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Abstract. Motivated by the recent progress in improving efficiency of
secure computation, we study cut-and-choose oblivious transfer—a basic
building block of state-of-the-art constant round two-party secure com-
putation protocols that was introduced by Lindell and Pinkas (TCC
2011). In particular, we study the question of realizing cut-and-choose
oblivious transfer and its variants in the OT-hybrid model. Towards this,
we provide new definitions of cut-and-choose oblivious transfer (and its
variants) that suffice for its application in cut-and-choose techniques for
garbled circuit based two-party protocols. Furthermore, our definitions
conceptually simplify previous definitions including those proposed by
Lindell (Crypto 2013), Huang et al., (Crypto 2014), and Lindell and Riva
(Crypto 2014). Our main result is an efficient realization (under our new
definitions) of cut-and-choose OT and its variants with small concrete
communication overhead in an OT-hybrid model. Among other things
this implies that we can base cut-and-choose OT and its variants under a
variety of assumptions, including those that are believed to be resilient to
quantum attacks. By contrast, previous constructions of cut-and-choose
OT and its variants relied on DDH and could not take advantage of OT
extension. Also, our new definitions lead us to more efficient construc-
tions for multistage cut-and-choose OT—a variant proposed by Huang
et al. (Crypto 2014) that is useful in the multiple execution setting.

Keywords: Cut-and-choose oblivious transfer + OT extension
Concrete efficiency

1 Introduction

Secure two-party computation is rapidly moving from theory to practice. While
the basic approach for semi-honest security, garbled circuits [33], is extensively
studied and is largely settled, security against malicious players has recently
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seen significant improvements. The main technique for securing garbled circuit
protocols against malicious adversaries is cut-and-choose, formalized and proven
secure by Lindell and Pinkas [23]. A line of work [11,22-24,26,31] has focused
on reducing the concrete overhead of the cut-and-choose approach: it is possible
to guarantee probability of cheating < 277 using exactly o garbled circuits.

The above works have been motivated by the impression that the major over-
head of secure two-party computation arises from the generation, transmission,
and evaluation of garbled circuits (especially for functions having large circuit
size). Indeed, the work of Frederiksen and Nielsen [7] showed that the cost of the
circuit communication and computation for oblivious two-party AES is approxi-
mately 80 % of the total cost; likewise, Kreuter et al. [19] showed that the circuit
generation and evaluation for large circuits takes 99.999 % of the execution time.

Recent works of [10,21] consider the multiple-execution setting, where two
parties compute the same function on possibly different inputs either in parallel
or sequentially. These works show that to evaluate the same function ¢ times, it
is possible to reduce the number of garbled circuits to O(o/logt). In concrete
terms, this corresponds to a drastic reduction in the number of garbled circuits.
For instance when ¢ = 3500 and for o = 40, the work of [10,21] shows a cut-
and-choose technique that reduces the number of garbled circuits to less than
8 per execution. Thus it is reasonable to say that the overhead due to generation,
transmission, and evaluation of garbled circuits has been significantly reduced.

However, state-of-the-art two-party secure computation protocols, both in
the single-execution setting [22] and in the multiple-execution setting [10], suffer
from major overheads due to use of public key operations for two reasons:

— Use of DDH-based zero-knowledge protocols to enforce circuit-generator’s
inpul consistency.

— Use of DDH-based cut-and-choose oblivious transfer protocols [5,10,21,22,24]
to avoid “selective failure” attacks.

Of greater concern is the fact that these state-of-the-art protocols are unlikely
to perform well in settings where the inputs of even one of the parties are large
(because they use public key operations proportional to the total size of inputs
of both parties). It is worthwhile to note that although techniques, most notably
amortization via oblivious transfer (OT) extension [12,14,29], exist to reduce
the number of public key operations required at least for one of the parties, the
state-of-the-art two-party secure computation protocols simply are not able to
take advantage of these amortization techniques.

If one restricts their attention to constant-round protocols with good concrete
efficiency there are very few alternatives [23,26] that require reduced number
of public key operations. For instance the protocols of [23,26] use public key
operations only for the (seed) OTs (which can be amortized using OT extension).
Furthermore, at least in the single execution setting, the techniques of [23,26] can
be easily merged with state-of-the-art cut-and-choose techniques to reduce the
number of public key operations. However, this results in a considerable overhead
in the communication complexity (by factor o) for proving input consistency of
the circuit generator. More importantly the techniques of [23,26] do not adapt
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well to the state-of-the-art cut-and-choose techniques for the multiple executions
setting, and require strong assumptions such as a programmable random oracle.
Specifically, the “XOR-tree encoding schemes” technique employed in [23,26]
to avoid the selective failure attack no longer appears to work with standard
garbling techniques. On the other hand, a natural generalization of cut-and-
choose OT, namely multistage cut-and-choose OT proposed in [10,21] can handle
the selective failure attack in the multiple executions setting (cf. Sect.1.2).
Unfortunately the only known constructions of cut-and-choose OT as well as
its variants rely on DDH and consequently use public key operations proportional
to the size of the cut-and-choose OT instance. This is further amplified by the
fact that known cut-and-choose OT protocols require reqular exponentiations
which are more expensive relative to even fixed-base exponentiations. (Note that
on the other hand the DDH-based zero-knowledge protocols to ensure input
consistency used in [22,24] require only fixed-base exponentiations.)

Our Contributions. In this paper, we study cut-and-choose OT and its vari-
ants as independently interesting primitives. Motivated by the discussion above,
our main goal will be to reduce the number of public key operations required to
realize a cut-and-choose OT instance, while minimizing the concrete communica-
tion complexity. Towards this, we propose a new formulation of cut-and-choose
OT and its variants that (1) is sufficient for its application to design secure two-
party computation protocols, (2) allows a realization in an OT-hybrid model
(as opposed to specific public key cryptosystems, and also provides alternative
realizations which are resistant to quantum attacks), and (3) can be realized
with low communication complexity in both concrete terms (roughly factor 4
overhead) as well as asymptotic terms. Furthermore, our formulation provides
new insights into the design of multistage cut-and-choose OT protocols resulting
in new constructions of the same that offer factor ¢ (where ¢ is the number of
executions) improvement over prior work [10]. Note that the benefits of amorti-
zation in the multiple execution setting kick in for large ¢ (e.g., 10X improvement
when t = 10°%). Hence our protocols can offer significant gains in efficiency. Con-
ceptually, our work can be considered as

— Pinning down the exact formulation of cut-and-choose OT and its variants
that suffices for its applications.

— Basing cut-and-choose OT on a wide variety of assumptions (including LWE,
RSA, DDH).

— Showing how to efficiently “extend” cut-and-choose OT (a la OT extension).

— An approach for porting “XOR-tree encoding schemes” to work in the multiple
execution setting while preserving their efficiency.

Our new formulation of cut-and-choose OT has the following aspects:

— Treats cut-and-choose OT (and its variants) as a reactive functionality. This
allows us to construct efficient protocols for multistage cut-and-choose OT.

— Requires ideal process simulation for corrupt receiver but only privacy against
corrupt sender. This will allow us to realize cut-and-choose OT (and its vari-
ants) with low concrete communication complexity.
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1.1 Cut-and-Choose Oblivious Transfer and Its Variants

We provide an overview of cut-and-choose OT and its variants. In the following,
let A (resp. o) denote the computational (resp. statistical) security parameter.

Cut-and-Choose Oblivious Transfer. Cut-and-choose oblivious transfer
(CCOT) [24], denoted Feeor (see Fig.1) is an extension of standard OT. The
sender inputs n pairs of strings, and the receiver inputs n selection bits to select
one string out of each pair of sender strings. However, the receiver also inputs a
set J of size n/2 that consists of indices where it wants both the sender’s inputs
to be revealed. Note that for indices not contained in J, only those sender inputs
that correspond to the receiver’s selection bits are revealed.

Remark 1. Using a PRG it is possible to obtain OT on long strings given ideal
access to OT on short strings of length A [12]. This length extension technique
is applicable to cut-and-choose and its variants. Furthermore, for applications
to secure computation, sender input strings (i.e., garbled circuit keys) are of
length A. Therefore, we assume wlog that sender input strings are all of length .

Inputs:
— S inputs n pairs of strings (z1,0,21,1),- -, (Zn,0,Zn1) € {0, 1}A x {0, 1}*.
— R inputs a set of indices J C [n] of size n/2, and selection bits {b;},¢.
Outputs: If J is not of size n/2, then S and R receive L as output.
— For every j € J, party R receives (zj,0,j1).
— For every j & J, party R receives ;.

Fig. 1. The cut-and-choose OT functionality Fccot from [24].

Batch Single-Choice CCOT. In applications to secure computation, one
needs single-choice CCOT, where the receiver is restricted to inputting the
same selection bit in all the n/2 instances where it receives exactly one out
of two sender strings. Furthermore, it is crucial that the subset J input by the
receiver is the same across each instance of single-choice CCOT. This variant,
called batch single-choice CCOT can be efficiently realized under DDH [24].

Modified Batch Single-Choice CCOT. Lindell [22] presented a variant of
batch single-choice CCOT, denoted F,;, to address settings where the receiver’s
input set J may be of arbitrary size (i.e., not necessarily n/2). In addition to
obtaining one of the sender’s inputs, the receiver also obtains a “check value”

for each index not in J. This variant can be realized under DDH [22].

Multistage CCOT. To handle the multiple (parallel) execution setting, a new
variant of FJ.; called batch single-choice multi-stage cut-and-choose oblivious
transfer was proposed in [10]. For sake of simplicity, we refer to this primitive as

multistage cut-and-choose oblivious transfer and denote it by FX ... At a high
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Inputs:
-8 inputs m sets of n pairs of strings XV, ..., X(™) where X = ((x1 0, 35(1 )1
(xn 0, T ), and ¢ “check values” vectors &' = (41,...,¢L),...,d" = (¢},
..,¢n)7 Where each xﬁ) € {0,1}* and each ¢4 € {0,1}°.
— R inputs pairwise non-intersecting sets of indices E1, ..., E; C [n], and selec-
tion bit vectors b1 = (b1,1,...,b1,m),---, bt = (b1, -, bt,m)-
Outputs: S receives no output. Define J = [ N\Ukepy Ex- R receives the following:
— For every j € J, party R receives { (1’] 0 gli) Yietm)-
— For every k € [t]: For each (unique) j € Ej, party R receives {xj b Yiem)
and “check value” gb;“
. 1 1 m m 1
Le. Robtalns {(z ;g, ;1)) (xg O), 51))}J6] and {xgb) PERRET ;bl)m}jeEl,...,
{ T bt L zg.’bt)m}JeEt and check values {¢]}jem,, .., {¢}}iem, .

Fig. 2. Multistage cut-and-choose OT functionality F}.o¢ [10,21].

level, this variant differs from F7 . in that the receiver can now input multiple
sets Ey, ..., E; (where J is now implicitly defined as [n] \ Upecy Ex), and make
independent selections for each Ffy,..., E;. In fact the above definition reflects
the cut-and-choose technique employed in [10,21] for the multiple execution set-
ting. The technique proceeds by first choosing a subset of the n garbled circuits
to be checked, and then partitioning the remaining garbled circuits into ¢ eval-
uation “buckets”. An information-theoretic reduction of F} .., to ¢ instances of
Fop With total communication cost O(nt?\) was shown in [10].

For lack of space, we present only the multistage cut-and-choose OT function-
ality in Fig.2. Note that F} ... generalizes modified batch single-choice CCOT
of [22] (simply by setting ¢t = 1) as well as batch single-choice CCOT of [24] (by
setting t = 1 and forcing |.J| = n/2 and setting all (;S;“ values to 07).

1.2 Selective Failure Attacks

In garbled circuit protocols, OT is used to enable the circuit generator (referred
to as the sender) S to transfer input keys for the garbled circuit corresponding
to the circuit evaluator (referred to as the receiver) R’s inputs. However, when S
is malicious, this can lead to a “selective failure” attack. To explain this problem
in more detail, consider the following naive scheme. For simplicity assume that
R has only one input bit b. Let the keys corresponding to R’s input be (20, ;1)
in the j-th garbled circuit. In the following, let com be a commitment scheme.

— S sends (com(z1,0),com(z1,1)),. .., (com(x,.0),com(z, 1)) to R.

— S and R participate in a single instance of For where S’s input ((di 0, ...,
dno),(di,1,...,dn1)) where d;. is the decommitment corresponding to
com(z; ), and R’s input is b. R obtains (d1,...,d, ) from For.

— Then R sends check indices J C [n] to S.

— S sends {d 1,05 dj71}jeJ to R.
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The selective failure attack operates in the following way: S supplies
(d1,05-++5dn0),(dyq,---,dy, 1) where d; o is a valid decommitment for com(x; )
while d} ; is not a valid decommitment for com(z; 1). Then when R sends check
indices, S responds with {d;0,d;1}jes where d;o and d;; are valid decommit-
ments for com(z;,0) and com(x;1) respectively. Suppose R’s input equals 0. In
this case, R does not detect any inconsistency, and continues the protocol, and
obtains output. Suppose R’s input equals 1. Now R will not obtain z;; for all
J € [n] since it receives invalid decommitments. If R aborts then S knows that
R’s input bit equals 1. In any case, R cannot obtain the final output. Le., the
ideal process and the real process can be distinguished when R’s input equals 1,
and the protocol is insecure since S can force an abort depending on R’s input.

Approaches Based on “XOR-Tree Encoding Schemes”. The first solu-
tion to the selective failure attack was proposed in [6,15,23] where the idea was
to randomly encode R’s input and then augment the circuit with a supplemen-
tal subcircuit (e.g., “XOR-tree”) that performs the decoding to compute R’s
actual input. Note that the “selective failure”-type attack can still be applied
by S but the use of encoding ensures that the event that R aborts due to the
attack is almost statistically independent of its actual input. The basic XOR-tree
encoding scheme incurs a multiplicative overhead of ¢ in the number of OTs and
increases the circuit size by ¢ XOR gates. The “random combinations” XOR-tree
encoding [23,25,30] incurs a total overhead of m’ = max(4m, 8¢) in the number
of OTs where m is the length of R’s inputs, and an additional 0.3mm’ XOR
gates. (Note that use of the free-XOR technique [18] can lead to nullifying the
cost of the additional XOR gates.) [13] uses o-wise independent generators to
provide a rate-1 encoding of inputs which can be decoded using an NC° circuit.

Approaches Based on CCOT. CCOT forces S to “commit” to all keys
corresponding to R’s input and reveals a subset of these keys corresponding to
R’s input but without the knowledge of which subset of keys were revealed.
This allows us to intertwine the OT and the circuit checks and avoids the need
to augment the original circuit with a supplemental decoding subcircuit. I.e.,
selective failure attacks are “caught” along with check for incorrectly constructed
circuits, and this results in a simpler security analysis.

Approaches for the Multiple Execution Setting. While either approach
seems sufficient to solve the selective failure attack, the CCOT based approach
offers a qualitative advantage in the multiple parallel execution setting. First let
us provide an overview of the cut-and-choose technique in the multiple execution
setting [10,21]. S sends n garbled circuits, and R picks a check set J C [n]. The
garbled circuits corresponding to check sets will eventually be opened by S.
The garbled circuits which are not check circuits are randomly partitioned into
t evaluation “buckets” denoted by Fi,..., E;. We now explain the difficulty in
adapting XOR-tree encoding schemes to this cut-and-choose technique.
Observe that when using standard garbling schemes [23,33] in a 2-party
garbled circuits protocol, the OT step needs to be carried out before the garbled
circuits are sent. This is necessary for the simulator to generate correctly faked
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garbled circuits (using R’s inputs extracted from the OT) in the simulation for
corrupt R. For simplicity assume that R has exactly one input bit (which may
vary across different executions). Now when using XOR-tree encoding schemes
we need to enforce that in each execution, R inputs the same choice in all the
OTs. Batching the OTs together for each execution can be implemented if S
knows which circuits are going to be evaluation circuits for each execution, but R
cannot reveal which circuits are evaluation circuits because this allows a corrupt
S to transmit well-formed check circuits and ill-formed evaluation circuits. Thus
it is unclear how to apply the XOR-tree encoding schemes and ensure that
corrupt R chooses the same inputs for the evaluation circuits within an execution.

A generalization of CCOT called multistage CCOT (Fig. 2) is well-suited to
the multiple parallel execution setting. Indeed, multistage CCOT F} ., takes
as inputs (1) from S: all input keys corresponding to R’s inputs in each of the
n garbled circuits, and (2) from R: the sets F1,..., E; along with independent
choice bits for each of the ¢ executions. Thus F} .. avoids the selective failure
attack in the same way as CCOT does it in the single execution setting. Further,
it ensures that R is forced to choose the same inputs within each execution.

Remark 2. Surprisingly, CCOT has a significant advantage over XOR-tree
encoding schemes only in the parallel execution setting. In the sequential exe-
cution setting, it is unclear how to use CCOT since R’s inputs for each of its
executions are not available at the beginning of the protocol. It appears nec-
essary to do the OT for each execution after all the garbled circuits are sent.
Then one may use adaptively secure garbling schemes [2,3] (e.g., in the program-
mable random oracle model) to enable the simulator to generate correctly faked
garbled circuits in the simulation for corrupt R. Assuming that the garbling is
adaptively secure, XOR-tree encoding schemes suffice to circumvent the selective
failure attack in the multiple sequential setting. This also applies to the multiple
parallel setting.

1.3 Overview of Definitions and Constructions

As mentioned in the Introduction, all known constructions of CCOT rely on
DDH and thus make heavy use of public key operations. A natural approach to
remedy the above situation is try and construct CCOT in a OT-hybrid model
and then use OT extension techniques [12,29].

Basing CCOT on OT. A first idea is to use general OT-based 2PC (e.g., [14])
to realize CCOT but it is not clear if this would result in a CCOT protocol with
good concrete efficiency. Note that the circuit implementing CCOT has very
small depth, and that S’s inputs are of length O(nA) while R’s is of length O(n)
(where the big-Oh hides small constants). Protocols of [23,26] do not perform
well since there’s a multiplicative overhead of (at least) Ao over the instance size
(i.e., O(nA)) simply because of garbling (factor A) and cut-and-choose (factor o).
Protocols of [10,22,24] already rely on CCOT and the instance size of CCOT
required inside these 2PC protocols are larger than the CCOT instance we wish
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to realize. Since the circuit has very small constant depth it is possible to employ
non-constant round solutions [29] but this still incurs a factor A overhead due
to use of authenticated OTs. Employing information-theoretic garbled circuit
variants [15,17] in the protocols of [23,26] still incur a factor o overhead due to
cut-and-choose. In summary, none of the above are satisfactory for implementing
CCOT as they incur at least concrete factor min(\, o) multiplicative overhead.

To explain the intuition behind our definitions and constructions, we start
with the seemingly close relationship between CCOT and 2-out-of-3 OT. At
first glance, it seems that it must be easy to construct CCOT from 2-out-of-3
OT. For example, for each index, we can let S input the pair of real input keys
along with a “dummy check value” as its 3 inputs to 2-out-of-3 OT, and then
let R pick two out of the three values (i.e., both keys if it’s a check circuit, or
the dummy check value along with the key that corresponds to R’s real input).
There are multiple issues with making this idea work in the presence of malicious
adversaries. Perhaps the most important issue is that this idea still wouldn’t help
us achieve our goal of showing a reduction from CCOT to 1-out-of-2 OT. More
precisely, we do not know how to construct efficient protocols for 2-out-of-3 OT
from 1-out-of-2 OT. Consider the following toy example for the same.

INpPUTS: S holds (29, x1,22) and R holds by € {0,2},b2 € {1,2}.
Toy PROTOCOL:

— S sends (xg, z2) to For and R sends b; to For.
— S sends (x1,x2) to For and R sends by to For.

OutpuTs: S outputs nothing. R outputs x, , Zp,.

The problem with the protocol above is that simulation extraction will fail with
probability 1/2 since a malicious S may input different values for zs in each of
the two queries to For. Note that even enforcing S to send h = Ij[(fz) to R
where H is a collision-resistant hash function (or an extractable commitment,)
does not help the simulator. On the other hand this hash value does enable R to
detect an inconsistency if (1) S supplied two different values for x5 in each of the
two queries to For and (2) R picked the z2 value which is not consistent with h.
However, if R aborts on detection of inconsistency this leaks information.

Our main observation is that the attacks on the toy protocol are very simi-
lar to the selective failure attacks discussed in Sect.1.2. Motivated by this one
may attempt to use “XOR-tree encoding schemes” to avoid the selective failure
attacks, and attempt to construct CCOT directly from 1-out-of-2 OT. However,
note that the encoding schemes alone do not suffice to prevent selective failure
attacks; they need to be used along with a supplemental decoding circuit. Here
our main observation is that known encoding schemes (possibly with the excep-
tion of [32]) used to prevent selective failure attacks [13,23] can be decoded
using (a circuit that performs) only XOR operations. Thus, one may use the
free-XOR technique [18] to get rid of the need for a supplemental decoding cir-
cuit, and instead perform XOR operations directly on strings. Indeed the above
idea can be successfully applied to prevent selective failure attacks that could be
mounted on the toy protocol, and can also be extended to yield a protocol for
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CCOT. Although the resulting CCOT protocol is simulatable against a mali-
cious receiver, unfortunately we do not know how to simulate a corrupt sender
(specifically, extract sender’s input).

Relaxing CCOT. Our main observation is that for application to 2PC, full
simulation against a corrupt sender is not required. It is only privacy that is
required. This is because S’s inputs to the 2PC are extracted typically via ZK (or
the mechanism used for input consistency checks), and the inputs to the CCOT
are just random garbled keys which are unrelated to its real input. Note that in
2PC protocols that use CCOT [10,22,24] the following three steps happen after
the CCOT protocol is completed: (1) S sends all the garbled circuits, and (2) then
R reveals the identity of the evaluation circuits, and (3) then S reveals its keys
corresponding to its input for the evaluation circuits. Consider the second step
mentioned above, namely that R reveals the identity of the evaluation circuits.
This is a relatively subtle step since a malicious R may claim (a) that a check
circuit is an evaluation circuit, or (b) that an evaluation circuit is a check circuit.
Both these conditions need to be handled carefully since in case (a) corrupt R,
upon receiving S’s input keys in step (3) will be able to evaluate the garbled
circuits on several inputs of its choice. Case (b) is problematic while simulating
a corrupt R as the simulator does not know which circuits to generate correctly
and which ones to fake. Therefore, 2PC protocols that use CCOT require R to
“prove” the identity of the check/evaluation circuits. In [10,22], this is done via
“check values” and “checkset values”. We use similar ideas in our protocols: if
J € [n] is such that j ¢ J, then R receives some dummy check value ¢;, and if
J € J then R receives “checkset values” x; 0, ;1 which correspond to S’s inputs.
Thus, R can prove the identity of check/evaluation circuits simply by sending
the “check values” {¢;};e; and “checkset values” {x;,2;1}jes. Observe that
this step does not reveal any information about R’s input bits {b;};¢s to S. To
do this, we would need to include a “reveal” step.

Motivated by the discussions above, we formulate a new definition for CCOT
and its variants. Our definitions pose CCOT and its variants as reactive func-
tionalities, and in particular include a “reveal phase” where R’s evaluation set
[n] \ J is simply revealed to S by the functionality. More precisely, in the reveal
phase we allow R to decide whether it wants to abort or reveal J. Note that
for the case of F} .., the evaluation sets Ey,..., E; is revealed to S by the
functionality. This in particular allows us to eliminate the “check values” in the
definitions of FZr., [22] and F} . [10], and allows us to present protocols for
(the reactive variant of ) F .., that is more efficient than prior constructions [10].
We formulate CCOT as a reactive functionality because step (1) where S sends
all the garbled circuits happens immediately after the CCOT step and before
step (2) where R reveals the identity of the evaluation circuits. It is easy to see
that this relaxed formulation suffices for applications to secure computation.
Discussion. Such relaxed definitions, in particular requiring only privacy against
corrupt sender, is not at all uncommon for OT and its variants (cf. [1,28]) or
PIR (cf. [4,20]). Similarly, [8] propose “keyword OT” protocols in a client-server
setting, and require one to simulate the server’s (which acts as the sender) view
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alone, without considering its joint distribution with the honest client’s output.
For another example, consider [11] who use a CDH-based OT protocol that
achieves privacy (but is not known to be simulatable) against a malicious sender,
and yet this suffices for their purposes to construct efficient 2PC protocols.

2 Definitions

We formulate CCOT and its variants as reactive functionalities and provide
relaxed definitions formally. Recall that the main differences from prior formu-
lations is that we require (1) only privacy against corrupt sender, and (2) R
to provide the check set J and evaluation sets Fy,...,E; to S at the end of
the protocol. We emphasize that privacy against corrupt sender must hold even
after J, E1, ..., E; is revealed. Due to space constraints we describe our new for-
mulation only for the case of multistage CCOT denoted F,f.., in Fig.3. (The
extensions to all other variants is straightforward.)

Input phase:

— S inputs m sets of m pairs of strings XMW X0 where X® =
((Igl,)Ov xgz,)l)v cet (xgz,)Ov '1‘5;,)1))'
— R inputs pairwise non-intersecting sets of indices E1, ..., E; C [n], and selec-

tion bits {bk,i}ke[t],ie[m]~
Output phase: S receives no output. Define J = [n] \ Urey Ek-
— For every j € J, party R receives { (a:y()),xgli) Yielm)-
— For every k € [t]: For each (unique) j € Ej, party R receives {xyl)w Yiemm)-

Reveal Phase. Upon receiving “reveal” from R, sender S receives E, ..., E;.

Fig. 3. The reactive multistage CCOT functionality F,

mcot *

We will be using the following definitions (loosely based on analogous def-
initions for keyword OT [8]) for CCOT as well as its variants. Therefore for
convenience we will define these as security notions for an arbitrary functional-
ity F', and then in our theorem statements we will refer to F' as being CCOT or
one of its variants.

Definition 1 (Correctness). If both parties are honest, then, after running
the protocol on inputs (X,Y), the receiver outputs Z such that Z = F(X,Y).

Definition 2 (Receiver’s privacy: indistinguishability). Let o be a statis-
tical security parameter. Then, for any PPT S’ executing the sender’s part and
for any inputs X, YY"’ the statistical distance between the views that S’ sees on
input X, in the case that the receiver inputs Y and the case that it inputs Y' is
bound by 2~ 7O
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Definition 3 (Sender’s privacy: comparison with the ideal model). For
every PPT machine R’ substituting the receiver in the real protocol, there exists a
PPT machine R that plays the receiver’s role in the ideal implementation, such
that on any inputs (X,Y), the view of R’ is computationally indistinguishable
from the output of R”. (In the semi-honest model R' = R.)

Definition 4. A protocol w securely realizes functionality F with sender-
simulatability and receiver-privacy if it satisfies Definitions 1, 2, and 3.

XOR-Tree Encoding Schemes. Selective failure attacks essentially corre-
spond to letting a corrupt sender learn a disjunctive predicate of the receiver’s
input. We define an XOR-tree encoding scheme consisting of a tuple (En, De, En’,
De’) of randomized algorithms (implicitly parameterized with statistical security
parameter o, and possibly public randomness wyp) as satisfying:

1. Algorithm En takes input {(z}, x’i)}ie[m] and produces pairs of random A-bit
strings {uf, uf }oem] s.t. for each £, € [ '], it holds that u§ @uf = ub®us.

2. Algorithm En’ takes input b = (b1,...,bn) € {0,1}™ and outputs {b}scpm]-

3. For every b = (b1, ..., by) € {0,1}™ and every {(z{, 2})}icm) it holds that

{be}eemn < En'(b); , ‘ i _
" [{wé,umzqu  En({(wby @) e oLt eetmn) = (b bietm | =1

We sometimes abuse notation and allow De to take sets of pairs of strings as input
in which case we require that for every {(xg,1)}ie[m] it holds that

r {(uéyuf)}le[m <*En({(x(')axi)}ze[m]): o _
F [ De({(uo,ul)}ge (m']) = {(«Téaﬂl)}ie[m]] =t

4. For every b, it holds that Pr[De’(En’(b)) = b] = 1.

5. Algorithms De, De’ can be implemented by using (a tree of) XOR. gates only.

6. For every disjunctive predicate P(-), the following holds: (1) If P involves at
most o — 1 literals, then Pr[P(En’(b)) = 1] is completely independent of b.
(2) Otherwise, Pr[P(En’(b)) = 1] > 1 —277F1,

7. For every {(zf,2})}icm) and for every (possibly unbounded) adversary A’

and for every {by}scim € 10, I}m,7 there exists a PPT algorithm S’ such
that the following holds:

Pr{{(ug, ui) }eepm) — En({(zd, 21) }iepm)) : A'({bﬁz}ee[m'],{Uﬁz}ee[m']) =1]=
(b1, bm) — De'({bf }repm)); A Ly — 1|
Pr (@ Vet — S' ({0} oc, f],{mb Fietm) s A ({be}eerm, {8 Feermn) = 1

(This in particular, implies that A obtains no information about
{:C?Lfbi}ie[m]')

Algorithms (En, De, En’, De’) for the basic XOR-tree encoding scheme [23]
are simple and implicit in our basic CCOT construction (cf. Fig.4). For the
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random combinations XOR-tree encoding [23] algorithm En’ is simply a random
linear mapping (i.e., public randomness wq defines this random linear mapping,
see e.g., [23,30] for more details). Finally, for the o-wise independent genera-
tors XOR-tree encoding the algorithm En’ depends on the generator (i.e., public
randomness wq defines this generator) which can be implemented only using
XOR gates [27]. Note that in all of the above, En’ essentially creates a (o — 1)-
independent encoding of its input, and thus Property 6 holds (see also Lemma 1).
In all our constructions, En simply maps its inputs to a pairs of random strings
such that the XOR of the two strings within a pair is always some fixed A. Algo-
rithms De, De’ are deterministic and function to simply reverse the respective
encoding algorithms En, En’. Note that De, De’ (acting respectively on outputs of
En, En’) are naturally defined by the supplemental decoding circuit that decodes
the XOR-tree encoding, and thus can be implemented using XOR gates only. We
point out that algorithm De’ is used only in the simulation to extract R’s input
from its XOR-tree encoded form. Finally, Property 7 is justified by the fact that
XOR-tree encoding schemes that are useful in standard two-party secure com-
putation protocols, the receiver R obtains only one of two keys corresponding
to the encoding (via OTs), and these keys reveal the output keys of the supple-
mental decoding circuit (that correspond exactly to the output of the decoding)
and nothing else.

3 Constructions

CCOT rroMm OT. See the protocol in Fig. 4 for the CCOT protocol that uses
the basic XOR-tree encoding scheme of [23] in order to implement CCOT when
n = 1. The case when n > 1 is handled by parallel repetition. While we prove
that the resulting CCOT protocol is simulatable against a malicious receiver,
unfortunately we do not know how to extract corrupt sender’s input. To see
this, note that a corrupt sender may supply values for some ¢, ¢ € [o] values
ué,ufug,u{ such that u§@u| # ug@u{. Needless to say, such a deviation is
caught by R when J # (). However, this deviation goes undetected when R’s
input J = 0. Note that the simulator for a corrupt sender needs to extract S’s
input without knowing R’s input; however when S provides inconsistent inputs
to For, it is unclear how to extract S’s inputs. We prove that the protocol in
Fig. 4 securely realizes F..ot with sender-simulatability and receiver-privacy. We
start by observing that correctness follows from inspection of the protocol.

Simulating Corrupt Receiver. Assume that H is modeled as a (non-
programmable) random oracle. Acting as For the simulator does the following:

— Chooses random A, {uf, u§}¢e(,] and sets for all £ € [o], value uf = uf@A’.
— For each ¢ € [0], acting as For obtain values {c§, cf} and return answers from
{uf,uf,ub} exactly as in the protocol.
— If there exists ¢ € [0] such that c¢§ = ¢ = 0, then set J = {1} and send J
to the trusted party and receive back (xo,x1). Now set A} = 2o ,uf and
| = 110Aa@,uf. Pick random A}, and random A’ {0,1}*. Finally,
send Aj), Q,A;),h’ to R.
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Inputs: S holds (zo,z1) and R holds J C {1} and b;.
Protocol:

1. S chooses check value ¢ € {0,1}° at random. Then S chooses
A, Ab, Al {(ub, ub) ees) at random such that @,uf = o®A, and @,ub =
¢DAy. Then S sets for all £ € [o], uf = u§BA.

2. R sets {(cﬁ,cl{)}ge[g] as follows:

— If J #0, then set ¢ = ¢f = 0 for all £ € [o].

—  Else choose {b;}¢e[»] at random such that @,b;, = b1, and for each ¢ € [o]

set ¢;) =0and ¢f_,, = 1.
14 14
3. Then for ¢ € [o], S and R do the following:

— S sends (ub,ub) to For, and R sends c§ to For.

— S sends (u‘{'7 ug) to For, and R sends ¢! to For.

Note R receives {(uf, ui)}re(o) if J # 0, and otherwise receives {(uﬁé, ub) }eeo]-

4. S sends Ap, Al = 2oPr1DADAG, Ay, and h = H(¢) to R.

5. If J # 0, then R reconstructs o = 46@@5115 and &1 = A1®@,ui. Else R
reconstructs Zp, = Ail@@euié and ¢ = A, &, us.

6. R initializes J = J, ¥ = (), and & = L, and then does the following:

— If J # 0 and if for all £,¢' € [o] it holds that u§@®ul = uf @ul’ then R
sets ¥ = (530,:2’1).
— IfJ=0and h = H(¢): R sets = ¢.
— If(J|]=1land ¥ =0)or (|J] =0 and & = @), then set T =¥ = & = 0.
Reveal: R sends (J,¥,P) to S, else sends L. S aborts if these values are incon-
sistent with its inputs and check values.

Fig. 4. CCOT via the basic XOR-tree encoding scheme.

— Else if for all £ € [o], it holds that ¢ # ¢!, then for each ¢ € [o] compute
b, such that ci2 = 0. Extract ¥’ = @,b,. Set J = 0, send (J,b = V') to
the trusted party and receive back . If b = 0, set Aj = xOG}@Zué. Else if
b=1,set A} = 210A' &P, uf. Pick random Ay Ay {0,1}*, and set
B = H(A,&@,ub). Finally, send Ay, A’I,A'd),h' to R.

— Else set J = @ and choose random b « {0,1} and send (J,b = b') to the
trusted party. Receive back xp. If b = 0, set A = zo®@,uf. Else if b = 1,
set A = r18A'&@,uf. Pick random Al Ay — {0,1}*, and set b’ =
H(AsDE,ub). Finally, send A}, 1, Ay, B to R.

— In the reveal phase, if R sends (J',¥’, &') such that J' # J or the values ¥, &’
are not consistent with the values above, then abort the reveal phase. Else,
send “reveal” to the trusted party.

It is easy to see that the above simulation is indistinguishable from the real
execution. Indeed if there exists any £ such that c§ = ¢! = 0, then in this case
corrupt R learns A but does not obtain u$. Therefore, in this case it misses at
least one additive share of ¢ and since h = H(¢) does not reveal information
(unless H is queried on ¢), ¢ is statistically hidden from corrupt R. Thus, this
case corresponds to J # () since R could potentially know both xy and z; (since
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it knows A and potentially at least one of u§, u{ for each £ € [o]) but not ¢. On
the other hand, if for all £ € [o] it holds that c§ # c{ then it is easy to see that
the extracted input b’ equals R’s input b; and that the rest of the simulation
is indistinguishable from the real execution. Finally the remaining case (i.e.,
there exists ¢ € [o] such that ¢§ = ¢ = 1 and there does not exist ¢ € [o]
such that ¢§ = ¢! = 0) is when R obtains only ¢ and neither o nor ;. This
case is rather straightforward to handle; the simulator supplies J = @ (since
R knows ¢) and a random choice bit b’. This works because there exists some
¢ € [o] such that R neither obtains u§ nor u{. As a result both z and z; are

information-theoretically hidden from it.

Privacy Against Corrupt Sender. Note that except in the reveal phase,
information flows only from S to R. If S is honest, then reveals made by R do
not leak any information. (Recall J is revealed to S in the real as well as the
ideal execution.) We have to show that even a corrupt S does not learn any
information about b;. Clearly when J # @, R’s actions are independent of its
input b; and thus does not leak any information. On the other hand when .J = (),
observe that R does not reveal 3, , and thus S only learns whether ¥ = @ = () or
not. This translates to learning information about R’s input b; only if for some
(possibly many) ¢ € [0], S provided (uf,u$) in one instance of For and (uf, @)
in the other instance with uf # @5. This is because such a strategy would allow
S to learn whether R input ¢§ = 1 (in which case R does not abort) or cf = 1
(in which case R does abort), and consequently leak information about b} (i.e.,
depending on which of cf;, cf was 0 when .J = (). More generally, such a strategy
allows S to learn any disjunctive predicate of R’s selections {06, i }. To prove
that such a strategy does not help S we use the following easy lemma.

Lemma 1 ([13]). Let En’ : {0,1}™ — {0,1}™ be such that for any b € {0,1}™,
it holds that En'(b) is a k-wise independent encoding of b. Then for every
disjunctive predicate P(-) the following holds: (1) If P involves at most k lit-
erals, then Pr[P(En’(b)) = 1] is completely independent of b. (2) Otherwise,
Pr[P(En'(b)) =1] > 1 - 27",

To apply the lemma in our context, note that En’ here corresponds to the
“XOR-tree encoding”, i.e.,. encoding of b; into {b}},. Clearly, En"isa k = (0 —1)-
wise independent encoding of b;. Thus we have that if S supplied inconsistent
values (i.e., u$,44) in at most (o — 1) instances, then the S does not learn any
information about by in the reveal phase. Further, even if S supplied inconsistent
values in all instances, then with all but negligible probability (exponentially
negligible in o) R will abort in the reveal phase (irrespective of R’s true input by ).
This concludes the proof of privacy against corrupt sender.

SINGLE-CHOICE CCOT. Next, we consider the case of single-choice CCOT,
where S holds (z1,0,21,1), .., (Zn,0,2n1) and R holds J € [n] and a single choice
bit b1. At the end of the protocol, R receives {(z;0,2;j1)}jes and {z;p, }igs-
That is, this is exactly the same as CCOT except we enforce that R inputs the
same choice across all n pairs of strings held by S. Our protocol in Fig. 5 enforces
this using a symmetric-key encryption scheme denoted (Enc, Dec).
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Inputs: S holds (z1,0,%1,1),--.,(®n,0,Zn,1) and R holds J C [n] and b;.
Protocol:
1. S does the following:
—  Choose {(A}, A} 4)}ien uniformly at random from {0, 1}*.
—  Choose {ufo}jem) celo] at random such that for all j € [n] it holds that
P, uj0 = 25,0045 0.
— Choose ¢1, .. ¢n, {u] Q}JE n] te[o] at random such that for all j € [n] it
holds that @[ j2=0;®
— Choose {(K¢,0, Ke,1)}eeo] at random where each Ko, Ko1 < {0,1}.
— Choose Ai,...,A, < {0,1}* at random and set u;{l = u§70®Aj.
2. R does the following:
— Choose {by}¢c[o) such that @zb«/’ =by.
—  For each j € [n], R sets {(c} JO, 5 1)}eelo) as follows:
— Ifj€J, thenset cf=cf 1—0f0rall€€[a].
— Else for each £ € [0 ]setc b, —Oandc - b2:1~
3. For each ¢ € [o] do: S sends (KZ,O,K“) to For and R sends b} to For. R
receives {K“’fz }eelo) from For.
4. For each j € [n] and each ¢ € [o]:
— S sends (u?o, e?l = Enc(Ky,1, uﬁyz)) to For, and R sends cﬁyo to For.
— S sends (u?l, e?o = Enc(Ky,0, uﬁyg)) to For, and R sends cﬁyl to For.
That is, R receives {(u}o,u1)}ecio) if j € J, and otherwise receives
{(“f,bzveﬁ,bz)}ee[a]
5. For each j € [n]: S sends A}, A} = 200210 A;0A) o, A} 4, hy = H(o;)
to R.
6. For each j € [n], R reconstructs the following:
— If j € J, then compute ;0 = A} (®@,u’, and @71 = A} o@,ul ;.
— Else, compute Zjs, = b, BEP Ul s, and b; =
A DD, Dec(Ky by, €5,),
7. Rsets J=J, ¥ =, and & = (), and does the following
If Vj € J and if V4, ¢ € [o] it holds that u] OGBuJ 1= u OGBuJ 1 then R
sets ¥ = {(i‘jyo, -i'j,l)}jer
If for every j ¢ J it holds that h; = H(¢;) then R sets & = {¢;}jes.
If (|J] >0and ¥ =0) or (|[J| <n and ® = 0), then set J =¥ =& = (.
Reveal phase: R sends (J,%,®) to S. S aborts if these values are inconsistent
with its inputs and check values.

Fig. 5. Realizing single-choice CCOT in the For-hybrid model.

We prove that the protocol in Fig.5 securely realizes single-choice CCOT
with sender-simulatability and receiver-privacy. We start by observing that cor-
rectness follows from inspection of the protocol.

Simulating Corrupt Receiver. The simulation is quite similar to the simu-
lation of CCOT construction presented in Fig. 4. Obviously the main difference
now is that R may attempt to use different b} values for j, ;' € [n] (where b} is
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defined as the value R inputs to For in Step 3). However the key observation is
that it receives only one key Ky, in {K¢,0, K¢ 1}. Therefore, even if it attempts
to deviate and and obtain ee, b for b/ # 1), it still cannot decrypt since it does
not possess the secret key K ¢,py - Semantic security of the encryption allows us
to argue that if such a dev1at10n happens then the Value of ¢; is hidden from S.
Therefore in this case, the simulator can simply add j to J, and the simulation
can be completed. It is instructive to note that when such a deviation happens,
R will be neither be able to provide {z;/ o,/ 1} nor the value ¢/, and thus will
get rejected by S during the reveal phase.

We proceed to the formal simulation. Assume that H is modeled as a (non-
programmable) random oracle. Acting as For the simulator does the following:

— Chooses random {A%}je(n), {Ke,0, Ke,1}ee(o)s {ug}o,ugz}je[n],ge[g] and sets for
all j € [n],{ € [0], value u | = uf ;BAL.

— For each ¢ € [o], acting as For obtain values b, return key Ky, and set
e?bz = Enc(K&bZ,uﬁg), ﬁl b, = Enc(Ky - by 0). Compute b/ = ,b;.

— For each j € [n],¢ € [o], acting as For obtain values {c 0465, ¢t 1} and return
answers using values u?o, ﬁ,l, f,bé’ g,lsz (computed as above) exactly as
in the protocol.

— Initialize J = (). For each j € [n]: If there exists £ € [0] such that ¢, = ¢, =0,
then add j to J.

- Initialize flag = 0. For each j ¢ J: If there exists £ € [o] such that either

b, =0or c d-b, = =1 do not hold, then add j to J and set flag = 1.

- Send (J,b') to the trusted- -party and receive {mj 0,51 jes and {xjp }ig.

— For each j € J, do: (1) set A}y = z;0@8@,uf, and A} | = z; @A eP,uf,,
and (2) pick random A7 ; and random hf; — {0,1}*.

— For each j ¢ J, do: (1) 1f V' =0,set A, = 200, ub, ( ) else if ¥ =1, set
ALy = xj,l@A;@@gué, and (3) pick random A}, A% ; « {0, 1},
set hl; = (A' ¢@@g j2)

— Send {AJ 00 A5 1, A% g W tjem) to R.

— In the reveal phase, if flag = 1 or if R sends (J',¥’,?’) such that J’ # .J or the
values ¥, @’ are not consistent with the values above, then abort the reveal
phase. Else, send “reveal” to the trusted party.

We show that the simulation is indistinguishable from the real execution. First,
note that if for some j € [n], £ € [o], it holds that cf’o = cﬁfl = 0, then R receives
both U?,o and uf’l, and therefore knows A;. In this case, it is safe to presume
that R will end up knowing both x; o as well as x; 1 (since for any ¢, if it receives
even one of Uf:m uﬁjl it will know the other as well since it knows A;). Therefore,
S includes j in J and obtains both x; 0, 2,1 from the trusted party. Now S can
carry out the simulation whether or not R obtained both x;¢ and x; ;.

Next, suppose that for some j € [n] such that for no ¢ € [o], it holds that

¢ ‘

cjo = ¢j1 = 0, and yet there exists some £ € [o] such that either Cﬁ,b; =0

or ¢! b, = 1 does not hold. In this case, it is easy to see that R will not be

7,1—



402 V. Kolesnikov and R. Kumaresan

able to produce both z,¢,z;1 (since it is missing one of u’ O,ug 1) in the real
execution. Further, it can be shown that except with neghglble probability R
cannot produce ¢; either. This is because (1) R does not obtain e?bz, and (2) R
has no information about the plaintext encrypted as e?l_bz, and (3) h; = H(¢;)
does not reveal any information about ¢; except with statistically negligible
probability (i.e., unless H is queried on ¢;). Point (2) above trivially holds in the
simulation because eﬁ@-b; encrypts 0 instead of uf ,. On the other hand, in the
real execution, observe that R does not possess the key Ky ;. It follows from
a straightforward reduction to the semantic security of the encryption scheme
that the real execution is indistinguishable from the simulation. In particular, in
this case R will not be able to produce (J', ¥’ @) that will be accepted by S in
the real execution, and is equivalent to S sending abort in the ideal execution.
Finally, suppose that for every j € [n], either (1) for all £ € [ ] it holds that

o=c1=1or (2 forallleo ]1tholdsthatcjb, —Oandc a-p, = L This

indeed corresponds to honest behavior on the part of R. Spe(nﬁcally, in case (1),
we have j € J, and in case (2), we have j ¢ J. This is exactly how the simulator
constructs J. It remains to be shown that in this case, any reveal (J', ¥’ @)
such that J' # J or ¥/, @’ is not consistent with the simulation will be rejected
by S in the real execution. This follows from: (a) Any j € J cannot be claimed
by R to not be in the checkset. This is because in this case, R does not have any
information about ¢; (other than H(¢;) which leaks no information unless H
is queried on ¢;). (b) Any j ¢ J cannot be claimed by R to be in the checkset.
This is because in this case, R obtains exactly one of {uf o, uf ,} for every £ € [o]
and thus is able to reconstruct at most one of {z;,x;1}. This concludes the
proof of security against corrupt receiver.

Privacy Against Corrupt Sender. The proof of privacy against corrupt
sender is very similar to the corresponding proof for (the basic) CCOT. Specif-
ically, note that except in the reveal phase, information flows only from S to
R. Next note that if S is honest, then the reveals made by R in the reveal
phase do not leak any information about R’s input b;. (Recall J is revealed to
S in the real as well as the ideal execution.) It remains to be shown that even
a corrupt S does not learn any information about b;. Clearly for j € J, R’s
actions are independent of its input b; and thus does not leak any information.
On the other hand for j ¢ J, observe that R does not reveal Z;;, (i.e., in the
reveal phase), and thus the only information learnt by S is whether ¥ = @ = ()
or not. This translates to learning information about R’s input b; only if for
some (possibly many) j € [n],¢ € [0], S pr0V1ded (uf, 0, §2) in one instance of
For and ( 1,0 ﬁz) in the other instance with u] 9 F u . This is because such
a strategy Would allow S to learn whether R input c o = 1 (in which case R
does not abort) or ce 1 = 1 (in which case R does abort) and consequently leak
information about be (i.e., depending on which of c] 0 §1 was 0 when j & J).
More generally, such a strategy allows S to learn any disjunctive predicate of
R’s selections {cf g, ¢§ , }e.
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To prove that such a strategy does not help S we once again make use of
Lemma 1. As before, to apply the lemma in our context, note that En” here cor-
responds to the “XOR-tree encoding”, i.e.,. encoding of b; into {}},. Clearly,
En’ is a k = (0 — 1)-wise independent encoding of b;. Thus we have that if S
supplied inconsistent values (i.e., u4, @%) in at most (o —1) instances, then S does
not learn any information about b; in the reveal phase. Further, even if S sup-
plied inconsistent values in all instances, then with all but negligible probability
(exponentially negligible in o) R will abort in the reveal phase (irrespective of
R’s true input by ). This concludes the proof of privacy against corrupt sender.

BATCH SINGLE-CHOICE CCOT. This functionality, which has actually been
used directly in 2PC constructions of [24] is our next stepping stone. (The
description can be obtained by modifying F} .. Fig.2 by setting ¢ = 1, setting
|J| = n/2 and setting all ¢§ values to 07.) The construction of this primitive
follows easily merely by repeating the single-choice CCOT protocol batch-wise
in parallel. That is, in the m-th (parallel) execution, S and R participate in

a single-choice CCOT where S holds (x§’2),x§”1), ce (a:ff,)o, 375:,)1) while R holds
J C [n] and b;. Obviously the main difficulty is in enforcing that R supplies the
same check set J in each execution. However, this is easily enforceable in the
following way. Recall that in the reveal phase of each execution of single-choice
CCOT (which are now executed in parallel), R will have to reveal (E;,¥;, ®;).
In addition to checking whether these values are consistent with its inputs and

check value, S additionally checks if E; = E;s for every 4,4 € [m].

Using more efficient “XOR-tree” encoding schemes. Observe that the construc-
tion for batch single-choice CCOT described above incurs a multiplicative over-
head of (exactly) o simply because the underlying single-choice CCOT protocol
makes use of the basic XOR-tree encoding scheme. Fortunately, the batch setting
makes it possible to apply more sophisticated encodings whose overhead is much
lower. More concretely, using encoding schemes based on random combinations
approach [23], the overhead can be as low as an additional < 6 - max(4m, 80)
while using encoding schemes based on o-wise independent generators [13] one
can obtain rate-1/6 communication complexity (and likely to be practical when
m > o). We show constructions of batch single-choice CCOT using abstract
encoding schemes. )

We describe a protocol for F224*™ in the For-hybrid model that makes
use of an arbitrary XOR-tree encoding scheme in Fig.6. The protocol itself
is a straightforward extension combining ideas from protocols in Figs.4 and 5
while abstracting away the underlying encoding scheme. We now prove that the
protocol 725" described in Fig. 6 realizes batch single-choice CCOT with
sender-simulatability and receiver-privacy. We start by observing that correct-
ness follows from correctness properties of the XOR-tree encoding schemes
(specifically, Property 3).

Simulating Corrupt Receiver. The simulation is quite similar to the simula-
tion of single-choice CCOT construction presented in Fig. 5. Obviously the main
difference now is that we need to deal with encodings over R’s entire input. We pro-
ceed to the formal simulation. Assume that H is modeled as a (non-programmable)
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%

Inputs: S holds X, ..., X where X = (:cg
J g [’I”L] and {bi}ie[m]
Protocol:

HA
N

sy (@, 25 R holds

n

1. R picks randomness wp for the encoding scheme and sends to S.
2. S does the following for each j € [n]:

— Choose A} 4, {(a A(l 1)}icm) uniformly at random.

3,07
— Choose randomness w; and compute {(ufo,uf 1)} ecim —
Enw, ({(@§5@A7%, 251 @A) iepm; wi)-
— Choose ¢1,. .., (bn, {uj 2}ien),ecim’] at random such that for all j € [n] it

holds that @,u}» = ¢;HA),
—  Choose {(K¢,0, K¢,1)}eem] at random where each Ky, K1 + {0, 1}
3. R does the following;:
— Choose random w’, compute {by}ee(m] < Engy (b1, ..., bm);w’).
— For each j € [n], R sets {(0]7070371)}56 m] as follows:
— Ifj € J, thenset ¢y =ch, =0 forall £ € [m'].
— Else for each ¢ € [m/] set Cﬁ',bg =0 and c?kb% =1
4. For each ¢ € [m']: S sends (Ky,0,Ke,1) to For and R sends b to For. R
receives {Ke’bz}ge[,n/] from For.
5. For each j € [n] and each £ € [m/]:
— S sends (u J 07ef 1 =Enc(Kp1,u ] 2)) to For, and R sends cJ o to For.
— S sends (uj, 17ef 0= Enc(Kg 0, U, 2)) to For, and R sends c 1 to For.
That is, R receives {(uJ’O7 i1)teem if 7 € J, and otherwise receives
{(uli by eﬁ b, )}eem)-
6. For each j € [n]: S sends {(A; ()J,A( NYicimis A 4 hy = H(¢;) to R.
7. For each j € [n], R reconstructs the following:
- If j € J, then compute {(CEEZ())@AE%,j;q@AEq)}zE[m] —
Dew ({(u5.0,uj.1) }eepmn)-
— Else, compute {x(l) @A(” e = Dewo({uib} Yeepm)) and ¢; =
],¢®@ZD€C(KE,%76],%)'
8 RsetsJ=J,¥ =0, and & = (), and does the following:
IfVvjeJ and if V£,0' € [m'] it holds that ufo®ul, = ufo®ul, then R
sets ¥ = {( Zj, 0a ~J 1)}Jere[ ]
If for every j ¢ J it holds that h; = H(¢;) then R sets & = {¢;} ¢
If (|J| >0and ¥ =0) or (|J| <n and & = (), then set J =¥ =& = (.
Reveal phase: R sends (J,¥,®) to S. S aborts if these values are inconsistent
with its inputs and check values.

bat,sin

Fig. 6. Protocol m..,;""" realizing batch single-choice CCOT.

random oracle. S first receives public randomness wy for the XOR-tree encoding
scheme (En, De, En’, De’). Acting as For the simulator does the following:

— Samples for each j € [n], uniform {(x 0L i)},e[m], uniformly random w; and

computes {(U§70,u§71)}£€[m/] — En,, ({(2 gz )}ie[m];wj).
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— Chooses random {(K¢,0, K¢,1) }eefm], {uj 2}i€m] ] eefm]

— For each ¢ € [m/], acting as FOT obtaln Values by, return key K, bl and set
e?b; = EnC(Kvg’bz,uﬁ7 ), e §717b2 = EnC(Kg’l,bz,O).
Compute (b1, ...,bm) = De' ({0} }remm)-

— For each j € [n],£ € [m/], acting as For obtain values {c} , ¢}, } and return

Coul et ot
answers using values uj o, uj, €} b, €51,

(computed as above) exactly as
in the protocol.

— Initialize J = (). For each j € [n]: If there exists £ € [m/] such that ¢}, = ¢/ | =
0, then add j to J.

— Initialize flag = 0. For each j ¢ J: If there exists £ € [m/] such that either

fb, =0or c‘Z db, = 1 do not hold, then add j to J and set flag = 1.
— Send (J, {b bie m]) to the trusted party and receive back {( T 0, %)}z‘e[m] JeJ
and {{7) }icpml,jes-
— For eachj € J, do: (1) for each i € [m], set A§% = ﬁcg%@xg% and AAY% =
(l) Eij 1> and (2) pick random A’ ; and random A — {0, 1}*.

- For each Jj & J,do: (1) foreach i € [m ] set Agz[)) = :%(z,)) @x(zz and pick random
A;gibi, and (2) pick random 4 , — {0,1}*, and set h; = H(A] ,&@,u,).

— For each j € [n]: send {AJO, (z)}le (m)s A% 4, I to R.

— In the reveal phase, if flag =1 or if R sends (J',¥’, ') such that J’ # J or the
values ¥, &’ are not consistent with the values above, then abort the reveal

phase. Else, send “reveal” to the trusted party.

We show that the simulation is indistinguishable from the real execution. First,
note that if for some j € [n],£ € [m/], it holds that Cﬁ,o = C§,1 = 0, then R
receives both ue o and ue .1, but does not obtain ue 2. In this case, it is safe to

presume that R will end up knowing both :cg()) as well as x but R definitely

misses an additive share of (and consequently has no 1nf0rmat10n about) @;.
Therefore, S includes j in J and obtains both 1}] 0, ] 1 from the trusted party.
This allows S to Carry out a correct simulation irrespective of whether or not R
obtained both Jc 0 and xJ

Next, 5uppose that for some j € [n] such that for no ¢ € [m/] it holds that

Cf,o = f’l = 0, and yet there exists some ¢ € [m’] such that either cﬁ p, = 0or

ct G1-b, = 1 does not hold. In this case, we claim that R will not be able to pro-

duce both z; ()), ; % in the real execution. This follows from the propertleb of the
XOR-tree encoding schemes and the fact that R misses one of uJ 0, U j 1~ Further,
it can be shown that except with negligible probability R cannot produce ¢;
either. This is because (1) R does not obtain e?bz, and (2) R has no information
about the plaintext encrypted as e?,l—b;’ and (3) h; = H(¢;) does not reveal
any information about ¢; with statistically negligible probability (i.e., unless H
is queried on ¢;). Point (2) mentioned above trivially holds in the simulation
because e?l_b} encrypts 0 instead of uf,. On the other hand, in the real exe-
cution, observe that R does not possess the key K e1-b,- 1t then follows from



406 V. Kolesnikov and R. Kumaresan

a straightforward reduction to the semantic security of the encryption scheme
that the real execution is indistinguishable from the simulation. In particular, in
this case R will not be able to produce (J', %', @') that will be accepted by S in
the real execution, and is equivalent to S sending abort in the ideal execution.

Finally, suppose that for every j € [n], either (1) for all £ € [m’] it holds that
o =1ch1=0,0r (2) for all £ € [m'] it holds that cﬁ'.’b} =0 and c?l_bz = 1. This
indeed corresponds to honest behavior on the part of R. Specifically, in case (1),
we have j € J, and in case (2), we have j ¢ J. This is exactly how the simulator
constructs J. It remains to be shown that in this case, any reveal (J', ¥’ @)
such that J’ # J or ¥/, @' is not consistent with the simulation will be rejected
by S in the real execution. This follows from: (a) Any j € J cannot be claimed
by R to not be in the checkset. This is because in this case, R does not have any
information about ¢; (other than H(¢;) which leaks no information unless H is
queried on ¢;). (b) Any j ¢ J cannot be claimed by R to be in the checkset. This
is because in this case, R obtains exactly one of {uf, uf } for every £ € [m/]
and thus by Property 7 of XOR-tree encoding schemes, is able to reconstruct at
most one of {x%, xﬁ}

Privacy Against Corrupt Sender. The proof of privacy against corrupt
sender is very similar to the corresponding proof for (the basic) CCOT. Specifi-
cally, note that except in the reveal phase, information flows only from S to R.
Next note that if S is honest, then the reveals made by R in the reveal phase
do not leak any information about R’s input by,...,b,,. (Recall J is revealed
to S in the real as well as the ideal execution.) It remains to be shown that
even a corrupt S does not learn any information about by, ..., b,,. Clearly for
j € J, R’s actions are independent of its inputs b1, . .., b,, and thus does not leak
any information. On the other hand for j ¢ J, observe that R does not reveal
any information about {5c§-?l))i}i€[m] (i.e., in the reveal phase), and thus the only
information learnt by S is whether ¥ = @ = () or not. This translates to learn-
ing information about R’s inputs by,...,b, only if for some (possibly many)
j € [n],£ € [o], S provided (Ug,o,ug,z) in one instance of For and (U§,1aﬂ§,2)
in the other instance with u§72 # a?z' This is because such a strategy would

allow S to learn whether R input Cﬁ,o =1 (in which case R does not abort) or

C§,1 =1 (in which case R does abort), and consequently leak information about

b, (i.e., depending on which of cﬁyo, 0571 was 0 when j ¢ J). More generally, such a
strategy allows S to learn any disjunctive predicate of R’s selections {cfﬂ7 cf’l} ‘-

To prove that such a strategy does not help S we make use of Property 6 of
XOR-tree encoding schemes. Thus we have that if S supplied inconsistent values
(i.e., ub,4%) in at most (o — 1) instances, then S does not learn any information
about by,...,b, in the reveal phase. Further, even if S supplied inconsistent
values in all instances, then with all but negligible probability (exponentially
negligible in o) R will abort in the reveal phase (irrespective of R’s true input
b1,...,bm). This concludes the proof of privacy against corrupt sender.

It is easy to see that our construction of batch single-choice CCOT described

above is also a realization of modified batch single-choice CCOT.
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MuLTISTAGE CCOT. Note that now R has several evaluation sets Fy, ..., F;
(corresponding to ¢ executions). To realize F ., we will rely on the protocol

bat,si . o bat,si . .
oo™ designed for realizing F.;™" presented previously. Indeed as in the pro-

tocol designed in [10] we will run 7-24*™ ¢ times to obtain a protocol for F,.
Our protocol for F,\_ . is described in Fig.7. Unlike protocols for other variants
of CCOT, here we improve over prior work by using the reactive functionality
relaxation (as opposed to receiver-privacy relaxation) to obtain a simpler pro-
tocol secure against corrupt receiver. Prior work [10] required an overhead of 2
while our protocol requires only a factor ¢t overhead. We prove that the proto-
col in Fig.7 securely realizes multistage CCOT with sender-simulatability and
receiver-privacy. We start by observing that correctness follows from correctness

: bat,si
of each instance of T

T,

Simulating Corrupt Receiver. Using the simulator of 724", the simulator

S first extracts for all k£ € [t], the check sets [n] \ Ej, and the selection bits
bk.1,- ., bkm. Note that a malicious R may supply sets Ef,...,E; that may
overlap. The simulation extraction for F} .. first initializes each of Ey,..., E;
to @, flag to 0 (flag = 1 indicates whether S will choose to abort in the reveal
phase), and proceeds as follows

— For every j € [n] such that there exists unique « € [t] such that j € E/ , then
add j to Fy,.

— For every j € [n] such that there exists a, 8 € [t] such that j € £}, N Ej, then
add j to J and set flag = 1.

It is easy to see that Ei,..., F; are disjoint sets. The simulator then sends
Ey, ..., E (as obtained above), and the values {bx i } re[s],icim] (as obtained from
bat,sin

the t invocations of the simulator of mao;"™) to the ideal functionality Ff ...
Then upon receiving R’s output from F,!_ ., S additively secret shares each val-
ues in R’s output to obtain ¢ additive shares of each value, and then feeds the

k-th share of each value to the k-th copy of the invoked simulator for 722"

bat,sin

. ccot to
complete the simulation of each of the ¢ parallel instances of 7" Then in the
reveal phase, the simulator sends abort to Ff ., if flag = 1. On the other hand
if flag = 0, then the simulator receives (EY,...,E/, ¥, ®) from R. If EY,... E/
are pairwise nonintersecting, and further for every k € [t] it holds that Ej, = E}/,
then S sends reveal to ..., else sends abort. This completes the description
of the simulation. To see why the above simulation works, first note that each

of the ¢ copies of the invoked simulator for 722" (each of which independently
. . . . bat,sin

guarantee correct simulation of a single instance of 7., ") are run on random

(t — 1)-wise independent values. Since S generates these (¢ — 1)-wise indepen-

dent values correctly using the output received from F.t_ ., it follows that the ¢

copies of the invoked simulator for 2255 taken together also guarantee correct

simulation of the protocol realizing f;m. In particular, at the end of the output

phase, the view of the adversary in real protocol is indistinguishable from that in

Then the simulator uses the k-th copy of the invoked simulator for

cot»
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the simulation. It then remains to be shown that (except with statistically negli-
gible probability) a corrupt R will not be able to reveal (EY,..., E/, ¥, ®) that is
accepted by the sender in the real protocol and yet (EY, ..., E}) # (E1,..., E),
where E1, ..., E; are the sets constructed by S as described above. This follows
from observing that for every j € [n]:

—1If j € E/, for some unique « € [t], then R does not have any information about
¢f for any 3 # «. Thus, it can successfully reveal (EY,...,E}) with j € Eg
for 8 # « only with probability negligible in o. More precisely in this case R
will not be able to provide @ consistent with (EY, ..., E}). Thatisif j € E/,
for some unique « € [t], then for every reveal (EY,..., E}) that is accepted
by the sender it must hold that j € E”. Stated differently, if for every j € [n],
there exists unique « € [t] such that j € E/, then R can successfully reveal
(EY,...,E}) only for (EY,...,E}) = (Ef,...,E}). Recall that in this case,
the simulator S set flag = 0 and thus will reveal (E1, ..., E:) = (Ef,..., E})
in the reveal phase. Therefore, in this case it holds that the real protocol is
indistinguishable from the ideal simulation.

—If j € E, N Ej for a # (3, then one of mybﬁ),ng’lﬁ) (alternatively one of
ac;f(’)a),xg’la)) is information-theoretically hidden from R. Thus, it can suc-
cessfully reveal (EY, ..., E}) with j € Ej (resp. j € EJ) only if it guesses
the missing value, i.e., with probability negligible in A. More precisely in this
case R will not be able to provide ¥p (resp. ¥, ) consistent with (EY, ..., E}).
In other words, if j € E;, N Ej; for o # J3, then for every reveal (EY,..., EY)
that is accepted by the sender it must hold that j & U, E}. Indeed, it can be
observed that any reveal by R will be rejected by S. In particular, R cannot
reveal j & U B}/ either, since in this case it will be required to produce both
x;f(’)k), ng’lk) for every k € [t]. As pointed out earlier, R cannot do this except
with negligible probability for k € {a, 8}. Recall that in this case, the sim-
ulator S set flag = 1 and thus will abort in the reveal phase. Therefore, in
this case it holds that the real protocol is indistinguishable from the ideal
simulation.

Privacy Against Corrupt Sender. First observe that in the output phase of
each instance of 722%™ information flows only from the sender to the receiver
during the output phase. Thus privacy at the end of the output phase triv-
ially holds, and in particular S has no information about the sets Fy, ..., E;. It
remains to be shown that the information revealed by R to S in the reveal phase
does not leak any information about R’s input bits by, ..., b;. For simplicity, first
consider the case when S is honest. In this case, observe that in a given instance
of T2 “say the k-th instance, R’s reveal message depends on input by and
is independent of {bq}axk. Privacy then follows from the privacy guaranteed
batsin - On the other hand, when S is corrupt, R’s reveal
message in the k-th instance of 722" depends on its input by, and whether S’s
cheating attempt (if any) was detected in any instance. Privacy follows from the

bat,sin . 5 s
oot preserves privacy of R’s inputs.

by (each instance of)

fact that each instance of 7
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Inputs: S holds XM, ..., X where X = («{’ é ﬂ), ceey (x£l>0, nl)l) R holds
pairwise non-intersecting sets of indices Ej, ..., E C [n] and selection bits by =
(bl,l, e ,b1,m), e ,bt = (bt,l, e ,bt,m).

Protocol:

1. S performs a t-out-of-t additive sharing of each a:y,))

of () by {20 becqs-
2. S and R participate in ¢ parallel instances of protocol
way: In the k-th instance:

value. Denote the shares

bat,sin

ceor ™ in the following

- S inputs xR X(m k) where X (k) _
(x(llok), @, k)) S ( ifok), Sf)) and internally uses “check values”
¢17 ceey ¢n.

— Rinputs [n]\ Ex as the check set, along with selection bits bk, 1, ..., bk,m-
— At the end of the output phase, R receives the following:
— For each j € [n]\ Ej the values {(Z ;lok),fc;llk))}ie[m] and “checkset
value” V.
— For each j € Ej the values {xj b }iem) and “check value” &y.
3. Rsets I = (Er,...,E), ¥ =0, ® =10, and does the following:
If there exists k € [t] such that Fy # () but ¥, = &, = () holds, then set
J=U=0¢=0.
Else, set ¥ = {Wr }repy and @ = {Pr }ie| t]
4. Vk € [t], Vj € Ey, Vi € [m], R reconstructs xj bk @ée t] ;Tbi)l

5. Vj € [n] \ UrEy, Vi € [m], Vb € {0,1}, R reconstructs xj b =@Drey;

Reveal phase: R sends (J, %, ®) to S. S aborts if these values are not consmtent
with its input/check values.

(z 5)

Fig. 7. Realizing F, ., in the For-hybrid model.

Additional Optimizations. Instead of sending the values ¥ = {Z;0,%;1};jes
and & = {$;}jes, R could send (J, H'(¥), H"(®)) to S, where H', H" are mod-
eled as collision-resistant hash functions (alternatively, random oracles). Note
that these optimizations are applicable in a straightforward way in other con-
structions we present. We omit detailing them to keep the exposition more clear.

In applications to secure computation, full receiver simulation in CCOT is
also not required. We require only privacy, i.e., we do not need to consider the
joint distribution of receiver’s view and sender’s inputs. This is because sender’s
inputs are just random keys for the garbled circuits, and in the simulation of
the 2PC protocol, it is the simulator that will generate these keys. On the other
hand, extracting receiver inputs is very crucial in order to enable the simulator
to generate correctly faked garbled circuits. However our definitions will require
full receiver simulation (including extraction). Fortunately, achieving full receiver
simulation comes only with a small multiplicative overhead.

Summary of Efficiency. All our protocols are presented in the For-hybrid
model and thus can take advantage of OT extension techniques. Further,
using standard leveraging techniques (such as ones used in [9]), OT exten-
sion of [14], the XOR-tree encoding scheme of [13], and the constructions in
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Figs. 4, 5, 6, and 7, one can obtain a rate-1/6 construction for Fo2%5™ (in the
non-programmable RO model) with sender-simulatability and receiver-privacy as
in Definition 4. In concrete terms, it is easy to verify that the additional overhead
of realizing Fo2™ is < 6-max(4m, 8c). The efficiency of our CCOT protocol in
the single execution setting is comparable to that of XOR-tree encodings of [23],
but is clearly better than DDH-based CCOT [22,24] since we take advantage
of OT extension (under the assumption that correlation-robust hash functions
exist [12,14,29]). Finally, we can realize F,\_, (in the non-programmable random
oracle model) with sender-simulatability and receiver-privacy as in Definition 4
while bearing an overhead at most ¢ over the cost of realizing Fhatsin

ccot Where ©
denotes the number of executions.
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