
Oblivious Network RAM and Leveraging
Parallelism to Achieve Obliviousness

Dana Dachman-Soled1(B), Chang Liu1, Charalampos Papamanthou1,
Elaine Shi2, and Uzi Vishkin1

1 University of Maryland, College Park, USA
danadach@ece.umd.edu, liuchang@cs.umd.edu,

cpap@umd.edu, vishkin@umiacs.umd.edu
2 Cornell University, Ithaca, USA

runting@gmail.com

Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that
allows a trusted CPU to securely access untrusted memory, such that
the access patterns reveal nothing about sensitive data. ORAM is known
to have broad applications in secure processor design and secure multi-
party computation for big data. Unfortunately, due to a logarithmic lower
bound by Goldreich and Ostrovsky (Journal of the ACM, ’96), ORAM is
bound to incur a moderate cost in practice. In particular, with the latest
developments in ORAM constructions, we are quickly approaching this
limit, and the room for performance improvement is small.

In this paper, we consider new models of computation in which the
cost of obliviousness can be fundamentally reduced in comparison with
the standard ORAM model. We propose the Oblivious Network RAM
model of computation, where a CPU communicates with multiple mem-
ory banks, such that the adversary observes only which bank the CPU
is communicating with, but not the address offset within each memory
bank. In other words, obliviousness within each bank comes for free—
either because the architecture prevents a malicious party from observing
the address accessed within a bank, or because another solution is used
to obfuscate memory accesses within each bank—and hence we only need
to obfuscate communication patterns between the CPU and the memory
banks. We present new constructions for obliviously simulating general

D. Dachman-Soled—Work supported in part by NSF CAREER award #CNS-
1453045 and by a Ralph E. Powe Junior Faculty Enhancement Award.
C. Liu—Work supported in part by NSF awards #CNS-1314857, #CNS-1453634,
#CNS-1518765, #CNS-1514261, and Google Faculty Research Awards.
C. Papamanthou—Work supported in part by NSF award #CNS-1514261, by a
Google Faculty Research Award and by the National Security Agency.
E. Shi—Work supported in part by NSF awards #CNS-1314857, #CNS-1453634,
#CNS-1518765, #CNS-1514261, Google Faculty Research Awards, and a Sloan Fel-
lowship. This work was done in part while a subset of the authors were visiting
the Simons Institute for the Theory of Computing, supported by the Simons Foun-
dation and by the DIMACS/Simons Collaboration in Cryptography through NSF
award #CNS-1523467.
U. Vishkin—Work supported in part by NSF award #CNS-1161857.

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part I, LNCS 9452, pp. 337–359, 2015.
DOI: 10.1007/978-3-662-48797-6 15

338 D. Dachman-Soled et al.

or parallel programs in the Network RAM model. We describe appli-
cations of our new model in secure processor design and in distributed
storage applications with a network adversary.

1 Introduction

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [18,19], allows
a trusted CPU (or a trusted computational node) to obliviously access untrusted
memory (or storage) during computation, such that an adversary cannot gain
any sensitive information by observing the data access patterns. Although the
community initially viewed ORAM mainly from a theoretical perspective, there
has recently been an upsurge in research on both new efficient algorithms (c.f.
[8,13,22,36,39,43,46]) and practical systems [9,11,12,21,30,35,37,38,44,48] for
ORAM. Still the most efficient ORAM implementations [10,37,39] require a
relatively large bandwidth blowup, and part of this is inevitable in the stan-
dard ORAM model. Fundamentally, a well-known lower bound by Goldreich
and Ostrovsky states that any ORAM scheme with constant CPU cache must
incur at least Ω(log N) blowup, where N is the number of memory words, in
terms of bandwidth and runtime. To make ORAM techniques practical in real-life
applications, we wish to further reduce its performance overhead. However, since
latest ORAM schemes [39,43] have practical performance approaching the limit
of the Goldreich-Ostrovsky lower bound, the room for improvement is small in
the standard ORAM model. In this paper, we investigate the following question:

In what alternative, realistic models of computation can we significantly
lower the cost of oblivious data accesses?

Motivated by practical applications, we propose the Network RAM (NRAM)
model of computation and correspondingly, Oblivious Network RAM (O-
NRAM). In this new model, one or more CPUs interact with M memory banks
during execution. Therefore, each memory reference includes a bank identifier,
and an offset within the specified memory bank. We assume that an adversary
cannot observe the address offset within a memory bank, but can observe which
memory bank the CPU is communicating with. In other words, obliviousness
within each bank “comes for free”. Under such a threat model, an Oblivious
NRAM (O-NRAM) can be informally defined as an NRAM whose observable
memory traces (consisting of the bank identifiers for each memory request) do
not leak information about a program’s private inputs (beyond the length of
the execution). In other words, in an O-NRAM, the sequence of bank identifiers
accessed during a program’s execution must be provably obfuscated.

1.1 Practical Applications

Our NRAM models are motivated by two primary application domains:

Secure processor architecture. Today, secure processor architectures
[1,12,30,35,40,41] are designed assuming that the memory system is passive

Oblivious Network RAM and Leveraging Parallelism 339

and untrusted. In particular, an adversary can observe both memory contents
and memory addresses during program execution. To secure against such an
adversary, the trusted CPU must both encrypt data written to memory, and
obfuscate memory access patterns.

Our new O-NRAM model provides a realistic alternative that has been men-
tioned in the architecture community [30,31] and was inspired by the Module
Parallel Computer (MPC) model of Melhorn and Vishkin [32]. The idea is to
introduce trusted decryption logic on the memory DIMMs (for decrypting mem-
ory addresses). This way, the CPU can encrypt the memory addresses before
transmitting them over the insecure memory bus. In contrast with traditional
passive memory, we refer to this new type of memory technology as active mem-
ory. In a simple model where a CPU communicates with a single active memory
bank, obliviousness is automatically guaranteed, since the adversary can observe
only encrypted memory contents and addresses. However, when there are multi-
ple such active memory banks, we must obfuscate which memory bank the CPU
is communicating with.

Distributed storage with a network adversary. Consider a scenario where a
client (or a compute node) stores private, encrypted data on multiple distributed
storage servers. We consider a setting where all endpoints (including the client
and the storage servers) are trusted, but the network is an untrusted intermediary.
In practice, trust in a storage server can be bootstrapped through means of
trusted hardware such as the Trusted Platform Module (TPM) or as IBM 4758;
and network communication between endpoints can be encrypted using standard
SSL. Trusted storage servers have also been built in the systems community [3].
On the other hand, the untrusted network intermediary can take different forms
in practice, e.g., an untrusted network router or WiFi access point, untrusted
peers in a peer-to-peer network (e.g., Bitcoin, TOR), or packet sniffers in the
same LAN. Achieving oblivious data access against such a network adversary is
precisely captured by our O-NRAM model.

1.2 Background: The PRAM Model

Two of our main results deal with the parallel-RAM (PRAM) model, which
is a synchronous generalization of the RAM model to the parallel processing
setting. The PRAM model allows for an unbounded number of parallel processors
with a shared memory. Each processor may access any shared memory cell and
read/write conflicts are handled in various ways depending on the type of PRAM
considered:

– Exclusive Read Exclusive Write (EREW) PRAM: A memory cell can
be accessed by at most one processor in each time step.

– Concurrent Read Exclusive Write (CREW) PRAM: A memory cell
can be read by multiple processors in a single time step, but can be written
to by at most one processor in each time step.

– Concurrent Read Concurrent Write (CRCW) PRAM: A memory cell
can be read and written to by multiple processors in a single time step. Reads

340 D. Dachman-Soled et al.

are assumed to complete prior to the writes of the same time step. Concurrent
writes are resolved in one of the following ways: (1) Common—all concurrent
writes must write the same value; (2) Arbitrary—an arbitrary write request is
successful; (3) Priority—processor id determines which processor is successful.

1.3 Results and Contributions

We introduce the Oblivious Network RAM model, and conduct the first system-
atic study to understand the “cost of obliviousness” in this model. We consider
running both sequential programs and parallel progams in this setting. We pro-
pose novel algorithms that exploit the “free obliviousness” within each bank,
such that the obliviousness cost is significantly lower in comparison with the
standard Oblivious (Parallel) RAMs. We give a summary of our results below.

First, observe that if there are only O(1) number of memory banks, there is a
trivial solution with O(1) cost: just make one memory access (real or dummy) to
each bank for each step of execution. On the other hand, if there are Ω(N) mem-
ory banks each of constant size (where N denotes the total number of memory
words), then the problem approaches standard ORAM [18,19] or OPRAM [7].
The intermediate parameters are therefore the most interesting. For simplicity,
in this section, we mainly state our results for the most interesting case when the
number of banks M = O(

√
N), and each bank can store up to O(

√
N) words. In

Sects. 3, 4 and 5, our results will be stated for more general parameter choices.
We now state our results (see also Table 1 for an overview).

“Sequential-to-sequential” compiler. First, we show that any RAM pro-
gram can be obliviously simulated on a Network RAM, consuming only O(1)
words of local CPU cache, with ̂O(log N) blowup in both runtime and band-
width, where–throughout the paper–when we say the complexity of our scheme
is ̂O(f(N)), we mean that for any choice of h(N) = ω(f(N)), our scheme attains
complexity g(N) = O(h(N)). Further, when the RAM program has Ω(log2 N)
memory word size, it can be obliviously simulated on Network RAM with only
̂O(1) bandwidth blowup (assuming non-uniform memory word sizes as used by
Stefanov et al. in [38]). In comparison, the best known (constant CPU cache)
ORAM scheme has roughly ̂O(log N) bandwidth blowup for Ω(log2 N) memory
word size [43]. For smaller memory words, the best known ORAM scheme has
O(log2 / log log N) blowup in both runtime and bandwidth [25].

“Parallel-to-sequential” compiler. We demonstrate that parallelism can
facilitate obliviousness, by showing that programs with a “sufficient degree of
parallelism” – specifically, programs whose degree of parallelism P = ω(M log N)
– can be obliviously simulated in the Network RAM model with only O(1)
blowup in runtime and bandwidth. Here, we consider parallelism as a prop-
erty of the program, but are not in fact executing the program on a parallel
machine. The overhead stated above is for the sequential setting, i.e., consider-
ing that both NRAM and O-NRAM have single processor. Our compiler works
when the underlying PRAM program is in the EREW, CREW, common CRCW
or arbitrary CRCW model.

Oblivious Network RAM and Leveraging Parallelism 341

Table 1. A systematic study of “cost of obliviousness” in the Network
ORAM model. W denotes the memory word size in # bits, N denotes the total
number of memory words, and M denotes the number of memory banks. For sim-
plicity, this table assumes that M = O(

√
N), and each bank has O(

√
N) words. Like

implicit in existing ORAM works [19,25], small word size assumes at least log N bits
per word—enough to store a virtual address of the word.

Setting RAM to O-NRAM blowup c.f. Best known ORAM blowup

Sequential-to-sequential compiler

W = small ̂O(log N) O(log2 N/ log log N) [25]

W = Ω(log2 N) Bandwidth: ̂O(1) Bandwidth: ̂O(log N) [43]

Runtime: ̂O(log N) Runtime: O(log2 N/ log log N) [25]

W = Ω(N ε) ̂O(1) ̂O(log N) [43]

Parallel-to-sequential compiler

ω(M log N)-parallel O(1) Same as standard ORAM

Parallel-to-parallel compiler

M1+δ-parallel O(log∗ N) Best known: poly log N [7]

for any const δ > 0 Lower bound: Ω(log N)

Beyond the low overhead discussed above, our compiled sequential O-NRAM
has the additional benefit that it allows for an extremely simple prefetching algo-
rithm. In recent work, Yu et al. [49] proposed a dynamic prefetching algorithm
for ORAM, which greatly improved the practical performance of ORAM. We
note that our parallel-to-sequential compiler achieves prefetching essentially for
free: Since the underlying PRAM program will make many parallel memory
accesses to each bank, and since the compiler knows these memory addresses
ahead of time, these memory accesses can automatically be prefetched. We note
that a similar observation was made by Vishkin [42], who suggested leveraging
parallelism for performance improvement by using (compile-time) prefetching in
serial or parallel systems.

“Parallel-to-parallel” compiler. Finally, we consider oblivious simulation in
the parallel setting. We show that for any parallel program executing in t parallel
steps with P = M1+δ processors, we can obliviously simulate the program on a
Network PRAM with P ′ = O(P/ log∗ P) processors, running in O(t log∗ P) time,
thereby achieving O(log∗ P) blowup in parallel time and bandwidth, and optimal
work. In comparison, the best known OPRAM scheme has poly log N blowup in
parallel time and bandwidth. The compiler works when the underlying program
is in the EREW, CREW, common CRCW or arbitrary CRCW PRAM model.
The resulting compiled program is in the arbitrary CRCW PRAM model.

342 D. Dachman-Soled et al.

1.4 Technical Highlights

Our most interesting technique is for the parallel-to-parallel compiler. We achieve
this through an intermediate stepping stone where we first construct a parallel-
to-sequential compiler (which may be of independent interest).

At a high level, the idea is to assign each virtual address to a pseudorandom
memory bank (and this assignment stays the same during the entire execution).
Suppose that a program is sufficiently parallel such that it always makes mem-
ory requests in P = ω(M log N)-sized batches. For now, assume that all memory
requests within a batch operate on distinct virtual addresses – if not we can lever-
age a hash table to suppress duplicates, using an additional “scratch” bank as
the CPU’s working memory. Then, clearly each memory bank will in expecta-
tion serve P/M requests for each batch. With a simple Chernoff bound, we can
conclude that each memory bank will serve O(P/M) requests for each batch,
except with negligible probability. In a sequential setting, we can easily achieve
O(1) bandwidth and runtime blowup: for each batch of memory requests, the
CPU will sequentially access each bank O(P/M) number of times, padding with
dummy accesses if necessary (see Sect. 4).

However, additional difficulties arise when we try to execute the above algo-
rithm in parallel. In each step, there is a batch of P memory requests, one coming
from each processor. However, each processor cannot perform its own memory
request, since the adversary can observe which processor is talking to which
memory bank and can detect duplicates (note this problem did not exist in the
sequential case since there was only one processor). Instead, we wish to

1. hash the memory requests into buckets according to their corresponding banks
while suppressing duplicates; and

2. pad the number of accesses to each bank to a worst-case maximum – as men-
tioned earlier, if we suppressed duplicate addresses, each bank has O(P/M)
requests with probability 1 − negl(N).

At this point, we can assign processors to the memory requests in a round-
robin manner, such that which processor accesses which bank is “fixed”. Now,
to achieve the above two tasks in O(log∗ P) parallel time, we need to employ
non-trivial parallel algorithms for “colored compaction” [4] and “static hash-
ing” [5,17], for the arbitrary CRCW PRAM model, while using a scratch bank
as working memory (see Sect. 5).

1.5 Related Work

Oblivious RAM (ORAM) was first proposed in a seminal work by Goldreich
and Ostrovsky [18,19] where they laid a vision of employing an ORAM-capable
secure processor to protect software against piracy. In their work, Goldreich
and Ostrovsky showed both a poly-logarithmic upper-bound (commonly referred
to as the hierarchical ORAM framework) and a logarithmic lower-bound for
ORAM—both under constant CPU cache. Goldreich and Ostrovsky’s hierarchi-
cal construction was improved in several subsequent works [6,20,22,25,33,45–47].

Oblivious Network RAM and Leveraging Parallelism 343

Recently, Shi et al. proposed a new, tree-based paradigm for constructing
ORAMs [36], thus leading to several new constructions that are simple and
practically efficient [8,13,39,43]. Notably, Circuit ORAM [43] partially resolved
the tightness of the Goldreich-Ostrovsky lower bound, by showing that certain
stronger interpretations of their lower bound are indeed tight.

Theoretically, the best known ORAM scheme (with constant CPU cache) for
small O(log N)-sized memory words1 is a construction by Kushilevitz et al. [25],
achieving O(log2 N/ log log N) bandwidth and runtime blowup. Path ORAM
(variant with O(1) CPU cache [44]) and Circuit ORAM can achieve better bounds
for bigger memory words. For example, Circuit ORAM achieves O(log N)ω(1)
bandwidth blowup for a word size of Ω(log2 N) bits; and for O(log N)ω(1) run-
time blowup for a memory word size of N ε bits where 0 < ε < 1 is any constant
within the specified range.

ORAMs with larger CPU cache sizes (caching up to Nα words for any con-
stant 0 < α < 1) have been suggested for cloud storage outsourcing applica-
tions [20,38,47]. In this setting, Goodrich and Mitzenmacher [20] first showed
how to achieve O(log N) bandwidth and runtime blowup.

Other than secure processors and cloud outsourcing, ORAM is also noted as a
key primitive for scaling secure multi-party computation to big data [23,26,43,44].
In this context, Wang et al. [43,44] pointed out that the most relevant ORAM
metric should be the circuit size rather than the traditionally considered band-
width metrics. In the secure computation context, Lu and Ostrovsky [27] proposed
a two-server ORAM scheme that achieves O(log N) runtime blowup. Similarly,
ORAM can also be applied in other RAM-model cryptographic primitives such as
(reusable) Garbled RAM [14–16,28,29].

Goodrich and Mitzenmacher [20] and Williams et al. [48] observed that com-
putational tasks with inherent parallelism can be transformed into efficient,
oblivious counterparts in the traditional ORAM setting—but our techniques
apply to the NRAM model of computation. Finally, Oblivious RAM has been
implemented in outsourced storage settings [37,38,45,47,48], on secure proces-
sors [9,11,12,30,31,35], and atop secure multiparty computation [23,43,44].

Comparison of our parallel-to-parallel compiler with the work of [7].
Recently, Boyle, Chung and Pass [7] proposed Oblivious Parallel RAM, and
presented a construction for oblivious simulation of PRAMs in the PRAM model.
Our result is incomparable to their result: Our security model is weaker than
theirs since we assume obliviousness within each memory bank comes for free; on
the other hand, we obtain far better asymptotical and concrete performance. We
next elaborate further on the differences in the results and techniques of the two
works. Reference [7] provide a compiler from the EREW, CREW and CRCW
PRAM models to the EREW PRAM model. The security notion achieved by
their compiler provides security against adversaries who see the entire access
pattern, as in standard oblivious RAM. However, their compiled program incurs
a poly log overhead in both the parallel time and total work. Our compiler is
a compiler from the EREW, CREW, common CRCW and arbitrary CRCW
1 Every memory word must be large enough to store the logical memory address.

344 D. Dachman-Soled et al.

PRAM models to the arbitrary CRCW PRAM model and the security notion we
achieve is the weaker notion of oblivious network RAM, which protects against
adversaries who see the bank being accessed, but not the offset within the bank.
On the other hand, our compiled program incurs only a log∗ time overhead and
its work is asymptotically the same as the underlying PRAM. Both our work
and the work of [7] leverage previous results and techniques from the parallel
computing literature. However, our techniques are primarily from the CRCW
PRAM literature, while [7] use primarily techniques from the low-depth circuit
literature, such as highly efficient sorting networks.

2 Definitions

2.1 Background: Random Access Machines (RAM)

We consider RAM programs to be interactive stateful systems 〈Π, state,D〉,
consisting of a memory array D of N memory words, a CPU state denoted
state, and a next instruction function Π which given the current CPU state and
a value rdata read from memory, outputs the next instruction I and an updated
CPU state denoted state′:

(state′, I) ← Π(state, rdata)

Each instruction I is of the form I = (op, . . .), where op is called the op-
code whose value is read, write, or stop. The initial CPU state is set to
(start, ∗, stateinit). Upon input x, the RAM machine executes, computes output
z and terminates. CPU state is reset to (start, ∗, stateinit) when the computation
on the current input terminates.

On input x, the execution of the RAM proceeds as follows. If state =
(start, ∗, stateinit), set state := (start, x, stateinit), and rdata := 0. Now, repeat
the doNext() till termination, where doNext() is defined as below:

doNext()

1. Compute (I, state′) = Π(state, rdata). Set state := state′.
2. If I = (stop, z) then terminate with output z.
3. If I = (write, vaddr,wdata) then set D[vaddr] := wdata.
4. If I = (read, vaddr,⊥) then set rdata := D[vaddr].

2.2 Network RAM (NRAM)

Nework RAM. A Network RAM (NRAM) is the same as a regular RAM,
except that memory is distributed across multiple banks, Bank1, . . . ,BankM . In
an NRAM, every virtual address vaddr can be written in the format vaddr :=
(m, offset), where m ∈ [M] is the bank identifier, and offset is the offset within
the Bankm .

Oblivious Network RAM and Leveraging Parallelism 345

Otherwise, the definition of NRAM is identical to the definition of RAM.

Probabilistic NRAM. Similar to the Probabilistic RAM notion formalized by
Goldreich and Ostrovsky [18,19], we additionally define a Probabilistic NRAM. A
probablistic NRAM is an NRAM whose CPU state is initialized with randomness
ρ (that is unobservable to the adversary). If an NRAM is deterministic, we can
simply assume that the CPU’s initial randomness is fixed to ρ := 0. Therefore, a
deterministic NRAM can be considered as a special case of a Probabilistic NRAM.

Outcome of execution. Throughout the paper, we use the notation RAM(x)
or NRAM(x) to denote the outcome of executing a RAM or NRAM on input x.
Similarly, for a Probabilistic NRAM, we use the notation NRAMρ(x) to denote
the outcome of executing on input x, when the CPU’s initial randomness is ρ.

2.3 Oblivious Network RAM (O-NRAM)

Observable traces. To define Oblivious Network RAM, we need to first specify
which part of the memory trace an adversary is allowed to observe during a
program’s execution. As mentioned earlier in the introduction, each memory
bank has trusted logic for encrypting and decrypting the memory offset. The
offset within a bank is transferred in encrypted format on the memory bus.
Hence, for each memory access op := “read” or op := “write” to virtual address
vaddr := (m, offset), the adversary observes only the op-code op and the bank
identifier m, but not the offset within the bank.

Definition 1 (Observable traces). For a probabilistic NRAM, we use the
notation Trρ(NRAM, x) to denote its observable traces upon input x, and ini-
tial CPU randomness ρ:

Trρ(NRAM, x) := {(op1,m1), (op2,m2), . . . , (opT ,mT)}
where T is the total execution time of the NRAM, and (opi,mi) is the op-code
and memory bank identifier during step i ∈ [T] of the execution.

We remark that one can consider a slight variant model where the opcodes
{opi}i∈[T] are also hidden from the adversary. Since to hide whether the opera-
tion is a read or write, one can simply perform one read and one write for each
operation – the differences between these two models are insignificant for techni-
cal purposes. Therefore, in this paper, we consider the model whose observable
traces are defined in Definition 1.

Oblivious Network RAM. Intuitively, an NRAM is said to be oblivious, if for
any two inputs x0 and x1 resulting in the same execution time, their observable
memory traces are computationally indistinguishable to an adversary.

For simplicity, we define obliviousness for NRAMs that run in deterministic
T time regardless of the inputs and the CPU’s initial randomness. One can also
think of T as the worst-case runtime, and that the program is always padded
to the worst-case execution time. Oblivious NRAM can also be similarly defined
when its runtime is randomized – however we omit the definition in this paper.

346 D. Dachman-Soled et al.

Definition 2 (Oblivious Network RAM). Consider an NRAM that runs in
deterministic time T = poly(λ). The NRAM is said to be computationally oblivi-
ous if no polynomial-time adversary A can win the following security game with
more than 1

2 + negl(λ) probability. Similarly, the NRAM is said to be statisti-
cally oblivious if no adversary, even computationally unbounded ones, can win
the following game with more than 1

2 + negl(λ) probability.

– A chooses two inputs x0 and x1 and submits them to a challenger.
– The challenger selects ρ ∈ {0, 1}λ, and a random bit b ∈ {0, 1}. The challenger

executes NRAM with initial randomness ρ and input xb for exactly T steps,
and gives the adversary Trρ(NRAM, xb).

– A outputs a guess b′ of b, and wins the game if b′ = b.

2.4 Notion of Simulation

Definition 3 (Simulation). We say that a deterministic RAM := 〈Π, state,D〉
can be correctly simulated by another probabilistic NRAM := 〈Π ′, state′,D′〉 if for
any input x for any initial CPU randomness ρ, RAM(x) = NRAMρ(x). Moreover,
if NRAM is oblivious, we say that NRAM is an oblivious simulation of RAM.

Below, we explain some subtleties regarding the model, and define the metrics
for oblivious simulation.

Uniform vs. non-uniform memory word size. The O-NRAM simulation
can either employ uniform memory word size or non-uniform memory word size.
For example, the non-uniform word size model has been employed for recursion-
based ORAMs in the literature [39,43]. In particular, Stefanov et al. describe a
parametrization trick where they use a smaller word size for position map levels
of the recursion [39].

Metrics for simulation overhead. In the ORAM literature, several perfor-
mance metrics have been considered. To avoid confusion, we now explicitly define
two metrics that we will adopt later. If an NRAM correctly simulates a RAM, we
can quantify the overhead of the NRAM using the following metrics.

– Runtime blowup. If a RAM runs in time T , and its oblivious simulation
runs in time T ′, then the runtime blowup is defined to be T ′/T . This notion
is adopted by Goldreich and Ostrovsky in their original ORAM paper [18,19].

– Bandwidth blowup. If a RAM transfers Y bits between the CPU and mem-
ory, and its oblivious simulation transfers Y ′ bits, then the bandwidth blowup
is defined to be Y ′/Y . Clearly, if the oblivious simulation is in a uniform word
size model, then bandwidth blowup is equivalent to runtime blowup. However,
bandwidth blowup may not be equal to runtime blowup in a non-uniform word
size model.

In this paper, we consider oblivious simulation of RAMs in the NRAM model,
and we focus on the case when the Oblivious NRAM has only O(1) words of
CPU cache.

Oblivious Network RAM and Leveraging Parallelism 347

3 Sequential Oblivious Simulation

We first consider oblivious (sequential) simulation of arbitrary RAMs in the
NRAM model. The detailed proofs and algorithms for this section will appear in
the full version. Most of the techniques used here (with the exception of how to
obliviously store the position map in a separate bank) are inspired by the work
on practical ORAM by Stefanov, Shi, and Song [38]. Here we describe how we
have adjusted their techniques to fit the Network RAM model.

Let M denote the number of memory banks in our NRAM, where each bank
has O(N/M) capacity. For simplicity we first describe a simple Oblivious NRAM
with O(M) CPU private cache. In the beginning, every block i ∈ [N] is assigned
randomly to a bank j ∈ [M]. We also maintain locally (i) a position map that
maps every block to each bank; (ii) a cache of M queues, which are initially
empty. To read/write a block i:

– We retrieve its bank number x from the position map;
– We first look for block i in the local queue x. If it is not there, we send a

dummy memory request to a random location. Otherwise we read and then
remove block i from the memory bank x;

– We pick a fresh random memory bank x′, and we push block i to the queue
x′ in the local cache.

To avoid the overflow of local queues, we use a background eviction technique
from Stefanov, Shi, and Song [38], which ensures that the local queues do not
grow too much, while still maintaining obliviousness. Although storing the posi-
tion map takes O(N log M) bits of CPU cache, in the full version we describe
a recursion technique [36,38] that can reduce this storage to O(1). Finally, to
further reduce the space from O(M) to O(1), we can store the CPU cache in a
separate memory bank. However, this is challenging, as indicated below.

Main challenge. Placing the cache in a special memory bank to achieve con-
stant client storage might violate obliviousness, since different operations to the
cache might have different memory traces. The key challenge is to design a special
data structure to store the cache inside the memory bank that ensures constant
worst-case cost for each query—specifically, each queue in the eviction cache
must support pop, push, ReadAndRm operations. Partly to design this special
data structure, we modified the analysis of the deamortized Cuckoo hash table
construction [2] to achieve negligible failure probability.

We defer details of our algorithms and techniques to the full version and next
state our main theorem for our sequential-to-sequential compiler.

Theorem 1 (O-NRAM simulation of arbitrary RAM programs). Any
N -word RAM with a word size of W = Ω(log2 N) bits can be simulated by an
Oblivious NRAM (with non-uniform word sizes) that consumes O(W) bits of
CPU cache, and with O(M) memory banks each of O(W ·(M +N/M +Nδ)) bits
in size. Further, the oblivious NRAM simulation incurs ̂O(1) bandwidth blowup
and ̂O(log N) run-time blowup.

348 D. Dachman-Soled et al.

4 Sequential Oblivious Simulation of Parallel Programs

We are eventually interested in parallel oblivious simulation of parallel programs
(Sect. 5). As a stepping stone, we first consider sequential oblivious simulation
of parallel programs. However, we emphasize that the results in this section can
be of independent interest. In particular, one way to interpret these results is
that “parallelism facilitates obliviousness”. Specifically, if a program exhibits a
sufficient degree of parallelism, then this program can be made oblivious at only
const overhead in the Network RAM model. The intuition for why this is so, is
that instructions in each parallel time step can be executed in any order. Since
subsequences of instructions can be executed in an arbitrary order during the
simulation, many sequences of memory requests can be mapped to the same
access pattern, and thus the request sequence is partially obfuscated.

4.1 Parallel RAM

To formally characterize what it means for a program to exhibit a sufficient
degree of parallelism, we will formally define a P -parallel RAM. In this section,
the reader should think of parallelism as a property of the program to be simu-
lated – we actually characterize costs assuming both the non-oblivious and the
oblivious programs are executed on a sequential machine (different from Sect. 5).

An P -parallel RAM machine is the same as a RAM machine, except the next
instruction function outputs P instructions which can be executed in parallel.

Definition 4 (P -parallel RAM). An P -Parallel RAM is a RAM which has
a next instruction function Π = Π1, . . . ,ΠP such that on input (state =
state1|| · · · ||stateP , rdata = rdata1|| · · · ||rdataP), Π outputs P instructions
(I1, . . . , IP) and P updated states state′

1, . . . , state
′
P such that for p ∈ [P],

(Ip , state′
p) = Πp(statep , rdatap). The instructions I1, . . . , IP satisfy one of the fol-

lowing:

– All of I1, . . . , IP are set to (stop, z) (with the same z).
– All of I1, . . . , IP are either of the form. (read, vaddr,⊥) or (write, vaddr,wdata).

Finally, the state state has size at most O(P).

As a warmup exercise, we will first consider a special case where in each
parallel step, the memory requests made by each processor in the underlying
P -parallel RAM have distinct addresses—we refer to this model as a restricted
PRAM. Later in Sect. 4.3, we will extend the result to the (arbitrary) CRCW
PRAM case. Thus, our final compiler works when the underlying P -parallel
RAM is in the EREW, CREW, common CRCW or arbitrary CRCW PRAM
model.

Definition 5 (Restricted P -parallel RAM). For a P -parallel RAM denoted
PRAM := 〈D, state1, . . ., stateP , Π1, . . . ΠP 〉, if every batch of instructions
I1, . . . , IP have unique vaddr’s, we say that PRAM is a restricted P -parallel RAM.

Oblivious Network RAM and Leveraging Parallelism 349

4.2 Warmup: Restricted Parallel RAM to Oblivious NRAM

Our goal is to compile any P -parallel RAM (not necessarily restricted), into
an efficient O-NRAM. As an intermediate step that facilitates presentation, we
begin with a basic construction of O-NRAM from any restricted, parallel RAM.
In the following section, we extend to a construction of O-NRAM from any
parallel RAM (not necessarily restricted).

Let PRAM := 〈D, state1, . . . , stateP ,Π1, . . . ΠP 〉 be a restricted P -Parallel
RAM, for P = ω(M log N). We now present an O-NRAM simulation of PRAM
that requires M + 1 memory banks, each with O(N/M + P) physical memory,
where N is the database size.

Setup: Pseudorandomly assign memory words to banks. The setup phase
takes the initial states of the PRAM, including the memory array D and the
initial CPU state, and compiles them into the initial states of the Oblivious
NRAM denoted ONRAM.

To do this, the setup algorithm chooses a secret key K, and sets
ONRAM.state = PRAM.state||K. Each memory bank of ONRAM will be initial-
ized as a Cuckoo hash table. Each memory word in the PRAM’s initial memory
array D will be inserted into the bank numbered (PRFK(vaddr) mod M) + 1,
where vaddr is the virtual address of the word in PRAM. Note that the ONRAM’s
(M +1)-th memory bank is reserved as a scratch bank whose usage will become
clear later.

Simulating each step of the PRAM’s execution. Each doNext() operation
of the PRAM will be compiled into a sequence of instructions of the ONRAM.
We now describe how this compilation works. Our presentation focuses on the
case when the next instruction’s op-codes are reads or writes. Wait or stop
instructions are left unmodified during the compilation.

As shown in Fig. 1, for each doNext instruction, we first compute the batch
of instructions I1, . . . , IP , by evaluating the P parallel next-instruction circuits
Π1, . . . ,ΠP . This results in P parallel read or write memory operations. This
batch of P memory operations (whose memory addresses are guaranteed to be
distinct in the restricted parallel RAM model) will then be served using the
subroutine Access.

We now elaborate on the Access subroutine. Each batch will have P =
ω(M log N) memory operations whose virtual addresses are distinct. Since each
virtual address is randomly assigned to one of the M banks, in expectation, each
bank will get P/M = ω(log N) hits. Using a balls and bins analysis, we show that

Fig. 1. Oblivious simulation of each step of the restricted parallel RAM

350 D. Dachman-Soled et al.

the number of hits for each bank is highly concentrated around the expectation.
In fact, the probability of any constant factor, multiplicative deviation from the
expectation is negligible in N . Therefore, we choose max := 2(P/M) for each
bank, and make precisely max number of accesses to each memory bank. Specif-
ically, the Access algorithm first scans through the batch of P = ω(M log N)
memory operations, and assigns them to M queues, where the m-th queue stores
requests assigned to the m-th memory bank. Then, the Access algorithm sequen-
tially serves the requests to memory banks 1, 2, . . . ,M , padding the number of
accesses to each bank to max. This way, the access patterns to the banks are
guaranteed to be oblivious.

The description of Fig. 2 makes use of M queues with a total size of P =
ω(M log N) words. It is not hard to see that these queues can be stored in an
additional scratch bank of size O(P), incurring only constant number of accesses
to the scratch bank per queue operation. Further, in Fig. 2, the time at which
the queues are accessed, and the number of times they are accessed are not
dependent on input data (notice that Line 7 can be done by linearly scanning
through each queue, incurring a max cost each queue).

Cost analysis. Since max = 2(P/M), in Fig. 2 (see Theorem 2), it is not hard to
see each batch of P = ω(M log N) memory operations will incur Θ(P) accesses
to data banks in total, and Θ(P) accesses to the scratch bank. Therefore, the
ONRAM incurs only a constant factor more total work and bandwidth than the
underlying PRAM.

Fig. 2. Obliviously serving a batch of P memory requests with distinct virtual
addresses.

Oblivious Network RAM and Leveraging Parallelism 351

Theorem 2. Let PRF be a family of pseudorandom functions, and PRAM be a
restricted P -Parallel RAM for P = ω(M log N). Let max := 2(P/M). Then, the
construction described above is an oblivious simulation of PRAM using M banks
each of O(N/M +P) words in size. Moreover, the oblivious simulation performs
total work that is constant factor larger than that of the underlying PRAM.

Proof. Assuming the execution never aborts (Line 6 in Fig. 2), then Theorem 2
follows immediately, since the access pattern is deterministic and independent of
the inputs. Therefore, it suffices to show that the abort happens with negligible
probability on Line 6. This is shown in the following lemma.

Lemma 1. Let max := 2(P/M). For any PRAM and any input x, abort on
Line 6 of Fig. 2 occurs only with negligible probability (over choice of the PRF).

Proof. We first replace PRF with a truly random function f . Note that if we
can prove the lemma for a truly random function, then the same should hold for
PRF, since otherwise we obtain an adversary breaking pseudorandomness.

We argue that the probability that abort occurs on Line 6 of Fig. 2 in a
particular step i of the execution is negligible. By taking a union bound over the
(polynomial number of) steps of the execution, the lemma follows.

To upper bound the probability of abort in some step i, consider a thought
experiment where we change the order of sampling the random variables: We
run PRAM(x) to precompute all the PRAM’s instructions up to and including
the i-th step of the execution (independently of f), obtaining P distinct virtual
addresses, and only then choose the outputs of the random function f on the
fly. That is, when each virtual memory address vaddrp in step i is serviced,
we choose m := f(vaddrp) uniformly and independently at random. Thus, in
step i of the execution, there are P distinct virtual addresses (i.e., balls) to be
thrown into M memory banks (i.e., bins). Due to standard Chernoff bounds, for
P = ω(M log N), we have P/M = ω(log N) and so the probability that there
exists a bin whose load exceeds 2(P/M) is N−ω(1), which is negligible in N .

We note that in order for the above argument to hold, the input x cannot be
chosen adaptively, and must be fixed before the PRAM emulation begins.

4.3 Parallel RAM to Oblivious NRAM

Use a hash table to suppress duplicates. In Sect. 4.2, we describe how to
obliviously simulate a restricted parallel-RAM in the NRAM model. We now
generalize this result to support any P -parallel RAM, not necessarily restricted
ones. The difference is that for a generic P -parallel RAM, each batch of P mem-
ory operations generated by the next-instruction circuit need not have distinct
virtual addresses. For simplicity, imagine that the entire batch of memory opera-
tions are reads. In the extreme case, if all P = ω(M log N) operations correspond
to the same virtual address residing in bank m, then the CPU should not read

352 D. Dachman-Soled et al.

Fig. 3. Obliviously serving a batch of P memory request, not necessarily with distinct
virtual addresses.

bank m as many as P number of times. To address this issue, we rely on an addi-
tional Cuckoo hash table [34] denoted HTable to suppress the duplicate requests
(see Fig. 3, and the doNext function is defined the same way as Sect. 4.2).

The HTable will be stored in the scratch bank. We can employ a standard
Cuckoo hash table that need not be deamortized. As shown in Fig. 3, we need
to support hash table insertions, lookups, and moreover, we need to be able
to iterate through the hash table. We now make a few remarks important for
ensuring obliviousness. Line 1 of Fig. 3 performs P = ω(M log N) number of
insertions into the Cuckoo hash table. Due to standard Cuckoo hash analysis,
we know that these insertions will take O(P) total time except with negligible
probability. Therefore, to execute Line 1 obliviously, we simply need to pad with
dummy insertions up to some max′ = c · P , for an appropriate constant c.

Next, we describe how to execute the loop at Line 2 obliviously. The total size
of the Cuckoo hash table is O(P). To iterate over the hash table, we simply make
a linear scan through the hash table. Some entries will correspond to dummy
elements. When iterating over these dummy elements, we simply perform dummy
operations for the for loop. Finally, observe that Line 16 performs lookups to the
Cuckoo hash table, and each hash table lookup requires worst-case O(1) accesses
to the scratch bank.

Oblivious Network RAM and Leveraging Parallelism 353

Cost analysis. Since max = 2(P/M) (see Theorem 2), it is not hard to see
each batch of P = ω(M log N) memory operations will incur O(P) accesses to
data banks in total, and O(P) accesses to the scratch bank. Note that this takes
into account the fact that Line 1 and the for-loop starting at Line 2 are padded
with dummy accesses. Therefore, the ONRAM incurs only a constant factor more
total work and bandwidth than the underlying PRAM.

Theorem 3. Let max = 2(P/M). Assume that PRF is a secure pseudorandom
function, and PRAM is a P -Parallel RAM for P = ω(M log N). Then, the above
construction obliviously simulates PRAM in the NRAM model, incurring only a
constant factor blowup in total work and bandwidth consumption.

Proof. (sketch) Similar to the proof of Theorem 2, except that now we have
the additional hash table. Note that obliviousness still holds, since, as discussed
above, each batch of P memory requests requires O(P) accesses to the scratch
bank, and this can be padded with dummy accesses to ensure the number of
scratch bank accesses remains the same in each execution.

5 Parallel Oblivious Simulation of Parallel Programs

In the previous section, we considered sequential oblivious simulation of pro-
grams that exhibit parallelism – there, we considered parallelism as being a prop-
erty of the program which will actually be executed on a sequential machine. In
this section we consider parallel and oblivious simulations of parallel programs.
Here, the programs will actually be executed on a parallel machine, and we con-
sider classical metrics such as parallel runtime and total work as in the parallel
algorithms literature.

We introduce the Network PRAM model – informally, this is a Network
RAM with parallel processing capability. Our goal in this section will be to
compile a PRAM into an Oblivious Network PRAM (O-NPRAM), a.k.a., the
“parallel-to-parallel compiler”.

Our O-NPRAM is the Network RAM analog of the Oblivious Parallel RAM
(OPRAM) model by Boyle et al. [7]. Goldreich and Ostrovsky’s logarithmic
ORAM lower bound (in the sequential execution model) directly implies the fol-
lowing lower bound for standard OPRAM [7]: Let PRAM be an arbitrary PRAM
with P processors running in parallel time t. Then, any P -parallel OPRAM sim-
ulating PRAM must incur Ω(t log N) parallel time. Clearly, OPRAM would also
work in our Network RAM model albeit not the most efficient, since it is not
exploiting the fact that the addresses in each bank are inherently oblivious. In
this section, we show how to perform oblivious parallel simulation of “sufficiently
parallel” programs in the Network RAM model, incurring only O(log∗ N) blowup
in parallel runtime, and achieving optimal total work. Our techniques make use
of fascinating results in the parallel algorithms literature [4,5,24].

354 D. Dachman-Soled et al.

5.1 Network PRAM (NPRAM) Definitions

Similar to our NRAM definition, an NPRAM is much the same as a stan-
dard PRAM, except that (1) memory is distributed across multiple banks,
Bank1, . . . ,BankM ; and (2) every virtual address vaddr can be written in the
format vaddr := (m, offset), where m is the bank identifier, and offset is the
offset within the Bankm. We use the notation P -parallel NPRAM to denote an
NPRAM with P parallel processors, each with O(1) words of cache. If processors
are initialized with secret randomness unobservable to the adversary, we call this
a Probabilistic NPRAM.

Observable traces. In the NPRAM model, we assume that an adversary can
observe the following parts of the memory trace: (1) which processor is making
the request; (2) whether this is a read or write request; and (3) which bank
the request is going to. The adversary is unable to observe the offset within a
memory bank.

Definition 6 (Observable traces for NPRAM). For a probabilistic P -
parallel NPRAM, we use Trρ(NPRAM, x) to denote its observable traces upon input
x, and initial CPU randomness ρ (collective randomness over all processors):

Trρ(NPRAM, x) :=
[(

(op11, m
1
1), . . . , (op

P
1 , mP

1)
)

, . . . ,
(

(op1T , m1
T), . . . , (opP

T , mP
T)
)]

where T is the total parallel execution time of the NPRAM, and
{(op1i ,m

1
i), . . . , (op

P
i ,mP

i)} is of the op-codes and memory bank identifiers for
each processor during parallel step i ∈ [T] of the execution.

Based on the above notion of observable memory trace, an Oblivious NPRAM
can be defined in a similar manner as the notion of O-NRAM (Definition 2).

Metrics. We consider classical metrics adopted in the vast literature on parallel
algorithms, namely, the parallel runtime and the total work. In particular, to
characterize the oblivious simulation overhead, we will consider

– Parallel runtime blowup. The blowup of the parallel runtime comparing
the O-NPRAM and the NPRAM.

– Total work blowup. The blowup of the total work comparing the O-
NPRAM and the NPRAM. If the total work blowup is O(1), we say that
the O-NPRAM achieves optimal total work.

5.2 Construction of Oblivious Network PRAM

Preliminary: colored compaction. The colored compaction problem [4] is
the following:

Given n objects of m different colors, initially placed in a single source
array, move the objects to m different destination arrays, one for each color.
In this paper, we assume that the space for the m destination arrays are
preallocated. We use the notation di to denote the number of objects colored
i for i ∈ [m].

Oblivious Network RAM and Leveraging Parallelism 355

Lemma 2 (Log∗-time parallel algorithm for colored compaction [4]).
There is a constant ε > 0 such that for all given n, m, τ , d1, . . . , dm ∈ N, with
m = O(n1−δ) for arbitrary fixed δ > 0, and τ ≥ log∗ n, there exists a parallel
algorithm (in the arbitrary CRCW PRAM model) for the colored compaction
problem (assuming preallocated destination arrays) with n objects, m colors, and
d1, . . . , dm number of objects for each color, executing in O(τ) time on
n/τ�
processors, consuming O(n +

∑m
i=1 di) space, and succeeding with probability at

least 1 − 2−nε

.

Preliminary: parallel static hashing. We will also rely on a parallel, sta-
tic hashing algorithm [5,24], by Bast and Hagerup. The static parallel hashing
problem takes n elements (possibly with duplicates), and in parallel creates a
hash table of size O(n) of these elements, such that later each element can be
visited in O(1) time. In our setting, we rely on the parallel hashing to suppress
duplicate memory requests. Bast and Hagerup show the following lemma:

Lemma 3 (Log∗-time parallel static hashing [5,24]). There is a constant
ε > 0 such that for all τ ≥ log∗ n, there is a parallel, static hashing algorithm (in
the arbitrary CRCW PRAM model), such that hashing n elements (which need
not be distinct) can be done in O(τ) parallel time, with O(n/τ) processors and
O(n) space, succeeding with 1 − 2−(log n)τ/ log∗ n − 2−nε

probability.

Construction. We now present a construction that allows us to compile a P -
parallel PRAM, where P = M1+δ for any constant δ > 0, into a O(P/ log∗ P)-
parallel Oblivious NPRAM. The resulting NPRAM has O(log∗ P) blowup in
parallel runtime, and is optimal in total amount of work.

In the original P -parallel PRAM, each of the P processors does constant
amount of work in each step. In the oblivious simulation, this can trivially be simu-
lated in O(log∗ P) time with O(P/ log∗ P) processors. Therefore, clearly the key is
how to obliviously fetch a batch ofP memory accesses in parallel withO(P/ log∗ P)
processors, and O(log∗ P) time. We describe such an algorithm in Fig. 4. Using a
scratch bank as working memory, we first call the parallel hashing algorithm to
suppress duplicate memory requests. Next, we call the parallel colored compaction
algorithm to assign memory request to their respective queues – depending on
the destination memory bank. Finally, we make these memory accesses, including
dummy ones, in parallel.

Theorem 4. Let PRF be a secure pseudorandom function, let M = N ε for any
constant ε > 0. Let PRAM be a P -parallel RAM for P = M1+δ, for constant
δ > 0. Then, there exists an Oblivious NPRAM simulation of PRAM with the
following properties:

– The Oblivious NPRAM consumes M banks each of which O(N/M +P) words
in size.

– If the underlying PRAM executes in t parallel steps, then the Oblivious
NPRAM executes in O(t log∗ P) parallel steps utilizing O(P/ log∗ P) proces-
sors. We also say that the NPRAM has O(log∗ P) blowup in parallel runtime.

356 D. Dachman-Soled et al.

Fig. 4. Obliviously serving a batch of P memory requests using P ′ :=
O(P/ log∗ P) processors in O(log∗ P) time. In Steps 1, 2, and 3, each processor
will make exactly one access to the scratch bank in each parallel execution step – even
if the processor is idle in this step, it makes a dummy access to the scratch bank. Steps
1 through 3are always padded to the worst-case parallel runtime.

– The total work of the Oblivious NPRAM is asymptotically the same as the
underlying PRAM.

Proof. We note that our underlying PRAM can be in the EREW, CREW, com-
mon CRCW or arbitrary CRCW models. Our compiled oblivious NPRAM is in
the arbitrary CRCW model.

We now prove security and costs separately.

Security proof. Observe that Steps 1, 2, and 3 in Fig. 4 make accesses only to
the scratch bank. We make sure that each processor will make exactly one access
to the scratch bank in every parallel step – even if the processor is idle in this
step, it makes a dummy access. Further, Steps 1 through 3 are also padded to
the worst-case running time. Therefore, the observable memory traces of Steps
1 through 3 are perfectly simulatable without knowing secret inputs.

For Step 4 of the algorithm, since each of the M queues are of fixed length
max, and each element is assigned to each processor in a round-robin manner,
the bank number each processor will access is clearly independent of any secret
inputs, and can be perfectly simulated (recall that dummy request incur accesses
to the corresponding banks as well).

Oblivious Network RAM and Leveraging Parallelism 357

Costs. First, due to Lemma 1, each of the M queues will get at most 2(P/M)
memory requests with probability 1 − negl(N). This part of the argument is the
same as Sect. 4. Now, observe that the parallel runtime for Steps 2 and 4 are
clearly O(log∗ P) with O(P/ log∗ P) processors. Based on Lemmas 2 and 3, Steps
1 and 3 can be executed with a worst-case time of O(log∗ P) on O(P/ log∗ P)
processors as well. We note that the conditions M = N ε and P = M1+δ ensure
negl(N) failure probability.

References

1. Intel SGX for dummies (intel SGX design objectives). https://software.intel.com/
en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx

2. Arbitman, Y., Naor, M., Segev, G.: De-amortized cuckoo hashing: provable worst-
case performance and experimental results. In: Albers, S., Marchetti-Spaccamela,
A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol.
5555, pp. 107–118. Springer, Heidelberg (2009)

3. Bajaj, S., Sion, R.: Trusteddb: a trusted hardware-based database with privacy
and data confidentiality. IEEE Trans. Knowl. Data Eng. 26(3), 752–765 (2014)

4. Bast, H., Hagerup, T.: Fast parallel space allocation, estimation, and integer sort-
ing. Inf. Comput. 123(1), 72–110 (1995)

5. Bast, H., Hagerup, T.: Fast and reliable parallel hashing. In: SPAA, pp. 50–61
(1991)

6. Boneh, D., Mazieres, D., Popa, R.A.: Remote oblivious storage: making oblivious
RAM practical (2011). http://dspace.mit.edu/bitstream/handle/1721.1/62006/
MIT-CSAIL-TR-2011-018.pdf

7. Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM. http://eprint.iacr.org/
2014/594.pdf

8. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure oram with Õ(log2 n) overhead.
CoRR, abs/1307.3699 (2013)

9. Fletcher, C.W., van Dijk, M., Devadas, S.: A secure processor architecture for
encrypted computation on untrusted programs. In: STC (2012)

10. Fletcher, C.W., Ren, L., Kwon, A., Van Dijk, M., Stefanov, E., Devadas, S.: Tiny
ORAM: a low-latency, low-area hardware ORAM controller with integrity verifi-
cation

11. Fletcher, C.W., Ren, L., Kwon, A., van Dijk, M., Stefanov, E., Devadas, S.: RAW
path ORAM: a low-latency, low-area hardware ORAM controller with integrity
verification. IACR Cryptology ePrint Archive 2014:431 (2014)

12. Fletcher, C.W., Ren, L., Yu, X., van Dijk, M., Khan, O., Devadas, S.: Suppressing
the oblivious RAM timing channel while making information leakage and program
efficiency trade-offs. In: HPCA, pp. 213–224 (2014)

13. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013)

14. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014)

15. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Garbled RAM revisited, part i.
Cryptology ePrint Archive, Report 2014/082 (2014). http://eprint.iacr.org/

https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://eprint.iacr.org/2014/594.pdf
http://eprint.iacr.org/2014/594.pdf
http://eprint.iacr.org/

358 D. Dachman-Soled et al.

16. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM compu-
tation. IACR Cryptology ePrint Archive 2014:148 (2014)

17. Gil, J., Matias, Y., Vishkin, U.: Towards a theory of nearly constant time paral-
lel algorithms. In: 32nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 698–710 (1991)

18. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: ACM Symposium on Theory of Computing (STOC) (1987)

19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43, 431–473 (1996)

20. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

21. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Practical obliv-
ious storage. In: ACM Conference on Data and Application Security and Privacy
(CODASPY) (2012)

22. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA
(2012)

23. Dov Gordon, S., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M.,
Vahlis, Y.: Secure two-party computation in sublinear (amortized) time. In: ACM
CCS (2012)

24. Hagerup, T.: The log-star revolution. In: Finkel, A., Jantzen, M. (eds.) STACS
1992. LNCS, vol. 577, pp. 259–278. Springer, Heidelberg (1992)

25. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: SODA (2012)

26. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient ram-model
secure computation. In: IEEE S & P. IEEE Computer Society (2014)

27. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013)

28. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013)

29. Lu, S., Ostrovsky, R.: Garbled RAM revisited, part ii. Cryptology ePrint Archive,
Report 2014/083 (2014). http://eprint.iacr.org/

30. Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: Phantom: practical oblivious computation in a secure processor. In:
CCS (2013)

31. Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: A high-performance oblivious RAM controller on the convey HC-2ex
heterogeneous computing platform. In: Workshop on the Intersections of Computer
Architecture and Reconfigurable Logic (CARL) (2013)

32. Mehlhorn, K., Vishkin, U.: Randomized and deterministic simulations of prams by
parallel machines with restricted granularity of parallel memories. Acta Inf. 21,
339–374 (1984)

33. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In:
ACM Symposium on Theory of Computing (STOC) (1997)

34. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
35. Ren, L., Yu, X., Fletcher, C.W., van Dijk, M., Devadas, S.: Design space exploration

and optimization of path oblivious RAM in secure processors. In: ISCA, pp. 571–
582 (2013)

http://eprint.iacr.org/

Oblivious Network RAM and Leveraging Parallelism 359

36. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011)

37. Stefanov, E., Shi, E.: Oblivistore: high performance oblivious cloud storage. In:
IEEE Symposium on Security and Privacy (S & P) (2013)

38. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM. In: NDSS (2012)
39. Stefanov, E., van Dijk, M., Shi, E., Hubert Chan, T.-H., Fletcher, C., Ren, L., Yu,

X., Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. In:
ACM CCS (2013)

40. Edward Suh, G., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: Aegis: archi-
tecture for tamper-evident and tamper-resistant processing. In: International Con-
ference on Supercomputing, ICS 2003, pp. 160–171 (2003)

41. Thekkath, D.L.C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz, M.:
Architectural support for copy and tamper resistant software. SIGOPS Oper. Syst.
Rev. 34(5), 168–177 (2000)

42. Vishkin, U.: Can parallel algorithms enhance seriel implementation? Commun.
ACM 39(9), 88–91 (1996)

43. Wang, X.S., Hubert Chan, T.-H., Shi, E.: Circuit ORAM: on tightness of the
goldreich-ostrovksy lower bound. http://eprint.iacr.org/2014/672.pdf

44. Wang, X.S., Huang, Y., Chan, H.T-H., shelat, a., Shi, E.: Scoram: oblivious ram
for secure computation. http://eprint.iacr.org/2014/671.pdf

45. Williams, P., Sion, R.: Usable PIR. In: Network and Distributed System Security
Symposium (NDSS) (2008)

46. Williams, P., Sion, R.: SR-ORAM: single round-trip oblivious RAM. In: ACM
Conference on Computer and Communications Security (CCS) (2012)

47. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: CCS (2008)

48. Williams, P., Sion, R., Tomescu, A.: Privatefs: a parallel oblivious file system. In:
CCS (2012)

49. Yu, X., Haider, S.K., Ren, L., Fletcher, C.W., Kwon, A., van Dijk, M., Devadas,
S.: Proram: dynamic prefetcher for oblivious RAM. In: Proceedings of the 42nd
Annual International Symposium on Computer Architecture, Portland, OR, USA,
13–17 June 2015, pp. 616–628 (2015)

http://eprint.iacr.org/2014/672.pdf
http://eprint.iacr.org/2014/671.pdf

	Oblivious Network RAM and Leveraging Parallelism to Achieve Obliviousness
	1 Introduction
	1.1 Practical Applications
	1.2 Background: The PRAM Model
	1.3 Results and Contributions
	1.4 Technical Highlights
	1.5 Related Work

	2 Definitions
	2.1 Background: Random Access Machines (RAM)
	2.2 Network RAM (NRAM)
	2.3 Oblivious Network RAM (O-NRAM)
	2.4 Notion of Simulation

	3 Sequential Oblivious Simulation
	4 Sequential Oblivious Simulation of Parallel Programs
	4.1 Parallel RAM
	4.2 Warmup: Restricted Parallel RAM to Oblivious NRAM
	4.3 Parallel RAM to Oblivious NRAM

	5 Parallel Oblivious Simulation of Parallel Programs
	5.1 Network PRAM (NPRAM) Definitions
	5.2 Construction of Oblivious Network PRAM

	References

