
HAL Id: hal-01206149
https://hal.science/hal-01206149

Submitted on 28 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Limit Behavior of the Multi-Agent Rotor-Router System
Jérémie Chalopin, Shantanu Das, Pawel Gawrychowski, Adrian Kosowski,

Arnaud Labourel, Przemyslaw Uznanski

To cite this version:
Jérémie Chalopin, Shantanu Das, Pawel Gawrychowski, Adrian Kosowski, Arnaud Labourel, et al..
Limit Behavior of the Multi-Agent Rotor-Router System. DISC 2015, Toshimitsu Masuzawa; Koichi
Wada, Oct 2015, Tokyo, Japan. �10.1007/978-3-662-48653-5_9�. �hal-01206149�

https://hal.science/hal-01206149
https://hal.archives-ouvertes.fr

Limit Behavior of the Multi-Agent Rotor-Router
System∗

Jérémie Chalopin1, Shantanu Das1, Paweł Gawrychowski2, Adrian Kosowski3,
Arnaud Labourel1, and Przemysław Uznański4

1 LIF, CNRS and Aix-Marseille University, France
2 Institute of Informatics, University of Warsaw, Poland

3 Inria Paris and LIAFA, Paris Diderot University, France
4 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, Aalto University, Finland

Abstract. The rotor-router model, also called the Propp machine, was intro-
duced as a deterministic alternative to the random walk. In this model, a group of
identical tokens are initially placed at nodes of the graph. Each node maintains a
cyclic ordering of the outgoing arcs, and during consecutive turns the tokens are
propagated along arcs chosen according to this ordering in round-robin fashion.
The behavior of the model is fully deterministic. Yanovski et al.(2003) proved
that a single rotor-router walk on any graph with m edges and diameter D stabi-
lizes to a traversal of an Eulerian circuit on the set of all 2m directed arcs on the
edge set of the graph, and that such periodic behaviour of the system is achieved
after an initial transient phase of at most 2mD steps.

The case of multiple parallel rotor-routers was studied experimentally, leading
Yanovski et al. to the experimental observation that a system of k > 1 parallel
walks also stabilizes with a period of length at most 2m steps. In this work we
disprove this observation, showing that the period of parallel rotor-router walks
can in fact, be superpolynomial in the size of graph. On the positive side, we
provide a characterization of the periodic behavior of parallel router walks, in
terms of a structural property of stable states called a subcycle decomposition.
This property provides us the tools to efficiently detect whether a given system
configuration corresponds to the transient or to the limit behavior of the system.
Moreover, we provide polynomial upper bounds of O(m4D2 + mD log k) and
O(m5k2) on the number of steps it takes for the system to stabilize. Thus, we
are able to predict any future behavior of the system using an algorithm that takes
polynomial time and space. In addition, we show that there exists a separation
between the stabilization time of the single-walk and multiple-walk rotor-router
systems, and that for some graphs the latter can be asymptotically larger even for
the case of k = 2 walks.

∗Research supported by the ANR projects DISPLEXITY (ANR-11-BS02-0014) and MAC-
ARON (ANR-13-JS02-0002). Part of the work was done while PU was affiliated with LIF, CNRS
and Aix-Marseille University, supported by the Labex Archimède and by the ANR project MAC-
ARON. A full version of the paper is available online at http://arxiv.org/abs/1407.3200.

1 Introduction

Dynamical processes occurring in nature provide inspiration for simple, yet powerful
distributed algorithms. For example, the heat equation, which describes real-world pro-
cesses such as heat and particle diffusion, also proves useful when designing schemes
for load-balancing and token rearrangement in a discrete graph scenario. In the diffusive
model of load-balancing on a network, each node of the network is initially endowed
with a certain load value, and in each step it distributes a fixed proportion of its load
evenly among its neighbors. Given that such a balancing operation is performed for
load which is infinitely divisible (so-called continuous diffusion), in the long term the
distribution of load converges on a degree-regular network to uniform over all nodes.
When load is composed of indivisible unit tokens, the continuous diffusion process is
no longer practicable. It is, however, possible to design randomized schemes in which
the expected value of load of each node at each moment of time corresponds precisely
to the value of its load in the corresponding continuous diffusion process. This may be
achieved, for instance, by allowing each token of load to follow an independent ran-
dom walk on the network, as well as by applying more refined techniques admitting
stronger concentration of the load distribution, cf. [19]. Such methods are stochastic
in their very nature, and it is natural to ask whether there exist deterministic methods
which mimic this type of stochastic load balancing behavior? The answer is affirmative,
with the natural candidate process being the so-called rotor-router model.

Formally, the rotor-router mechanism is represented by an undirected anonymous
graphG = (V,E). Initially, a set of identical tokens is released on vertices of the graph.
At discrete, synchronous steps, the tokens are propagated according to the deterministic
round robin rule, where after sending each token, the pointer is advanced to the next exit
port in the fixed cyclic ordering. Such a mechanism has been proposed as a viable alter-
native to stochastic and random-walk-based processes in the context of load balancing
problems [5,7,9], exploration of graphs [1,8,10,12,15], and stabilization of distributed
processes [3,6,17,22].

The resemblance between the rotor-router token distribution mechanism and stochas-
tic balancing processes based on continuous diffusion is at least twofold, in that: (1) the
number of tokens on each node for the rotor-router process has a bounded discrepancy
with respect to that in the continuous diffusion process [5,20], and (2) when performing
time-averaging of load over sufficiently long time intervals, the observed load averages
for all nodes in the rotor-router process converge precisely to their corresponding value
for the continuous diffusion process.

By contrast to time-averaged load, for any fixed moment of time, the determinis-
tic rotor-router process and the stochastic approaches exhibit important differences. A
stochastic load balancing process based on tokens following random walks leads the
system towards a “heat death” stochastic state, which is completely independent of the
starting configuration. For a rotor-router system, the number of possible configurations
is finite, hence, after a transient initial phase, the process must stabilize to a cyclic se-
quence of states which will be repeated ever after. Natural questions arise, concerning
the eventual structural behavior observed in this limit cycle of the rotor-router system,
the length of the limit cycle, and the duration of the stabilization phase leading to it. So
far, the only known answer concerned the case when only a single token is operating in

the entire system. Yanovski et al. [22] showed that such a single token stabilizes within
a polynomial number of steps to periodic behavior, in which it performs a traversal of
some Eulerian cycle on the directed version of the network graph.

In this work, we provide a complete structural characterization of the limit behavior
of the rotor-router for an arbitrary number k > 1 of tokens. The obtained characteri-
zation shows that the rotor-router mechanism provides a way of self-organizing tokens,
initially spread out arbitrarily over a graph, into balanced groups, each of which fol-
lows a well-defined walk in some part of the network graph. The practical implications
of our result may be seen as twofold. On the one hand, when viewing the rotor-router
as a load-balancing process, we obtain a better understanding of its limit behavior. On
the other hand, when considering each of the tokens as a walker in the graph, we show
that the rotor-router may prove to be a viable strategy for perpetual graph exploration,
with possible applications in so-called network patrolling problems.

1.1 Related Work

Load balancing. The rotor-router mechanism of token distribution has been considered
in problems of balancing workload among network nodes for specific network topolo-
gies. In this context, each token is considered as a unit-length task to be performed by
one of the processors in a network of computers. Cooper and Spencer [7] studied load
balancing with parallel rotor walks in d-dimensional grid graphs and showed a con-
stant bound on the discrepancy between the number of tokens at a given node v in the
rotor-router model and the expected number of tokens at v in the random-walk model.
The structural properties of the distribution of tokens for a rotor-router system on the
2-dimensional grid were considered by Doerr and Friedrich [9]. Akbari and Beren-
brink [2] proved an upper bound of O(log3/2 n) on the load-balancing discrepancy for
hypercubes, and for tori of constant dimensions, they showed that the discrepancy is
bounded by a constant. For general d-regular graphs, a bound of O(d log n/µ) on the
discrepancy of the rotor-router mechanism with respect to continuous diffusion follows
from the general framework of [18], where µ is the eigenvalue gap of the graph, under
the assumption that a sufficient number of self-loops are present at each node of the
graph. This discrepancy bound has recently been improved to O(d

√
log n/µ) in [5].

Graph exploration. The rotor-router mechanism has also been studied in the context
of graph exploration, sometimes under the name of Edge Ant Walks [21,22], and in the
context of traversing a maze and marking edges with pebbles, e.g. in [6]. Cover times
of rotor-router systems have been investigated by Wagner et al. [21] who showed that
starting from an arbitrary initial configuration∗, a single token following the rotor-router
rule explores all nodes of a graph on n nodes and m edges within O(nm) steps. Later,
Bhatt et al. [6] showed that after at most O(nm) steps, the token continues to move
periodically along an Eulerian cycle of the (directed symmetric version of the) graph.
Yanovski et al. [22] and Bampas et al. [3] studied the stabilization time and showed
that the token starts circulating in the Eulerian cycle within Θ(mD) steps, in the worst
case, for a graph of diameterD. Studies of the rotor router system for specific classes of
graphs were performed in [11]. While all these studies were restricted to static graphs,

Bampas et al. [4] considered the time required for the rotor-router to stabilize to a new
Eulerian cycle after an edge is added or removed from the graph.

Studies of the parallel (i.e., multiple token) rotor-router were performed by Yanovski
et al. [22] and Klasing et al. [14], and the speedup of the system due to parallelization
was considered for both worst-case and best-case scenarios. In [8], Dereniowski et al.
establish bounds on the minimum and maximum possible cover time for a worst-case
initialization of a k-rotor-router system in a graph G with m edges and diameter D,
as Ω(mD/k) and O(mD/ log k) respectively. In [15], Kosowski and Pająk provided
a more detailed analysis of the speedup for specific classes of graphs, providing tight
bounds of cover-time speed-up for all values of k for degree-restricted expanders, ran-
dom graphs, and constant-dimensional tori. For hypercubes, they resolve the question
precisely, except for values of k much larger than n.

1.2 Our Results

In this work we provide a structural characterization of the limit behavior of the rotor-
router model with multiple tokens. Yanovski et al. [22] experimentally observed that
the rotor-router system enters a short sequence of states (of length at most 2m), which
repeats cyclically ever after. We start this work by disproving this observation. In fact,
we display an example of a starting configuration which admits a limit cycle with a
period of superpolynomial length (exp(Ω(

√
n log n))) with respect to the size of the

graph. Our example is similar to the construction presented by Kiwi et al. [13] to prove
the existence of super-polynomial periods for chip firing games on graphs (although the
rules of chip firing games are only very loosely related to those of the rotor-router).

By contrast, it turns out the fact that the rotor-router admits long limit cycles does
not signify that the limit behavior of the rotor-router should be perceived as a “dis-
ordered” discrete dynamical system. The long period in our counterexample comes
from the system being composed from many smaller parts, each of which exhibits a
small (but different) period length. We show that for any limit sequence of states in
the rotor-router model, the graph can be partitioned into arc-disjoint directed Eulerian
cycles, with each token in the limit periodically traversing arcs of one particular cycle.
We name such behavior a subcycle decomposition, the exact properties of which are
described in Section 3. To complement the lower bound, we provide an upper bound
of exp(O(

√
m logm)) on the period of parallel rotor walks in its limit behavior. This

upper bound asymptotically almost matches the lower bound from our example.
There are several consequences of our structural characterization of the limit be-

havior of the rotor-router. First, we show that it is possible to determine efficiently
whether the system has already stabilized (i.e., reached a configuration that will re-
peat itself) or not. This detection is based on the analysis of the properties of sta-
ble states, that is, of how the tokens arriving at a node are distributed into groups
leaving on different outgoing arcs. The main point of this analysis is the observa-
tion that the cumulative number of tokens entering a vertex v (over the time period

∗A configuration is defined by: the cyclic order of outgoing arcs, the initial pointers at the
nodes, and the current location of the token.

{t, (t + 1), . . . , (t +∆t)}) is equal to the cumulative number of tokens leaving vertex
v (over time {(t+ 1), (t+ 2), . . . , (t+∆t+ 1)}), for arbitrary ∆t.

Next, by defining an appropriate potential of a system and showing its monotonic-
ity, we can give a polynomial bound on a number of steps necessary for a system with
an arbitrary initialization to reach a periodic configuration. We provide an upper bound
of O(m4D2 +mD log k), together with examples of graphs with initial configuration
having just 2 tokens that require Ω(m2 log n) steps. This analysis is presented in Sec-
tion 4. The obtained polynomial upper bound means that the rotor-router is an efficient
means of self-organizing tokens so as to perform a periodic traversal of the edges of the
graph.

Finally, Section 5 is dedicated to showing how the previous results can be applied
in a constructive way with regard to efficient simulation of a rotor-router system. We
show how the properties of subcycle decomposition can be applied to provide a way to
preprocess any starting configuration in a way that makes it possible to answer queries
of certain type in a polynomial time. This shows that a structural characterization of
the rotor-router system is not only important as a theoretical tool for understanding the
limit behavior of the system, but also as a practical tool for solving certain problems
related to the rotor-router system.

As a complementary result, we show for the single-token rotor-router how to effi-
ciently compute the Eulerian traversal cycle on which the token would be locked-in,
faster than by running the process directly. A naive simulation would take O(mD)
time, but by using the structural properties of a single token walk together with appli-
cation of efficient data structures we show how to preprocess the input graph in time
O(n +m) such that we can answer queries about token position at any given time T ,
in O(log logm) time per query.

2 Model and Preliminaries

Let G = (V,E) be an undirected connected graph with n nodes, m edges and diameter
D. Let k be the number of tokens. The digraph ~G = (V, ~E) is the directed version of G
created by replacing every edge (u, v) with two directed arcs ~uv and ~vu. We will refer
to the undirected links in graph G as edges and to the directed links in the graph ~G as
arcs. Given a vertex v, we will denote its set of incoming arcs by in(v) and outgoing
arcs by out(v). Each vertex v of G is equipped with a fixed ordering of all its outgoing
arcs ρv = (e1, e2, . . . , edeg(v)).

The precise definition of the rotor-router model on the system (~G, (ρv)v∈V) is as
follows:
A state at the current time step t is a tuple: St = ((pointerv)v∈V , (tokensv)v∈V),
where pointerv is an arc outgoing from node v, which is referred to as the current port
pointer at node v, and tokensv is the number of tokens at any given node. For an arc
~(vu), let next ~(vu) denote the arc after the arc ~(vu) in the cyclic order ρv . During each

step, each node v distributes in round-robin fashion all of its tokens, using the following
algorithm:

While there is a token at node v, do

1. Send token to pointerv ,

2. Set pointerv = next(pointerv).

Note that during a single time step all tokens at a node v are sent out and at exactly the
next time step all those tokens arrive at their respective destination nodes.

For a given state St, we say that it is stable iff there exists t′ > t such that St′ = St.
The stabilization time of state S0, denoted ts, is the smallest value such that Sts is
stable. We call the periodicity of state S0 the smallest tp > 0 such that Sts = Sts+tp .

Throughout the paper, we denote multisets using {{}} notation, while for integer
ranges, we write [a .. b]

def
= {a, a+ 1, . . . , b}, [a .. b) def

= {a, a+ 1, . . . , b− 1}.

3 Periodicity of the Rotor-Router System

We begin with the observation that knowledge of the first ts + tp states of the system,
that is S0, . . . ,Sts+tp−1, gives us full knowledge of any future state for arbitrarily large
time t ≥ ts: St = Sts+((t−ts) mod tp).

So as to be able to efficiently predict the future evolution of any rotor-router state,
it would be useful to put a polynomial bound on tp and ts (with respect to n,m and
k). If k = 1, due to results from Yanovski et al. [22] , we know that tp = 2m and
ts = O(mD). For arbitrary k, Yanovski et al. [22] experimentally observed that tp ≤
2m for any graph G regardless of the initial state. However, the following negative
result disproves their observation and shows that the periodicity cannot be polynomially
bounded for parallel rotor-routers.

Theorem 1. There exists a family of graphs and initial states, with k = 2m tokens,
having the periodicity tp = 2Ω(

√
n logn).

Proof. We will construct such a family of graphs Gr for any sufficiently large integer
r, and an appropriate initial configuration of tokens. First consider a balloon graph Gx
consisting of a cycle of x > 3 vertices {v0, v1, . . . vx−1} and an additional vertex vx
(called the base vertex) that is joined by an edge to vertex vx−1 of the cycle (see Fig-
ure 1(a)). Let the initial token distribution at vertices (v0, . . . , vx) be (1, 2, 2, . . . 2, 4, 1).
Further let the exit pointers at vertex vi, 0 ≤ i ≤ x− 2 be oriented towards vi−1 mod x

(in the counter-clockwise direction, in the figure), while at the vertex vx−1 the exit
pointer is oriented towards v0 (i.e. in the opposite direction). At the base vertex vx there
is only one outgoing arc and so, the exit pointer at vx will always point towards this arc.

Observe that for a vertex of out-degree two, the exit pointer remains unchanged if
an even number of tokens exit this vertex in the current round, while the exit pointer is
rotated if an odd number of tokens exit in the current round.

We will now analyze the movement of tokens along the arcs of the graph in each
round. During the first round, the number of tokens moving on the arcs (v0, v1), (v1, v2),
. . . (vx−1, v0) of the cycle in the clockwise direction is given by the sequence S0 =
(0, 1, 1, . . . , 1, 2). During the same round, the number of tokens moving on the arcs
in the counter-clockwise direction on the cycle is given by (1, 1, . . . 1). On the branch
edge (vx−1, vx) there is exactly one token moving in each direction.

During the second round, the number of tokens moving on the arcs (v0, v1), (v1, v2),
. . . (vx−1, v0) of the cycle (in the clockwise direction) is given by the sequence

S1=(1, 1, . . . , 1, 2, 0) which is a cyclic rotation of the sequence S0. The number of
tokens moving on the arcs in the counter-clockwise direction on the cycle is still given
by (1, 1, . . . 1). Again, the branch edge (vx−1, vx) has exactly one token moving in each
direction.

Continuing with the above analysis, it is easy to see that in subsequent rounds, the
number of tokens moving on the arcs of the cycle (in the clockwise direction) is given
by cyclic rotations of S0, i.e., by the sequences (1, . . . , 1, 2, 0, 1), (1, . . . , 1, 2, 0, 1, 1),
(1, . . . , 1, 2, 0, 1, 1, 1) and so on. The number of tokens moving along the cycle in the
counterclockwise direction is always one token per arc of the cycle. On the branch edge
(v0, vx) there is exactly one token moving in each direction in each round. Since the
length of the sequence S0 is |S0| = x, after every x steps the configuration of tokens
moving on the arcs of the cycle is the same. In other words, the periodicity of this rotor-
router system is x. Notice that the graph Gx has x + 1 vertices and 2(x + 1) arcs, and
there are exactly 2(x+ 1) tokens in the system.

v0

v1 v2

vx

vx−1

4

1

2 2

2

1

p1

p2 pr

(a) (b)

v3

Fig. 1. (a) The balloon graph and the initial token distribution. (b) The family of graphs Gr con-
sisting of r balloons.

We will now construct the family of graphs Gr. For any given r, let p1, p2, . . . pr
be the first r prime numbers starting from p1 = 3. We take r balloon graphs of sizes
(1 + p1), (1 + p2), . . . , (1 + pr) respectively and join them by merging all the base
vertices into one vertex, with arbitrary port ordering (see Figure 1(b)). In each balloon
graph we place the tokens as before, such that the merged base vertex now contains
r tokens. During each step, r tokens will exit the base vertex through the r outgoing
arcs and r other tokens will enter the base vertex through the r incoming arcs. Thus,
irrespective of the initial state of the exit pointer at the base vertex, the system will
behave in the same manner. The behavior of the system in the distinct balloons would
be independent of each other and for each balloon of size (1 + pi) the configuration of
the balloon would repeat itself in exactly pi steps as before. Thus, the global state of the
system would repeat in lcm(p1, . . . pr) =

∏r
i=1 pi steps. Note that the size of the graph,

Gr, is given by n = 1+
∑r
i=1 pi = Θ(r2 log r). In general, for any given integer n, we

can construct a similar example graph by partitioning the n − 1 vertices into balloons
of appropriate sizes joined to the nth vertex, such that the period of the system is equal
to the Landau function [16] g(n− 1) = 2Ω(

√
n logn).

We remark that a similar result exists for parallel chip-firing games [13].
We now present an upper bound on the periodicity of k parallel rotor walks, for

arbitrary values of k. First, we will show that even though a stable state can exhibit
very long (super-polynomial) periodicity, the underlying graph G can be partitioned
into parts, such that each part separately exhibits small (linear) periodicity.

We will use calligraphic large letters (e.g. L : ~E ∪ V → Z) to denote token distri-
butions. Thus:

– Lt(v) (load of node v) is number of tokens located at node v in time step t,
– Lt(e) (load of arc e) is number of tokens sent out on arc e at time step t.

Thus, although tokens cannot be located on edges in our model, we can view the tokens
in vertex as located already on the outgoing ports that they will be distributed to.

We will use specifically Lt to denote token distribution associated with state St. (It
is important to note, that it is possible for two states to satisfy ∀eLt(e) = Lt′(e) and yet
St 6= St′ , as we also require that pointers be in the same positions in identical states.)

We begin with a series of observations on the token distribution process in a rotor-
router system.

Observation 2. Since every token is pushed onto some outgoing arc, we have:∑
e∈out(v) Lt(e) = Lt(v);

∑
e∈in(v) Lt(e) = Lt+1(v).

We also generalize token distribution into the cumulative token distribution. Given
two time steps t1 ≤ t2, we define Ct2t1

def
=
∑
t∈[t1 .. t2) Lt, in particular, for a vertex v and

arc e:
Ct2t1 (v)

def
=

∑
t∈[t1 .. t2)

Lt(v), Ct2t1 (e)
def
=

∑
t∈[t1 .. t2)

Lt(e).

Consequently, a natural generalization of Observation 2 from load to cumulative
load is as follow:

Observation 3.
∑
e∈out(v) C

t2
t1 (e) = C

t2
t1 (v);

∑
e∈in(v) C

t2
t1 (e) = C

t2+1
t1+1(v).

The next observation follows from the fact that rotor-router distributes tokens in a
round-robin fashion among all outgoing arcs of a vertex:

Observation 4. ∀e1,e2∈out(v)|C
t2
t1 (e1)− C

t2
t1 (e2)| ≤ 1.

Since arbitrarily large discrepancies (between two incoming edges) of incoming number
of tokens are smoothed discretely, we can see the process of token propagation as a
load-balancing scheme.

We now define the concept of potential of a token distribution system, which will be
helpful to derive the necessary and sufficient conditions for a system state to be stable.

Definition 5. Given a token distributionA over edges, we define its potential as:Φ(A) def
=∑

e∈~E (A(e))2 .
We also introduce a shorthand notation for the i-th potential of a given rotor-router
state St as: Φi(St)

def
= Φ(Ct+it) =

∑
e∈~E

(
Ct+it (e)

)2
.

Note that Φ1 ≡ Φ. It is important to note that while arbitrary convex function can be
used in the potential definition, usage of quadratic function will prove advantageous
when analyzing the speed of convergence to a stable state, not only its properties.

The following folklore lemma provides us with a characterization of the minimum
of the potential sums.

Lemma 6. Over all partitions of integer S into d integers, the partition {{bSd c, . . . , b
S
d c,

dSd e, . . . , d
S
d e}} uniquely minimizes the value of sum of squares of elements.

Lemma 7. For arbitrary i and t, the i-th potential is non-increasing: Φi(St+1) ≤
Φi(St).

Proof. To prove the lemma we have to observe how the round-robin property of the
rotor-router acts locally on the groups of tokens (cumulative over the time interval [t, t+
i)). From Observation 3 we know, that:∑

e∈out(v)
Ct+i+1
t+1 (e) = Ct+i+1

t+1 (v) =
∑

e∈in(v)
Ct+it (e).

However, from Observation 4 and Lemma 6 we get that the multiset of values over
outgoing arcs minimizes the sum of squares. Thus:∑

e∈out(v)
(Ct+i+1
t+1 (e))2 ≤

∑
e∈in(v)

(Ct+it (e))2,

which leads to:

Φi(St+1) =
∑
v

∑
e∈out(v)

(Ct+i+1
t+1 (e))2 ≤

∑
v

∑
e∈in(v)

(Ct+it (e))2 = Φi(St).

Observe that Lemma 7 implies that if the system is stable, all of the potentials are
preserved at every (future) time step. This observation is powerful enough to derive
strong characterization of stable states (see Theorem 11, equivalence of (i) and (ii)).
However, in order to be able to reason about bounds on stabilization time, we need a
more powerful notion of being able to characterize even the temporary regularities in
token trajectories (for not necessarily stable states).

Definition 8. We say that a state ST admits a ∆t-step subcycle decomposition, if in
every vertex v we can define a one-to-one mapping between incoming and outgoing
arcs of v Mv : in(v)→ out(v), such that:

∀e∈in(v)∀t∈[T .. T+∆t)Lt(e) = Lt+1(Mv(e)). (1)

The subcycle decomposition has the following equivalent interpretation. We partition
~E = ~E1∪ . . .∪ ~Ec, such that each ~Ei induces a strongly-connected subgraph of G, and
for each ~Ei there exists an Eulerian cycle covering it such that each token traversing arcs
of ~Ei follows this particular Eulerian cycle during time steps T, T +1, . . . , T +∆t−1.

Observe that the mappingM in Definition 8 does not need to be necessarily unique.
We will call any such mapping M a valid mapping with respect to ∆t subcycle decom-
position if (1) holds for it.

The following lemma gives a series of equivalent characterizations of subcycle de-
composition, connecting the existence of such a decomposition during any time interval
with lack of potential drop during the time interval, as well as a load-balancing discrep-
ancy criterion over all shorter sub-intervals of time.

Lemma 9. The following statements are equivalent:

(i) ST admits a ∆t-step subcycle decomposition,
(ii) ∀v∀t,t′:[t .. t′)⊆[T .. T+∆t), {{Ct

′

t (e)}}e∈in(v) = {{Ct
′+1
t+1 (e)}}e∈out(v) (multisets of

cumulative loads are preserved locally),
(iii) ∀t,t′:[t .. t′)⊆[T .. T+∆t){{Ct

′

t (e)}}e∈~E = {{Ct
′+1
t+1 (e)}}e∈~E (multisets of cumulative

loads are preserved globally),
(iv) ∀0≤i≤∆tΦi(ST) = Φi(ST+1) = . . . = Φi(ST+∆t−i+1) (potential is constant),
(v) ∀v∀e1,e2∈in(v)∀t,t′:[t .. t′)⊆[T .. T+∆t)|Ct

′

t (e1) − Ct
′

t (e2)| ≤ 1 (incoming discrep-
ancy is at most one).

For a fixed value of ∆t = 1, Lemma 9 captures the property that as long as Φ(ST)
remains constant, the loads on edges are only permuted between any two consecutive
timesteps. Coupled with Lemma 7 it immediately implies aforementioned property. Un-
fortunately, this property is not strong enough for our purposes. However, for arbitrary
values of ∆t, we can still employ the notion of higher order potentials Φ∆t (as de-
fined previously), and observe the load balancing properties from Observation 3. The
fact that stable state, by Lemma 7 and Lemma 9 admits load balancing properties even
when collapsing multiple timesteps into a single frame, is our lever which will be used
to derive strong properties of such states in the rest of this section.

Definition 10. We say that a state St admits a∞-subcycle decomposition if it admits
i-steps subcycle decomposition for arbitrarily large i.

Now we proceed to obtain a more algorithmic characterization of stable states. First,
we show that if we do not experience a potential drop during 2m2 time steps, then the
rotor-router system has reached its limit configuration.

Theorem 11. The following conditions are equivalent:

(i) ST is stable,
(ii) ST admits a∞-subcycle decomposition,

(iii) ST admits a (2m2)-subcycle decomposition.

As a direct consequence of the proof of Theorem 11, we have:

Corollary 12. For a stable state ST , any mapping between incoming and outgoing
arcs of v denoted Mv : in(v) → out(v) that is valid with respect to 2m2-subcycle
decomposition, is also valid with respect to∞-subcycle decomposition.

We are now ready to provide a stronger characterization of a stable state in Theo-
rem 13 (compared to Theorem 11), based on refined analysis of the potential behavior.

Theorem 13. State ST is stable iff:
∑3m
i=1 Φi(ST) =

∑3m
i=1 Φi(ST+2m2).

Finally, we provide an upper bound on the length of the period for any rotor-router
state. It is interesting to see that the upper bound is not far from the period of the
example graph given in Theorem 1.

Theorem 14. For any stable state ST , the period length of the limit cycle is bounded
by tp = O(exp(

√
(m logm))).

Proof. Observe, that any arc inG can be part of exactly one cycle in any given subcycle
decomposition. As the period length of any stable state is upperbounded by the least
common multiple of the length of the cycles, we get the desired upper bound as the
value of the Landau’s function on the total number of arcs in G.

4 Stabilization Time of the Rotor-Router System

In this section we provide upper and lower bounds on the stabilization time of parallel
rotor-router systems. Since the values of potentials are discrete and non-increasing, in
Theorem 13 we have a very powerful tool to reason about the stabilization of a state —
if the sum of potentials remains unchanged for more than 3m time steps, the system has
reached a stable state. Thus, we can naively bound each of the potentials byO((mk)2),
and so also bound the sum of potentials by O(m · (mk)2). This gives the following
corollary.

Corollary 15. For any initial state S0, there exists T = O(m5k2) such that ST is
stable.

We will now show how to obtain an even stronger bound (in terms of dependence
on k), but for this we need a refined upper bound on initial potential. To achieve this,
we need to treat the rotor-router system as a load balancing process.

Round-fair processes. As we intend to provide bounds on the values of the i-th potential
for rotor-router process (given sufficiently long initialization time), we need to analyze
the behavior of the cumulative rotor-router processes, i.e., for a fixed ∆t, to observe
how the distribution of tokens Ct+∆tt evolves with time. Thus, in the following, we will
use the broader concept of round-fair processes denoted byW , as introduced in [18].
Specifically, we will call an algorithm strictly fair if, in every step, the number of tokens
that are sent out over any two edges incident to a node differs by at most one.

Definition 16. A process of token distribution (denoted byW) is round-fair, if:

∀e∈out(v)Wt(e) ∈
{⌊
Wt(v)

deg(v)

⌋
,

⌈
Wt(v)

deg(v)

⌉}
(2)

and no tokens are left in nodes:Wt(v) =
∑
e∈out(v)Wt(e).

We observe that any rotor-router process is round-fair. Also, by Observations 2, 3 and 4,
for any fixed∆t, cumulative rotor-router in the sense ofWt = Ct+∆tt is also round-fair.

The round-fairness condition can be strengthened into algorithms which are cumu-
latively fair. We will call an algorithm cumulatively fair if for every interval of consec-
utive time steps, the total number of tokens sent out by a node differs by at most a small
constant for any two adjacent edges. It is easy to see that cumulative fair algorithms
under the constraint that every token is propagated, are performing the rotor-router dis-
tribution (and vice versa, rotor-router distribution is cumulative fair with every token
propagated).

In the rest of this section, in order to simplify notation, we will assume that G is not
bipartite. For the full formulation of subsequent definitions and lemmas, we refer the
reader to the full version of the paper.

Definition 17. A sequence of arcs e1, e2, . . . , ep is called an alternating path (of length
p − 1), if either every pair of arcs e2i, e2i+1 shares starting vertex and every pair of
arcs e2i−1, e2i shares ending vertex, or vice-versa: every pair of arcs e2i, e2i+1 shares
ending vertex and every pair of arcs e2i−1, e2i shares starting vertex.

Definition 18. We define the notion of distance between two arcs e, e′, denoted by
d(e, e′), as a length of shortest alternating path having e and e′ as first and last arcs.

In other words, a distance can be treated as a transitive closure of a relation where we
define any pair of arcs sharing starting or ending vertex as at distance one.

Lemma 19. For any two arcs e, e′ in non-bipartite graph G: d(e, e′) ≤ 4D + 1 more-
over there exists an alternating path connecting e and e′ containing at most 2D pairs of
arcs sharing ending vertices and at most 2D+1 pairs of arcs sharing starting vertices.

Now we will proceed to analyze the behavior of the potential defined as in Defini-
tion 5, with respect to a round-fair processes.

Recall that Φ(Wt)
def
=
∑
e∈~E (Wt(e))

2
. We will denote the smallest value of the

potential achieved by distribution of tokens that preserves sums of loads over load bal-
ancing sets of arcs (ignoring the restriction that loads are integers) by:

B(Wt)
def
= 2m ·

(
avg
e∈~E
Wt(e)

)2

, (3)

For non-bipartite graphs, (3) reduces to the following form: B(Wt) =
k2

2m = const.
The following lemma follows directly from the convexity of quadratic functions.

Lemma 20. Φ(Wt) ≥ B(Wt).

Definition 21. We say that a configuration of tokensWt in non-bipartite graph G has
discrepancy over arcs equal to maxe,e′∈~E(Wt(e)−Wt(e

′)).

The next observation follows directly from (2).

Observation 22. The discrepancy over arcs is non-increasing in time, that is:

max
e,e′∈~E

(Wt(e)−Wt(e
′)) ≥ max

e,e′∈~E
(Wt+1(e)−Wt+1(e

′)).

We also put the following bound on the potential drop with respect to the discrep-
ancy of number of tokens over arcs.

Lemma 23. Consider a timestep t such thatWt has discrepancy over arcs x > 4D+1.
Then: Φ(Wt)− Φ(Wt+1) ≥ (x−4D−1)(x−1)

4D .

Lemma 24. IfWt has discrepancy x, then Φ(Wt) ≤ B(W0) +
1
2mx

2.

Theorem 25. If T ≥ 16mD ln k, thenWT has discrepancy over arcs at most 10D.

Proof. Observe that for discrepancies x ≥ 10D we have, by Lemma 23:

Φ(Wt)− Φ(Wt+1) ≥
(x− 4D − 1)(x− 1)

4D
≥ x2

16D
.

However, by Lemma 24: x2 ≥ 2 (Φ(Wt)−B(W0))
m . Thus:

Φ(Wt+1)− B(W0) ≤ (Φ(Wt)− B(W0))

(
1− 1

8mD

)
.

Let us assume that after T ≥ 16mD ln k steps the discrepancy is larger than 10D.
Since Φ(W0)− B(W0) ≤ Φ(W0) ≤ k2, we have:

Φ(WT)− B(W0) ≤ k2 ·
(
1− 1

8mD

)16mD ln k

< k2(1/e)2 ln k = 1,

implying that Φ(WT) = dB(W0)e, which implies that Φ(WT) minimizes potential
among integer load distribution. ThusWT has discrepancy at most 1, a contradiction.

We are now ready to prove our main result on the time of stabilization of any rotor-
router initial state.

Theorem 26. For any initial state S0, there exists T = O(m4D2 + mD log k) such
that ST is stable.

Proof. Let t0 = d16mD ln(3km)e. We observe that the cumulative rotor-router pro-
cess (taken over ∆t rounds) is round-fair, with the number of tokens equal to ∆t · k.
For t ≥ t0, ∆t ≤ 3m, by Theorem 25 the token distribution of Ct+∆tt has discrepancy

over arcs at most 10D, thus: B(C∆t0) ≤ Φ∆t(St) = Φ(Ct+∆tt)
(24)
≤ B(C∆t0) + 50mD2.

We next obtain:
3m∑
i=1

B(Ci0) ≤
3m∑
i=1

Φi(St) ≤ 150m2D2 +

3m∑
i=1

B(Ci0). (4)

Let T > 300m4D2 + d16mD ln(3km)e. Let us assume that ST is not stable. Thus, for
all t ∈ [t0 .. T],

∑3m
i=1 Φi(St)−

∑3m
i=1 Φi(St+2m2) ≥ 1, and in particular:

∑3m
i=1 Φi(St0)−∑3m

i=1 Φi(ST) ≥
⌈
(T−t0)
2m2

⌉
> 150m2D2, which contradicts with (4).

We now give a lower bound on the stabilization time of parallel rotor-router walks.

Theorem 27. For any N,M > 0, N ≤ M ≤ N2, there exists an initialization of the
rotor router system in some graph with Θ(N) nodes and Θ(M) edges such that the
stabilization time is Ω(M2 logN).

5 Simulation of the Rotor-Router

In this section, we answer the question of how to efficiently query for the state of a
parallel rotor-router system after a given number of steps. The result below is for an
arbitrary number of tokens (k ≥ 1). For a single token (k = 1) rotor-router mechanism
we provide a faster simulation algorithm in the full version of the paper.

Theorem 28. We can preprocess any S0, in polynomial time and space (with respect
to n,m, log k) so that we can answer queries of state Sτ or queries of Cτ0 (e) (the total
number of visits until time step τ) both in time O(n+m).

Proof. Our first step is to find T such that ST is stable. By Theorem 26 it is enough
to take any T > 300m4D2 + d16mD ln(3km)e. We compute and maintain states
S0,S1, . . . ,ST , thus answering any queries of Sτ with τ < T in O(n +m) time. We
store preprocessed Cτ0 (e) for any τ ∈ [0 .. T].

By Corollary 12, we can find any valid∞-subcycle decomposition of ST in polyno-
mial time. By the properties of the subcycle decomposition, we can then find the values
of ST+τ (e) by finding e′ being shifted by τ along the cycle e belongs to. In a similar
fashion we find CT+τ

T (e) for each arc e, giving us CT+τ
T (v) for each vertex v, thus we

know the new pointer location for v. Each cycle can be preprocessed with prefix sums
such that queries of this type can be answered inO(1) time, thus givingO(n+m) time
for full ST+τ query.

We can preprocess each cycle with prefix sums, thus giving us the access to CτT (e)
for τ ∈ [T ..∞). By adding the value of CT0 (e) we get desired Cτ0 (e).

6 Conclusion

The rotor-router process has, in previous work, been identified as an efficient deter-
ministic technique for a number of distributed graph processes, such as graph explo-
ration and load balancing. In these settings, it rivals or outperforms the random walk,
in some cases (such as parallel exploration of graphs) providing provable guarantees
on performance, the counterparts of which need yet to be shown for the random walk.
In this paper, we provide a complete characterization of the long-term behavior of the
rotor-router, showing an inherent order in the limit state to which the system rapidly
converges. This provides us with a better understanding of, e.g., the long-term load bal-
ancing properties of rotor-router-based algorithms, while at the same time opening the
area for completely new applications. For instance, in view of our work, the rotor-router
becomes a natural candidate for a self-organizing locally coordinated algorithm for the
team patrolling problem — a task in which the goal is to periodically and regularly
traverse all edges of the graph with k agents. This topic, and related questions, such as
bounding the maximum distance between tokens on their respective Eulerian cycles in
the limit state of the rotor-router, are deserving of future attention.

References

1. Y. Afek and E. Gafni. Distributed algorithms for unidirectional networks. SIAM J. Comput.,
23(6):1152–1178, 1994.

2. H. Akbari and P. Berenbrink. Parallel rotor walks on finite graphs and applications in discrete
load balancing. In SPAA, pages 186–195. ACM, 2013.

3. E. Bampas, L. Gąsieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and A. Kosowski. Euler tour
lock-in problem in the rotor-router model. In DISC, pages 423–435. LNCS 5805, 2009.

4. E. Bampas, L. Gąsieniec, R. Klasing, A. Kosowski, and T. Radzik. Robustness of the rotor-
router mechanism. In OPODIS, volume 5923 of LNCS, pages 345–358, 2009.

5. P. Berenbrink, R. Klasing, A. Kosowski, F. Mallmann-Trenn, and P. Uznański. Improved
analysis of deterministic load-balancing schemes. In PODC, pages 301–310, 2015.

6. S. N. Bhatt, S. Even, D. S. Greenberg, and R. Tayar. Traversing directed eulerian mazes. J.
Graph Algorithms Appl., 6(2):157–173, 2002.

7. J. N. Cooper and J. Spencer. Simulating a random walk with constant error. Combinatorics,
Probability & Computing, 15(6):815–822, 2006.

8. D. Dereniowski, A. Kosowski, D. Pająk, and P. Uznański. Bounds on the cover time of
parallel rotor walks. In STACS, volume 25 of LIPIcs, pages 263–275, 2014.

9. B. Doerr and T. Friedrich. Deterministic random walks on the two-dimensional grid. Com-
binatorics, Probability & Computing, 18(1-2):123–144, 2009.

10. A. S. Fraenkel. Economic traversal of labyrinths. Mathematics Magazine, 43:125–130, 1970.
11. T. Friedrich and T. Sauerwald. The cover time of deterministic random walks. In COCOON,

volume 6196 of LNCS, pages 130–139, 2010.
12. L. Gąsieniec and T. Radzik. Memory efficient anonymous graph exploration. In WG, volume

5344 of LNCS, pages 14–29, 2008.
13. M. Kiwi, R. Ndoundam, M. Tchuente, and E. Goles. No polynomial bound for the period of

the parallel chip firing game on graphs. Theoretical Computer Science, 136:527–532, 1994.
14. R. Klasing, A. Kosowski, D. Pająk, and T. Sauerwald. The multi-agent rotor-router on the

ring: a deterministic alternative to parallel random walks. In PODC, pages 365–374, 2013.
15. A. Kosowski and D. Pająk. A case study of cover time for the rotor-router. In ICALP, volume

8573 of LNCS, pages 544–555, 2014.
16. E. Landau. Uber die maximalordnung der permutationen gegebenen grades. Arch. Math.

Phys., 5:92–103, 1903.
17. V. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy. Eulerian walkers as a model of self-

organized criticality. Phys. Rev. Lett., 77(25):5079–5082, Dec 1996.
18. Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of markov chains and the analysis

of iterative load-balancing schemes. In FOCS, pages 694–703, Nov 1998.
19. T. Sauerwald and H. Sun. Tight bounds for randomized load balancing on arbitrary network

topologies. In FOCS, pages 341–350, 2012.
20. T. Shiraga, Y. Yamauchi, S. Kijima, and M. Yamashita. L ∞ -discrepancy analysis of

polynomial-time deterministic samplers emulating rapidly mixing chains. In COCOON
2014, volume 8591 of LNCS, pages 25–36. Springer, 2014.

21. I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Distributed covering by ant-robots
using evaporating traces. IEEE Trans. Robotics and Automation, 15:918–933, 1999.

22. V. Yanovski, I. A. Wagner, and A. M. Bruckstein. A distributed ant algorithm for efficiently
patrolling a network. Algorithmica, 37(3):165–186, 2003.

