prove {). For the whole proof we only use the graph, induced by nodes in staté
in roundr. We also solely focus on nodesthat do have at least one active neighboiGig, as isolated
nodes cannot become herald candidates. We will use thearofst (v) and N¢ (v) to refer toNg, (v) and
N¢ (v), respectively.

To become a herald candidate, a neda stateA must receive a message from one of its neighbors on
one of the channelsly, ..., A, ,. This is only possible if in round, v chooses to listen on a channé}
and exactly one of’s neighbors inG, broadcasts on channdl;.

Consider an arbitrary channdl; from the herald election channels, ..., A, . Letp,(j) = 277~ (v)
be the probability that an active nodehooses to broadcast or listen on chanagl In addition, we define
P,(j) == 27T (v) = Yweni() Pu(i). Let B;"" be the event that listens on channel;, while exactly
one of its neighbors € Ny (v) transmits on channed; and all other neighborse’ € N, (v) are either not
on channel4; or they choose to listen as well.

P(B}") = mpu(j) - (1= mo)pu(d) - [ (1 = pw (5)(1 — 7))
w' €N, (0)\ {w}

. . 1 ,
< Wfpv(])pw(]lj;e{l_{&}_ =7 () . H (1 —puw (J)(1 — 7TZ)) (32)

wEN}(v)
< mepo(j)pu(f) - 4- e 20

= m2 "y (v)y(w) - 4”2 T

In the last inequality, we use thaj, (j) < % and thatr, < % Define B} to be the event that listens on
A; and exactly one of its neighbors transmits on that chanriete$3} = (J,,cn, () B, and the events
B;“” are disjoint for differentv, we have

P(BY) = S P(BY™) < mp, ()P, (j) - 4e270) = ¢
wEN (v)

For anyz > 0 and constant, cx?e™* = O(1), which by usingz = P,(j) implies thatCy =

O(m f:,”(é))) =0(m }8) for any fixed;. Next we show tha}~74, C¥ = O(m, ;8) too.

cv ; ] . . s
1 _pU+ D) PG+ _1pGrntirg) L oiree 1 ,
= - ~—e 2°° 270V = —e1 < = Vi > logI'(v 33
Cr T nG) R) 1 p  Wzlellv) (39)
c? ] P,(7 1 N1 . 1 —j 1
J Pu(j) w(1) 1P G)+ip, () _1p(y)2- ,
= - - e 2" 2+ =4e 1 < = Vi <logI'(v) —4 34
Ciy po(l+1)Py(j+1) 9 J gI'(v) (34)
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We can therefore deduce the upper bounds

Y Gy <2fgrenand Y O <2081, log (-1}
j>logT'(v) j<logT'(v)

proving the claim thap~74, C¥ = O( g'llgz) ).

Using LemmaA.1, choosmgG’ = Ga[NE(u)], w(v) = y(v) and W (v) := I'(v), we get that
Y ve % < a(G') < of. (Note that the independence number of a graph is larger dhamual to
the independence number of any induced subgraph.)

Let B" be the event that moves from staté to H' and B = U, vk (u) = Uyenr - Then,

B <Y PB)< 3 ZC”—ZO( Z) O(mak).

vENE (u) vENF (u) J VvENF(u

N

Choosing a sufficiently smatt, concludes the proof ofi].

For (2) let a proper sef be given. We apply the same calculations as before but wdatammdow on
S;, i.e., that all nodes it do not operate on channell;. We letp,(j) still be the probability that node
v operates on channel;, but its value might now be different. if ¢ S, then this probability is exactly
po(j) as above, i.e., equals/v(v). Otherwise, this probability is larger than that by a faanbrl_—lw
due to conditioning o not operating ond;. This term maximizes at = 1 and then evaluates @ i.e.,
po(j) < 2-2777(v). The same thought needs to be applied to all nodes and thesdéoP, (j) can change:

It now ranges betweerT'(v) and2'~7T'(v). Since we are looking for an upper bound in EquaB@nwe
use thae 2 () < e~ 27T |n total we get that the right hand side of Equatiihincreases by a factor
at most.

The remainder of the proof is completely analogous to thefonél), except that in any summations
over all channels we omit channdl; (resp. index), which just benefits the cause.

For (3) we assume again that a proper Seis given and we condition 08}, i.e., all nodes inS do
operate on channel;. But we are only interested in heralds being created on elanty # A;. We apply
the following simple adaption to our initial setup. We onctis on the grapty’y induced by nodes in state
A that will notoperate on channel; in roundr, i.e., we exclude all nodes fro), but also nodes outside of
S whose local random bits indicate that they choose to operat§; this round. In this case all calculations
stay exactlythe same, except that channé) (resp. indexi) needs to be removed from all summations,
unions (as a matter of fact, the probability of any analyzeehereferring to channeld; equals zero in
G',) and observations in general. When analyzing valleshe index: needs to be skipped. Finally, the
subgraphG’ used in the last step must be based¥n

For (@) let initially S™ = (). Then the statement is the same as3n €xcept that we not only know that
nodes inS operate on channel;, we also know whether they broadcast (S&tor listen (setS!). However,
this additional knowledge does not affect the proof ®Hwhat happens among nodes on other channels
than4; is completely detached from events dn Let now.S™ # (), then @) is a simple combination o]
and this expanded version d)(

The proof of ) is exactly the same as the proof for Claim 8.9 i, jwhich is equivalent to setting
k=2.

In the following, we use the notatioN” := N¥(u,r) \ S. For a noder € N, let B, be the event that
nodex receives a message on chandgl EventB, occurs iffx listens on channell; and exactly one of
its neighbors broadcasts on chandgl The probability for a node € N to pick channeld; is y(z) - 2.
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We therefore have

P(B,jos,) = 0wl s~ UomhGn) oy <1_w>

2 2 2t
2N (2)\S yeNa(z)\(SU{z})
77(7(337 T) F(aj> T) —T(x,r)27" _ /7('1'7 T)
- 2t 20 ¢ =0 [(x,r) -

Let X be the number of nodese N that receive a message on chandgin roundr. For the expectation
of X, we then get

E[X[0S-] = O(r) - 3 420 = O(m),
xzeN ’

The second equation follows from Lemma2 because the graph induced h{has independence at most
oF. Applying the Markov inequality, we g (X > 1/0S-;) < E[X|0S-;] = O(m;), which concludes the
proof of (5). O

B.2 Lemma4.7

Lemma B.2. Lett be a round in which for a node in stateA in the herald filter the following holds:
e there is no herald candidate iN?(u),
e all nodesv € N2(u) that neighbor a herald or leader, havgv) < yiow,
e all nodes inN?(u) neighboring MIS nodes are eliminated,
o I'(u) >1,
If in addition it holds that either
(@) T'(u) < 5a, uis =-fat andy(u) =
(b) I'(u) > ba andu is n-fat.
Then by the end of round € [t,t + 7], with probability 2(,) either a node inV?(u) joins the MIS or a
good pair(l,h) € (LN N'(u)) x (HN N(u)) is created.

, Or

D=

This proof is an adaption to the following lemma, fro&j:[

Lemma B.3. Lett be a round in which for a node in stateA in the herald filter it holds that there is no
herald, leader, or herald candidate iV2(u). Furthermore, all neighbors of MIS nodes ¥?(u) are in
stateE, I'(u) > 1, and either

(@ I'(u) < 3a(1), uis gyy-fat, andy(u) = 3, or

(b) wis i-fat andT'(u) > 3a(1).

Then by round’ € [t,t + 7], with probability Q(7,) either a node inN?(u) joins the MIS or a pair
(I,h) € L x His created inN'! (u) such thatV ({I,h}) \ {I,h}) N (HFUH U L) =0.

Note that we do not exclude the existence of leaders anddsesasiymore. Instead we require such
nodes to have 'silenced’ their neighborhood, i.e., to hawsalback such nodes’ activity values. Good pairs
are supposed to do so with a good probability, and while bad pan manage to do that, too (with a low
probability), it does not affect the lemma’s correctnesthdfy do. Last, the probability for a new isolated
leader-herald pair goes down a bit, but is stilk¥r,), yet the hidden constant now depends heavily)on
One of the main reason to change from the original lemma téa was to ease argumentation in one part
and to differentiate it froomz > 3a>—the value in this proof is completely unrelatedig.

The proof follows mostly the lines of the one i#]] but in that paper a constant number of factors of
1/2 accumulate, while here they have to be exchanged by facfays—ut this only causes changes in
asymptotically irrelevant constants. In addition, nodeiginboring leaders or heralds need special attention.
We give a full detailed proof here, despite its similaritytie proof in p].
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Proof. We make use of the notatioK (u, t) to indicate the value of local variabl& at nodew in round

t. For the remainder of the proof, assume that in rounds. , ¢ + 7, no node inN2(u) joins the MIS, as
otherwise, the claim of the lemma is trivially satisfied. hder to prove the lemma, we first show that either
in roundt¢ or in roundt + 1, w.c.p., a herald candidate is created\Mi(u). Formally, we define the evefi,

as follows. In round’, eventH,, occurs iff there are two neighboring nodesv € N} (u,t') \ N(L U H)
such that

e v andw both operate on a channkle {A;,..., A, ,}
e no other neighbor of andw chooses channel, and
e no other node inVZ (u, ') receives a message on chankel

Clearly, if eventH,, holds either in round or ¢ + 1, the nodes), w have a probability oR7,(1 — 7) of
becoming a herald-leader candidate pair and no other hesaltidate is created on channéh that round.
Combined with appropriate applications of Lem&d. (1), this suffices to prove the claim of the lemma.
For a nodev € N} (u,t), letTy(v,t') := 2 weN vy (uey V(w, ) be the total activity value of
all active nodes in round in the 1-neighborhood ot restricted to thel-neighborhood of.. To estimate
the probability thatH, occurs in a round’ € {t,¢+ 1}, we first show that in one of the two rounds
t' € {t,t + 1}, with probability at least it holds thatu is in stateA andl' (u, ') := ZUENé(u,t’) ~y(v,t') >
% -I'(u, t); i.e., in one of both rounds, we have a high activity massigexl’by nodes in staté as opposed
to those in statd.’. Assume that the claim is not true for= ¢. As the lemma statement is based on the
assumption that is in stateA in roundt, this implies that"s (u, t) < %F(u, t). Also by the assumptions of
the lemma, in round, no nodes iV (u) are in stategl’, and those irfl or L have an activity of less than
Yow- Since|N?(u) N N(LUH)| < A2, < log**2 n < 7,5, We can assume that the total activity mass of
nodes inN?(u) N N (L UH) is less thari /100. As nodesw in statesM andE havey(w) = 0 and thus do
not contribute td"(u), we therefore have

1 T'(wt)>1 99

IRV t) .= ty>T t)—T t) — — > —T t)—T t).
L (’LL, ) ENzlg g(vv ) = (’LL, ) A(uv ) 100 = 100 (’LL, ) A(’LL, )
VEN U,

Because by assumption, there are no nodes in Etate roundt, all nodes that are in stafe’ in round

t switch back to staté for the next round. As by assumption, no nodes switch to stdier E, and a
nodew that is in stateA in roundt can only move out of\ if it decides to operate on one of the channels
Ay, ..., A, ,. This happens with probability at mostv,t) < 1. Therefore, with probability at leas},

at least half of the total activity value of the nodesNij (u, t) remains in state\ for round¢ + 1. And
(independently) with probability at Iea%t, also nodeu remains in stateé\ for roundt¢ + 1. Thus, with
probability at least:, u is in stateA in roundt + 1 and at least half of the total activity contributing to
' (u, t) also contributes td's (u, t + 1). Therefore, with probability at leagt,

*) (98 1
Caut+1) 2 (S0 = Tatwn) + 3 - Ta(ut)

I(ut)21 98 1 3
> —P(u7t) - 5 : FA(uat) > 5F&(U,t)

The last inequality follows because we assumed Ehdt, t) < 2I'(u,t). In (x) we used the fact that the
activity of all nodes inV!(u) can only grow from round to ¢ + 1, except for those that neighbor heralds
or leaders and those that switch to stdté®r E. But the former only make up a small percentage:'sf
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activity mass and the latter do not exist by our assumptiofvs. therefore in the following assume that
t' € {t,t + 1} such thaf's (u,t') > 2 - T'(u,t) andu is in stateA in round?’.

To show that in round’, eventH,, occurs, we distinguish the two cases given in the lemmarstate
We start with the simpler case (a), where in round < I'(u) < 5a andv(u) = 3. The latter implies that
u ¢ N(L UH), due to the requirements of the lemma that such nodes havadtvity. Because no node
in N'(u) switches to statebl or E in round¢ and neighbors of leaders and heralds have low activity,
activity mass cannot change much. Neighbors of leadersenadtls cause a drop of at m@&t:, ¢) /100 and
all others increase their activity by at mest. More precisely).99I'(u, t) < I'(u,t') < (1+¢,)'(u,t). We
know thatl's (u,t') > 2'(u,t) > 2. Consequently, since is in stateA, it has activity levehy(u,t') = 3,
and the total activity mass, (u, t') —(u, ') of all neighborsis betweenkt andog5a = O(1). Therefore,
w.c.p.,u and exactly one of its neighbotsoperate on channel = A;. (Recall that a nodev in state
A chooses channell; with probability @.) Because we assume thatis %—fat at timet, I'(v,t) is
also bounded and therefore, w.c.p., no other neighbar mitks channeld;. Hence, the only thing that
is missing to show that evertf,, occurs with constant probability is to prove that no othedea N?(u)
hears a message on changglin roundt’.

But this follows from Lemma.1.(5) by choosingS = N2 (u) N (N (u) U N (v)).

We have shown that in case (a), the evARtoccurs with constant probability. Let us therefore switch
to case (b), wher&V (u, t) is n-fat andI'(u, t) > 5«. For the following argumentation, we define

Ni(u,t') := {v € Ni(u,t')\ N(LUH) : T4 (v,t') > 5o

and X
Da(u,t) =Y (v, 1).

vENL(ut')

To analyze the probability of the eveft,, consider two neighboring nodesw € N} (u, ')\ N(L U
H). We defineL, , to be the event that in round both v and w decide to operate on channkl:=
[log, I'(u, t)] and no other node iV (v) U N(w) chooses the same channel FurtherH,, ,, is the event
that L, ,, occurs and in addition, no node ?(u) \ (N(v) U N(w)) receives a message on chanhel
in roundt’. LemmaB.1.(5) implies again thal?(H, .,|L, ) = 1 — O(m). Further, note thaff,, =
Uv,wENl(u)\N(]LUH),{v,w}EE Hv,un and we han{mw - w,v ande7w ﬁHv’,w’ - @ fOf {'U, w} # {'U,, w/}.
It therefore holds that s

P(Hu) = _7(7(6) : Z P(Lv,w)' (35)

2 {v,w}€E,
(v,w)E(N{ (u,t'))?

The probability for a node € A to choose channel is y(v) - 2~ lee Tl ¢ [23((5)@7 &S’i)] We can
therefore bound the probability that, ,, occurs in round’ as

L (v, t)y(w,t) v(z,t')
R i W G )

€N (v)UN (w)
/ / ot
@YW, ) - S nwonn TS

>

- 4T (u, t)?

L o R e

- AT (u, t)?

s 2t t) eedfed 1 Ao t)(w,t)
N P(u7 t)z 4. 167?9 F(u, t)2
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The last inequality follows because in roufjchodew is n-fat, and therefore
I'(u,t) > max {I'(v,t),I'(w,t)}.

In the following, we restrict our attention to the everlts,, for v € N} (u,t') as these are the only ones
for which we obtain a significant lower bound on the probapilhat they occur. Fop € ]\Afé(u,t’), let
K, = UweN(U)mN&(u i\~ (wum) Low be the event thak, ., occurs for some neighbar of v. For a node

v € N} (u,t'), we then have

P(K,) = Y P(Luw)

weN (V)N (u,t')\ N (LUH)

1 y(v,t’

= S r((u zt))2 2 (w.)

4-.16 " weN()NNE (u,t’)\ N (LUH)
o 1 )T ) — 1, t) — )
T o416 P lu, £)2

(T t') —1.02

> 1 (0, ) (Talu, )2 a) (36)

1162 2al (u,t)
N 1 v(v,t')

4 . 160%‘3 40ér(u, t) ‘

Inequality @6) follows becausey(v, ') < 3,v € N}(v) and thus} (v, t') > % The last inequality

follows from s (u,t') > 2 - T'(u,t) and thusTa(u, ') — 1.02a > 2 - D(u,t) — 1.0200 > 10(u, ) if

I'(u,t) > 5a. Using 35), we can now bound the probability of eveft, in roundt’ as

1—-0(m 1—-0(my (v, t’
veN (u,t') 6dar- 16 7 1)~
_1-0(m) Ta(u,t)
64161 L)

(37)

Applying LemmaA.2 to the graph induced by the nodeshiii (u, '), the activity sum of nodes iﬁfé(u, t')
can be lower bounded as
Ta(u,t') S 30 (u, t)

20— 10a
Together with 87), this proves that also in case (b), the evERptoccurs with constant probability in a round
t' € {t,t + 1}. Note also that in both cases (a) and (b),feandog, sufficiently small, the probability that
H, occurs can be lower bounded by a constanthat is independent of the probabilities ando,.

To complete the proof, assume that in roufideventH,, occurs with probabilityC;,, and if it occurs,
nodesv andw are the two nodes itV!(u) participating on channel (channelA; in case (a)). Lef\/ be
the event that no herald is created on a chanhe¥ ) in roundt’. Clearly, the probability thad/ occurs is
lower bounded by the probability that no herald is createdmnchannel in round. By LemmaB.1.(1),
we therefore hav® (M) = 1 — O(n,). For the probability that eventd,, and M both occur, we then get

fA(u7 t/) >

P(MNH,)=1-PMUH,) >1-PO) —P(H,) =C,— O(m).

Recall that probability”;, is a constant independentof. Conditioned on the event thaf N H,, occurs, the
probability that one of the two nodesw listens on channel and the other one broadcasts on the channel
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is 2m(1 — 7). In that case one of the two nodes becomes a herald candiththe other one its leader
candidate. AlsoM N H, implies that in round’ no other herald candidates are createdVit(u). Lett”

be the round in{¢,¢ + 1} \ ¢'. If in addition in roundt” and in the remaining rounds+ 2,...,¢ + 7 no
herald candidate is created W (u), nodesy andw make it through the handshake and become an isolated
leader-herald pair as claimed by the lemma. By Lenfiria(1), this happens with probability — O (),
which by choosingr, sufficiently small concludes the proof. O
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